11 C
Canberra
Saturday, October 25, 2025

Unravelling electro-chemo-mechanical processes in graphite/silicon composites for designing nanoporous and microstructured battery electrodes


  • Yao, Y., Liu, N., McDowell, M. T., Pasta, M. & Cui, Y. Bettering the biking stability of silicon nanowire anodes with conducting polymer coatings. Power Environ. Sci. 5, 7927–7930 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rage, B., Delbegue, D., Louvain, N. & Lippens, P.-E. Engineering of silicon core–shell buildings for Li-ion anodes. Chemistry 27, 16275–16290 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeschull, F. et al. Electrochemistry and morphology of graphite unfavourable electrodes containing silicon as capacity-enhancing electrode additive. Electrochim. Acta 320, 134602 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Müller, J., Michalowski, P. & Kwade, A. Impression of silicon content material and particle measurement in lithium-ion battery anodes on particulate properties and electrochemical efficiency. Batteries 9, 377 (2023).

    Article 

    Google Scholar
     

  • Han, H., Huang, Z. & Lee, W. Metallic-assisted chemical etching of silicon and nanotechnology functions. Nano At this time 9, 271–304 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Entwistle, J., Rennie, A. & Patwardhan, S. A evaluation of magnesiothermic discount of silica to porous silicon for lithium-ion battery functions and past. J. Mater. Chem. A 6, 18344–18356 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, T. et al. Stabilizing Si/graphite composites with Cu and in situ synthesized carbon nanotubes for high-performance Li-ion battery anodes. Inorg. Chem. Entrance. 5, 1463–1469 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Taiwo, O. O. et al. Investigation of cycling-induced microstructural degradation in silicon-based electrodes in lithium-ion batteries utilizing X-ray nanotomography. Electrochim. Acta 253, 85–92 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W. et al. The impact of carbon coating on graphite@nano-Si composite as anode supplies for Li-ion batteries. J. Strong State Electrochem. 23, 3363–3372 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Unveiling the position of electrode-level heterogeneity alleviated in a silicon-graphite electrode underneath operando microscopy. Power Storage Mater. 57, 269–276 (2023).

    Article 

    Google Scholar
     

  • Pietsch, P. et al. Quantifying microstructural dynamics and electrochemical exercise of graphite and silicon-graphite lithium ion battery anodes. Nat. Commun. 7, 12909 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, L., Wu, J., Luo, J., Huang, J. & Dravid, V. P. Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM. Sci. Rep. 4, 3863 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z.-L. et al. Examine of lithiation mechanisms of excessive efficiency carbon-coated Si anodes by in-situ microscopy. Power Storage Mater. 3, 45–54 (2016).

    Article 

    Google Scholar
     

  • Qi, W. et al. Bettering the speed functionality of a SiOx/graphite anode by including LiNO3. Prog. Nat. Sci. Mater. Int. 30, 321–327 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, X. et al. Revealing the position of poly(vinylidene fluoride) binder in Si/graphite composite anode for Li-ion batteries. ACS Omega 3, 11684–11690 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Q., Loveridge, M. J., Genieser, R., Lain, M. J. & Bhagat, R. Electrochemical analysis and phase-related impedance research on silicon–few layer graphene (FLG) composite electrode techniques. Sci. Rep. 8, 1386 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, C. et al. In situ and ex situ TEM research of lithiation behaviours of porous silicon nanostructures. Sci. Rep. 6, 31334 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z.-L. et al. Carbon-coated mesoporous silicon microsphere anodes with enormously decreased quantity enlargement. J. Mater. Chem. A 4, 6098–6106 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Prado, A. Y. R., Rodrigues, M.-T. F., Trask, S. E., Shaw, L. & Abraham, D. P. Electrochemical dilatometry of si-bearing electrodes: dimensional adjustments and experiment design. J. Electrochem. Soc. 167, 160551 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Han, G. et al. A evaluation on numerous optical fibre sensing strategies for batteries. Renew. Maintain. Power Rev. 150, 111514 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Buljac, A. et al. Digital quantity correlation: evaluation of progress and challenges. Exp. Mech. 58, 661–708 (2018).

    Article 

    Google Scholar
     

  • Bay, B. Okay., Smith, T. S., Fyhrie, D. P. & Saad, M. Digital quantity correlation: three-dimensional pressure mapping utilizing X-ray tomography. Exp. Mech. 39, 217–226 (1999).

