Yao, Y., Liu, N., McDowell, M. T., Pasta, M. & Cui, Y. Bettering the biking stability of silicon nanowire anodes with conducting polymer coatings. Power Environ. Sci. 5, 7927–7930 (2012).
Rage, B., Delbegue, D., Louvain, N. & Lippens, P.-E. Engineering of silicon core–shell buildings for Li-ion anodes. Chemistry 27, 16275–16290 (2021).
Jeschull, F. et al. Electrochemistry and morphology of graphite unfavourable electrodes containing silicon as capacity-enhancing electrode additive. Electrochim. Acta 320, 134602 (2019).
Müller, J., Michalowski, P. & Kwade, A. Impression of silicon content material and particle measurement in lithium-ion battery anodes on particulate properties and electrochemical efficiency. Batteries 9, 377 (2023).
Han, H., Huang, Z. & Lee, W. Metallic-assisted chemical etching of silicon and nanotechnology functions. Nano At this time 9, 271–304 (2014).
Entwistle, J., Rennie, A. & Patwardhan, S. A evaluation of magnesiothermic discount of silica to porous silicon for lithium-ion battery functions and past. J. Mater. Chem. A 6, 18344–18356 (2018).
Xu, T. et al. Stabilizing Si/graphite composites with Cu and in situ synthesized carbon nanotubes for high-performance Li-ion battery anodes. Inorg. Chem. Entrance. 5, 1463–1469 (2018).
Taiwo, O. O. et al. Investigation of cycling-induced microstructural degradation in silicon-based electrodes in lithium-ion batteries utilizing X-ray nanotomography. Electrochim. Acta 253, 85–92 (2017).
Liu, W. et al. The impact of carbon coating on graphite@nano-Si composite as anode supplies for Li-ion batteries. J. Strong State Electrochem. 23, 3363–3372 (2019).
Kim, J. et al. Unveiling the position of electrode-level heterogeneity alleviated in a silicon-graphite electrode underneath operando microscopy. Power Storage Mater. 57, 269–276 (2023).
Pietsch, P. et al. Quantifying microstructural dynamics and electrochemical exercise of graphite and silicon-graphite lithium ion battery anodes. Nat. Commun. 7, 12909 (2016).
Luo, L., Wu, J., Luo, J., Huang, J. & Dravid, V. P. Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM. Sci. Rep. 4, 3863 (2014).
Xu, Z.-L. et al. Examine of lithiation mechanisms of excessive efficiency carbon-coated Si anodes by in-situ microscopy. Power Storage Mater. 3, 45–54 (2016).
Qi, W. et al. Bettering the speed functionality of a SiOx/graphite anode by including LiNO3. Prog. Nat. Sci. Mater. Int. 30, 321–327 (2020).
Zhao, X. et al. Revealing the position of poly(vinylidene fluoride) binder in Si/graphite composite anode for Li-ion batteries. ACS Omega 3, 11684–11690 (2018).
Huang, Q., Loveridge, M. J., Genieser, R., Lain, M. J. & Bhagat, R. Electrochemical analysis and phase-related impedance research on silicon–few layer graphene (FLG) composite electrode techniques. Sci. Rep. 8, 1386 (2018).
Shen, C. et al. In situ and ex situ TEM research of lithiation behaviours of porous silicon nanostructures. Sci. Rep. 6, 31334 (2016).
Xu, Z.-L. et al. Carbon-coated mesoporous silicon microsphere anodes with enormously decreased quantity enlargement. J. Mater. Chem. A 4, 6098–6106 (2016).
Prado, A. Y. R., Rodrigues, M.-T. F., Trask, S. E., Shaw, L. & Abraham, D. P. Electrochemical dilatometry of si-bearing electrodes: dimensional adjustments and experiment design. J. Electrochem. Soc. 167, 160551 (2020).
Han, G. et al. A evaluation on numerous optical fibre sensing strategies for batteries. Renew. Maintain. Power Rev. 150, 111514 (2021).
Buljac, A. et al. Digital quantity correlation: evaluation of progress and challenges. Exp. Mech. 58, 661–708 (2018).
Bay, B. Okay., Smith, T. S., Fyhrie, D. P. & Saad, M. Digital quantity correlation: three-dimensional pressure mapping utilizing X-ray tomography. Exp. Mech. 39, 217–226 (1999).
Pietsch, P., Hess, M., Ludwig, W., Eller, J. & Wooden, V. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to review lithium ion batteries. Sci. Rep. 6, 27994 (2016).
Valisammagari, A. et al. Examine of microstructural evolution and pressure evaluation in SiOx/C unfavourable electrodes utilizing in-situ X-ray tomography and digital quantity correlation. Batteries Supercaps 8, e202400416 (2025).
Wetjen, M. et al. Differentiating the degradation phenomena in silicon-graphite electrodes for lithium-ion batteries. J. Electrochem. Soc. 164, A2840 (2017).
Chan, C. Okay., Ruffo, R., Hong, S. S., Huggins, R. A. & Cui, Y. Structural and electrochemical research of the response of lithium with silicon nanowires. J. Energy Sources 189, 34–39 (2009).
Dimov, N., Fukuda, Okay., Umeno, T., Kugino, S. & Yoshio, M. Characterization of carbon-coated silicon: structural evolution and doable limitations. J. Energy Sources 114, 88–95 (2003).
Liu, W.-R. et al. Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries. J. Electrochem. Soc. 152, A1719 (2005).
Guo, J., Solar, A., Chen, X., Wang, C. & Manivannan, A. Cyclability research of silicon–carbon composite anodes for lithium-ion batteries utilizing electrochemical impedance spectroscopy. Electrochim. Acta 56, 3981–3987 (2011).
Wang, X., Zhu, J., Dai, H., Yu, C. & Wei, X. Impedance investigation of silicon/graphite anode throughout biking. Batteries 9, 242 (2023).
Harrington, D. A. & van den Driessche, P. Mechanism and equal circuits in electrochemical impedance spectroscopy. Electrochim. Acta 56, 8005–8013 (2011).
Lai, W. & Haile, S. M. Impedance spectroscopy as a software for chemical and electrochemical evaluation of blended conductors: a case research of Ceria. J. Am. Ceram. Soc. 88, 2979–2997 (2005).
Clematis, D. et al. On the stabilization and extension of the distribution of rest instances evaluation. Electrochim. Acta 391, 138916 (2021).
Wan, T. H., Saccoccio, M., Chen, C. & Ciucci, F. Affect of the discretization strategies on the distribution of rest instances deconvolution: implementing radial foundation capabilities with DRTtools. Electrochim. Acta 184, 483–499 (2015).
Bertei, A. et al. Validation of a physically-based stable oxide gas cell anode mannequin combining 3D tomography and impedance spectroscopy. Int. J. Hydrog. Power 41, 22381–22393 (2016).
Pan, Okay., Zou, F., Canova, M., Zhu, Y. & Kim, J.-H. Complete electrochemical impedance spectroscopy research of Si-Based mostly anodes utilizing distribution of rest instances evaluation. J. Energy Sources 479, 229083 (2020).
Moyassari, E. et al. The position of silicon in silicon-graphite composite electrodes concerning particular capability, cycle stability, and enlargement. J. Electrochem. Soc. 169, 010504 (2022).
Yoon, D.-H., Marinaro, M., Axmann, P. & Wohlfahrt-Mehrens, M. Examine of the binder affect on enlargement/contraction conduct of silicon alloy unfavourable electrodes for lithium-ion batteries. J. Electrochem. Soc. 167, 160537 (2020).
Moon, J. et al. Interaction between electrochemical reactions and mechanical responses in silicon–graphite anodes and its impression on degradation. Nat. Commun. 12, 2714 (2021).
Finegan, D. P. et al. Spatially resolving lithiation in silicon–graphite composite electrodes through in situ high-energy X-ray diffraction computed tomography. Nano Lett. 19, 3811–3820 (2019).
Yao, Okay. P. C., Okasinski, J. S., Kalaga, Okay., Almer, J. D. & Abraham, D. P. Operando quantification of (de)lithiation conduct of silicon–graphite blended electrodes for lithium-ion batteries. Adv. Power Mater. 9, 1803380 (2019).
Cholewinski, A., Si, P., Uceda, M., Pope, M. & Zhao, B. Polymer binders: characterization and growth towards aqueous electrode fabrication for sustainability. Polymers 13, 631 (2021).
Peña Fernández, M., Barber, A. H., Blunn, G. W. & Tozzi, G. Optimization of digital quantity correlation computation in SR-microCT photographs of trabecular bone and bone-biomaterial techniques. J. Microsc. 272, 213–228 (2018).
Lu, X. et al. Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling. Nat. Commun. 14, 5127 (2023).
Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the way forward for lithium-based batteries. Nat. Commun. 14, 420 (2023).
Scurtu, R.-G. et al. From small batteries to massive claims. Nat. Nanotechnol. 20, 970–976 (2025).
Kornilov, A., Safonov, I. & Yakimchuk, I. A evaluation of watershed implementations for segmentation of volumetric photographs. J. Imaging 8, 127 (2022).
Hasanpour, S., Hoorfar, M. & Phillion, A. Characterization of transport phenomena in porous transport layers utilizing X-ray microtomography. J. Energy Sources 353, 221–229 (2017).
