Deng, R. et al. Chondrocyte membrane–coated nanoparticles promote drug retention and halt cartilage injury in rat and canine osteoarthritis. Sci. Transl. Med. 16, eadh9751 (2024).
Zhou, D. et al. Intra-articular nanodrug supply methods for treating osteoarthritis. Drug Discov. Right now 28, 103482 (2022).
Jones, I. A., Togashi, R., Wilson, M. L., Heckmann, N. & Vangsness, C. T. Jr Intra-articular therapy choices for knee osteoarthritis. Nat. Rev. Rheumatol. 15, 77–90 (2019).
Bedingfield, S. Okay. et al. Amelioration of post-traumatic osteoarthritis by way of nanoparticle depots delivering small interfering RNA to broken cartilage. Nat. Biomed. Eng. 5, 1069–1083 (2021).
James, S. L. et al. World, regional, and nationwide incidence, prevalence, and years lived with incapacity for 354 illnesses and accidents for 195 nations and territories, 1990–2017: a scientific evaluation for the World Burden of Illness Research 2017. Lancet 392, 1789–1858 (2018).
Hunter, D. J., March, L. & Chew, M. Osteoarthritis in 2020 and past: a Lancet Fee. Lancet 396, 1711–1712 (2020).
Kim, H. et al. The present state of the osteoarthritis drug growth pipeline: a complete narrative assessment of the current challenges and future alternatives. Ther. Adv. Musculoskel. 14, 1759720X221085952 (2022).
Lindström, E. et al. Nonclinical and scientific pharmacological characterization of the potent and selective cathepsin Okay inhibitor MIV-711. J. Transl. Med. 16, 1–14 (2018).
Mancipe Castro, L., Garcia, A. & Guldberg, R. Biomaterial methods for improved intra-articular drug supply. J. Biomed. Mater. Res. A 109, 426–436 (2021).
Sterner, B. et al. The impact of polymer measurement and cost of molecules on permeation by synovial membrane and accumulation in hyaline articular cartilage. Eur. J. Pharm. Biopharm. 101, 126–136 (2016).
Rahimi, M., Charmi, G., Matyjaszewski, Okay., Banquy, X. & Pietrasik, J. Current developments in pure and artificial polymeric drug supply programs used for the therapy of osteoarthritis. Acta Biomater. 123, 31–50 (2021).
Rothenfluh, D., Bermudez, H., O’Neil, C. & Hubbell, J. Biofunctional polymer nanoparticles for intra-articular focusing on and retention in cartilage. Nat. Mater. 7, 248–254 (2008).
Ji, M. et al. Exact focusing on of miR-141/200c cluster in chondrocytes attenuates osteoarthritis growth. Ann. Rheum. Dis. 80, 356–366 (2020).
Chen, J. et al. A fast and revolutionary pipeline for producing chondrocyte-homing peptide-modified extracellular vesicles by three-dimensional dynamic tradition of hADSCs spheroids to modulate the destiny of remaining ear chondrocytes within the M1 macrophage-infiltrated microenvironment. J. Nanobiotechnol. 22, 300 (2024).
Zhou, D. et al. MMP13-targeted siRNA-loaded micelles for prognosis and therapy of posttraumatic osteoarthritis. Bioact. Mater. 37, 378–392 (2024).
Smith, A. E. & Helenius, A. How viruses enter animal cells. Sci. Adv. 304, 237–242 (2004).
Grove, J. & Marsh, M. The cell biology of receptor-mediated virus entry. J. Cell Biol. 195, 1071–1082 (2011).
Weissenhorn, W. et al. Structural foundation for membrane fusion by enveloped viruses. Mol. Membr. Biol. 16, 3–9 (1999).
Von der Mark, Okay. et al. Sort X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum. 35, 806–811 (1992).
Knudson, W. & Loeser, R. CD44 and integrin matrix receptors take part in cartilage homeostasis. Cell. Mol. Life Sci. 59, 36–44 (2002).
Li, H., Wang, D., Yuan, Y. & Min, J. New insights on the MMP-13 regulatory community within the pathogenesis of early osteoarthritis. Arthritis Res. Ther. 19, 248 (2017).
Dissanayake, S., Denny, W. A., Gamage, S. & Sarojini, V. Current developments in anticancer drug supply utilizing cell penetrating and tumor focusing on peptides. J. Management. Launch 250, 62–76 (2017).
Olson, E. S. et al. Activatable cell penetrating peptides linked to nanoparticles as twin probes for in vivo fluorescence and MR imaging of proteases. Proc. Natl Acad. Sci. USA 107, 4311–4316 (2010).
Jiang, T. et al. Tumor imaging via proteolytic activation of cell-penetrating peptides. Proc. Natl Acad. Sci. USA 101, 17867–17872 (2004).
Zhang, H. et al. Sustaining hypoxia setting of subchondral bone alleviates osteoarthritis development. Sci. Adv. 9, eabo7868 (2023).
Schipani, E. et al. Hypoxia in cartilage: HIF-1α is crucial for chondrocyte progress arrest and survival. Genes Dev. 15, 2865–2876 (2001).
Kim, J.-w., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic change required for mobile adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).
Stegen, S. et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature 565, 511–515 (2019).
Bouaziz, W. et al. Interplay of HIF1alpha and beta-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage injury in mice. Proc. Natl Acad. Sci. USA 113, 5453–5458 (2016).
Ummarino, D. Hypoxia protects towards cartilage loss by regulating Wnt signalling. Nat. Rev. Rheumatol. 12, 315–315 (2016).
Philip, M. et al. Metabolic research of hypoxia-inducible issue stabilisers IOX2, IOX3 and IOX4 (in vitro) for doping management. Drug Take a look at. Anal. 13, 794–816 (2021).
Stoddart, J. C., Dandridge, O., Garner, A., Cobb, J. & van Arkel, R. J. The compartmental distribution of knee osteoarthritis—a scientific assessment and meta-analysis. Osteoarthr. Cartil. 29, 445–455 (2021).
Wang, Q. et al. Dysregulated integrin αVβ3 and CD47 signaling promotes joint irritation, cartilage breakdown, and development of osteoarthritis. JCI Perception 4, e128616 (2019).
Gao, J. et al. Overcoming limitations for intra-articular supply of disease-modifying osteoarthritis medicine. Traits Pharmacol. Sci. 43, 171–187 (2022).
Shimomura, S. et al. Mechanical stimulation of chondrocytes regulates HIF-1α below hypoxic circumstances. Tissue Cell 71, 101574 (2021).
Adesida, A. B. et al. Human meniscus cells categorical hypoxia inducible factor-1α and elevated SOX9 in response to low oxygen stress in cell combination tradition. Arthritis Res. Ther. 9, R69 (2007).
Yu, Q. et al. Environment friendly siRNA switch to knockdown a placenta particular lncRNA utilizing RGD-modified nano-liposome: a brand new preeclampsia-like mouse mannequin. Int. J. Pharm. 546, 115–124 (2018).
Mao, X. et al. iRGD-conjugated DSPE-PEG2000 nanomicelles for focused supply of salinomycin for therapy of each liver most cancers cells and most cancers stem cells. Nanomedicine 10, 2677–2695 (2015).
Wei, Y. et al. Phospholipase A2 inhibitor-loaded micellar nanoparticles attenuate irritation and mitigate osteoarthritis development. Sci. Adv. 7, eabe6374 (2021).
Van den Borne, M. et al. Worldwide Cartilage Restore Society (ICRS) and Oswestry macroscopic cartilage analysis scores validated to be used in autologous chondrocyte implantation (ACI) and microfracture. Osteoarthr. Cartil. 15, 1397–1402 (2007).
Pritzker, Okay. P. et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr. Cartil. 14, 13–29 (2006).
Little, C. B. et al. The OARSI histopathology initiative—suggestions for histological assessments of osteoarthritis in sheep and goats. Osteoarthr. Cartil. 18, S80–S92 (2010).
Oláh, T. et al. Topographic modeling of early human osteoarthritis in sheep. Sci. Transl. Med. 11, eaax6775 (2019).