    Article 

    Google Scholar
     

  • Pietsch, P., Hess, M., Ludwig, W., Eller, J. & Wooden, V. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to review lithium ion batteries. Sci. Rep. 6, 27994 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valisammagari, A. et al. Examine of microstructural evolution and pressure evaluation in SiOx/C unfavourable electrodes utilizing in-situ X-ray tomography and digital quantity correlation. Batteries Supercaps 8, e202400416 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Wetjen, M. et al. Differentiating the degradation phenomena in silicon-graphite electrodes for lithium-ion batteries. J. Electrochem. Soc. 164, A2840 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chan, C. Okay., Ruffo, R., Hong, S. S., Huggins, R. A. & Cui, Y. Structural and electrochemical research of the response of lithium with silicon nanowires. J. Energy Sources 189, 34–39 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Dimov, N., Fukuda, Okay., Umeno, T., Kugino, S. & Yoshio, M. Characterization of carbon-coated silicon: structural evolution and doable limitations. J. Energy Sources 114, 88–95 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W.-R. et al. Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries. J. Electrochem. Soc. 152, A1719 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J., Solar, A., Chen, X., Wang, C. & Manivannan, A. Cyclability research of silicon–carbon composite anodes for lithium-ion batteries utilizing electrochemical impedance spectroscopy. Electrochim. Acta 56, 3981–3987 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X., Zhu, J., Dai, H., Yu, C. & Wei, X. Impedance investigation of silicon/graphite anode throughout biking. Batteries 9, 242 (2023).

    Article 

    Google Scholar
     

  • Harrington, D. A. & van den Driessche, P. Mechanism and equal circuits in electrochemical impedance spectroscopy. Electrochim. Acta 56, 8005–8013 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lai, W. & Haile, S. M. Impedance spectroscopy as a software for chemical and electrochemical evaluation of blended conductors: a case research of Ceria. J. Am. Ceram. Soc. 88, 2979–2997 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Clematis, D. et al. On the stabilization and extension of the distribution of rest instances evaluation. Electrochim. Acta 391, 138916 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wan, T. H., Saccoccio, M., Chen, C. & Ciucci, F. Affect of the discretization strategies on the distribution of rest instances deconvolution: implementing radial foundation capabilities with DRTtools. Electrochim. Acta 184, 483–499 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bertei, A. et al. Validation of a physically-based stable oxide gas cell anode mannequin combining 3D tomography and impedance spectroscopy. Int. J. Hydrog. Power 41, 22381–22393 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pan, Okay., Zou, F., Canova, M., Zhu, Y. & Kim, J.-H. Complete electrochemical impedance spectroscopy research of Si-Based mostly anodes utilizing distribution of rest instances evaluation. J. Energy Sources 479, 229083 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Moyassari, E. et al. The position of silicon in silicon-graphite composite electrodes concerning particular capability, cycle stability, and enlargement. J. Electrochem. Soc. 169, 010504 (2022).

    Article 

    Google Scholar
     

  • Yoon, D.-H., Marinaro, M., Axmann, P. & Wohlfahrt-Mehrens, M. Examine of the binder affect on enlargement/contraction conduct of silicon alloy unfavourable electrodes for lithium-ion batteries. J. Electrochem. Soc. 167, 160537 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Moon, J. et al. Interaction between electrochemical reactions and mechanical responses in silicon–graphite anodes and its impression on degradation. Nat. Commun. 12, 2714 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finegan, D. P. et al. Spatially resolving lithiation in silicon–graphite composite electrodes through in situ high-energy X-ray diffraction computed tomography. Nano Lett. 19, 3811–3820 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Okay. P. C., Okasinski, J. S., Kalaga, Okay., Almer, J. D. & Abraham, D. P. Operando quantification of (de)lithiation conduct of silicon–graphite blended electrodes for lithium-ion batteries. Adv. Power Mater. 9, 1803380 (2019).

    Article 

    Google Scholar
     

  • Cholewinski, A., Si, P., Uceda, M., Pope, M. & Zhao, B. Polymer binders: characterization and growth towards aqueous electrode fabrication for sustainability. Polymers 13, 631 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peña Fernández, M., Barber, A. H., Blunn, G. W. & Tozzi, G. Optimization of digital quantity correlation computation in SR-microCT photographs of trabecular bone and bone-biomaterial techniques. J. Microsc. 272, 213–228 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling. Nat. Commun. 14, 5127 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the way forward for lithium-based batteries. Nat. Commun. 14, 420 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scurtu, R.-G. et al. From small batteries to massive claims. Nat. Nanotechnol. 20, 970–976 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kornilov, A., Safonov, I. & Yakimchuk, I. A evaluation of watershed implementations for segmentation of volumetric photographs. J. Imaging 8, 127 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasanpour, S., Hoorfar, M. & Phillion, A. Characterization of transport phenomena in porous transport layers utilizing X-ray microtomography. J. Energy Sources 353, 221–229 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles