4.7 C
Canberra
Monday, July 7, 2025

Tailoring the adjuvanticity of lipid nanoparticles by PEG lipid ratio and phospholipid modifications


  • Hogan, M. J. & Pardi, N. mRNA vaccines within the COVID-19 pandemic and past. Annu. Rev. Med. 73, 17–39 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, R., Kaki, M., Potluri, V. S., Kahar, P. & Khanna, D. A complete assessment of SARS-CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson. Hum. Vaccines Immunother. 18, 2002083 (2022).

    Article 

    Google Scholar
     

  • Polack, F. P. et al. Security and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baden, L. R. et al. Efficacy and security of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Writer(s) et al. COMIRNATY—COVID-19 Vaccine, mRNA Injection, Suspension [Package Insert] Report No. xxxx (Pfizer Laboratories Div Pfizer Inc., 2023).

  • Writer(s) et al. SPIKEVAX—COVID-19 Vaccine, mRNA Injection, Suspension [Package Insert] Report No. xxxx (Moderna US, Inc., 2023).

  • Karikó, Okay., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by toll-like receptors: the impression of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Karikó, Okay. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with elevated translational capability and organic stability. Mol. Ther. 16, 1833–1840 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Pardi, N. et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by varied routes. J. Management. Launch 217, 345–351 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alameh, M.-G. et al. Lipid nanoparticles improve the efficacy of mRNA and protein subunit vaccines by inducing sturdy T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cullis, P. R. & Hope, M. J. Lipid nanoparticle programs for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hald Albertsen, C. et al. The position of lipid parts in lipid nanoparticles for vaccines and gene remedy. Adv. Drug Deliv. Rev. 188, 114416 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dilliard, S. A. & Siegwart, D. J. Passive, lively and endogenous organ-targeted lipid and polymer nanoparticles for supply of genetic medicine. Nat. Rev. Mater. 8, 282–300 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ concentrating on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene modifying. Nat. Nanotechnol. 15, 313–320 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, Okay. A. The substitute of helper lipids with charged options in lipid nanoparticles facilitates focused mRNA supply to the spleen and lungs. J. Management. Launch 345, 819–831 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassett, Okay. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles increase the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the supply of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chander, N., Basha, G., Cheng, M. H. Y., Witzigmann, D. & Cullis, P. R. Lipid nanoparticle mRNA programs containing excessive ranges of sphingomyelin engender larger protein expression in hepatic and extra-hepatic tissues. Mol. Ther. Strategies Clin. Dev. 30, 235–245 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, X. et al. Simultaneous dendritic cells concentrating on and efficient endosomal escape improve sialic acid-modified mRNA vaccine efficacy and cut back negative effects. J. Management. Launch 364, 529–545 (2023).

    CAS 

    Google Scholar
     

  • Kim, J. et al. Engineering lipid nanoparticles for enhanced intracellular supply of mRNA by way of inhalation. ACS Nano 16, 14792–14806 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, R. et al. Helper lipid construction influences protein adsorption and supply of lipid nanoparticles to spleen and liver. Biomater. Sci. 9, 1449–1463 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Álvarez-Benedicto, E. et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) supply of messenger RNA (mRNA). Biomater. Sci. 10, 549–559 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam, Okay. et al. Unsaturated, trialkyl ionizable lipids are versatile lipid-nanoparticle parts for therapeutic and vaccine functions. Adv. Mater. 35, 2209624 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Puthanakit, T. et al. Part II prefusion non-stabilised Covid-19 mRNA vaccine randomised examine. Sci. Rep. 14, 2373 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassett, Okay. J. et al. Influence of lipid nanoparticle dimension on mRNA vaccine immunogenicity. J. Management. Launch 335, 237–246 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirchdoerfer, R. N. et al. Pre-fusion construction of a human coronavirus spike protein. Nature 531, 118–121 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leung, A. Okay. Okay., Tam, Y. Y. C., Chen, S., Hafez, I. M. & Cullis, P. R. Microfluidic mixing: a normal technique for encapsulating macromolecules in lipid nanoparticle programs. J. Phys. Chem. B 119, 8698–8706 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, M. H. Y. et al. Induction of bleb constructions in lipid nanoparticle formulations of mRNA results in improved transfection efficiency. Adv. Mater. 35, e2303370 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Mendonça, M. C. P., Kont, A., Kowalski, P. S. & O’Driscoll, C. M. Design of lipid-based nanoparticles for supply of therapeutic nucleic acids. Drug Discov. At this time 28, 103505 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Li, J. et al. A assessment on phospholipids and their primary functions in drug supply programs. Asian J. Pharm. Sci. 10, 81–98 (2015).


    Google Scholar
     

  • Sallusto, F., Lanzavecchia, A., Araki, Okay. & Ahmed, R. From vaccines to reminiscence and again. Immunity 33, 451–463 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laczkó, D. et al. A single immunization with nucleoside-modified mRNA vaccines elicits robust mobile and humoral immune responses towards SARS-CoV-2 in mice. Immunity 53, 724–732.e7 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma, C. et al. Most cancers vaccines within the immunotherapy period: promise and potential. Vaccines 11, 1783 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tallón de Lara, P., Castañón, H., Sterpi, M. & van den Broek, M. Antimetastatic protection by CD8+ T cells. Tendencies Most cancers 8, 145–157 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Johansen, P. et al. Antigen kinetics determines immune reactivity. Proc. Natl Acad. Sci. USA 105, 5189–5194 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA supply by selective organ concentrating on nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akinc, A. et al. Focused supply of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulkarni, J. A., Cullis, P. R. & van der Meel, R. Lipid nanoparticles enabling gene therapies: from ideas to scientific utility. Nucleic Acid Ther. 28, 146–157 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bettini, E. et al. Distinct parts of nucleoside-modified messenger RNA vaccines cooperate to instruct environment friendly germinal middle responses. Preprint at bioRxiv https://doi.org/10.1101/2024.05.17.594726 (2024).

  • Yang, L. et al. Latest advances in lipid nanoparticles for supply of mRNA. Pharmaceutics 14, 2682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Remaut, Okay., Lucas, B., Braeckmans, Okay., Demeester, J. & De Smedt, S. C. Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides. J. Management. Launch 117, 256–266 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, H. et al. Enchancment of mRNA supply effectivity to a T cell line by modulating PEG-lipid content material and phospholipid parts of lipid nanoparticles. Pharmaceutics 13, 2097 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y., Jia, A., Wang, Y. & Liu, G. CD8+ T cell exhaustion in anti-tumour immunity: the brand new insights for most cancers immunotherapy. Immunology 168, 30–48 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y. et al. Screening for lipid nanoparticles that modulate the immune exercise of helper T cells in the direction of enhanced antitumour exercise. Nat. Biomed. Eng. 8, 544–560 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bevers, S. et al. mRNA-LNP vaccines tuned for systemic immunization induce robust antitumor immunity by participating splenic immune cells. Mol. Ther. 30, 3078–3094 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luozhong, S. et al. Phosphatidylserine lipid nanoparticles promote systemic RNA supply to secondary lymphoid organs. Nano Lett. 22, 8304–8311 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomi, M. et al. Delivering mRNA to secondary lymphoid tissues by phosphatidylserine-loaded lipid nanoparticles. Adv. Healthc. Mater. 12, e2202528 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ben-Sasson, S. Z. et al. IL-1 enhances enlargement, effector perform, tissue localization, and reminiscence response of antigen-specific CD8 T cells. J. Exp. Med. 210, 491–502 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Den Eeckhout, B. et al. Particular concentrating on of IL-1β exercise to CD8+ T cells permits for secure use as a vaccine adjuvant. npj Vaccines 5, 64 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity towards tumors. Nat. Med. 15, 1170–1178 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baiersdörfer, M. et al. A facile technique for the elimination of dsRNA contaminant from in vitro-transcribed mRNA. Mol. Ther. Nucleic Acids 15, 26–35 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vadovics, M., Muramatsu, H., Sárközy, A. & Pardi, N. Manufacturing and analysis of nucleoside-modified mRNA vaccines for infectious ailments. Strategies Mol. Biol. 2786, 167–181 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Freyn, A. W. et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine supplies broad safety in mice. Mol. Ther. 28, 1569–1584 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heyes, J., Corridor, Okay., Tailor, V., Lenz, R. & MacLachlan, I. Synthesis and characterization of novel poly(ethylene glycol)-lipid conjugates appropriate to be used in drug supply. J. Management. Launch 112, 280–290 (2006).

    CAS 

    Google Scholar
     

  • Ábrahám, E. et al. Expression and purification of the receptor-binding area of SARS-CoV-2 spike protein in mammalian cells for immunological assays. FEBS Open Bio 14, 380–389 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Margine, I., Palese, P. & Krammer, F. Expression of purposeful recombinant hemagglutinin and neuraminidase proteins from the novel H7N9 influenza virus utilizing the baculovirus expression system. J. Vis. Exp. 81, e51112 (2013).


    Google Scholar
     

  • Stevens, J. et al. Construction of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303, 1866–1870 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krammer, F. et al. A carboxy-terminal trimerization area stabilizes conformational epitopes on the stalk area of soluble recombinant hemagglutinin substrates. PLoS ONE 7, e43603 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parhiz, H. et al. PECAM-1 directed re-targeting of exogenous mRNA offering two orders of magnitude enhancement of vascular supply and expression in lungs unbiased of apolipoprotein E-mediated uptake. J. Management. Launch 291, 106–115 (2018).

    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles