Ganguly, C. CERAMICS-as we enter the third millennium. Trans. Indian Ceram. Soc. 59, 63–67 (2000).
Pampuch, R. in An Introduction to Ceramics (eds Carpenter, B. et al.) Vol. 86, 1–17 (Springer, 2014).
Heimann, R. B. Traditional and Superior Ceramics: From Fundamentals to Purposes (Wiley, 2010).
Furszyfer Del Rio, D. D. et al. Decarbonizing the ceramics {industry}: a scientific and important assessment of coverage choices, developments and sociotechnical methods. Renew. Maintain. Vitality Rev. 157, 112081 (2022).
Habashi, F. Refractories and the commercial revolution. Refractories 1, 14–18 (2012).
Greil, P. Superior engineering ceramics. Adv. Eng. Mater. 4, 247–254 (2002).
Ibn-Mohammed, T. et al. Decarbonising ceramic manufacturing: a techno-economic evaluation of vitality environment friendly sintering applied sciences within the practical supplies sector. J. Eur. Ceram. Soc. 39, 5213–5235 (2019).
Oliveira, M. C., Iten, M., Cruz, P. L. & Monteiro, H. Overview on vitality effectivity progresses, applied sciences and methods within the ceramic sector specializing in waste warmth restoration. Energies 13, 6096 (2020).
Iron And Metal Market Dimension, Share & Developments Evaluation Report By Product (Iron Ore, Metal), By Area (NA, Europe, APAC, CSA, MEA), And Section Forecasts, 2023–2030 (Grand View Analysis, 2021); https://www.grandviewresearch.com/industry-analysis/iron-steel-market
Cement Market Dimension, Share & Covid-19 Influence Evaluation, by Tape (Portland, Blended, and Others), by Software (Residential, and Non-residential), and Regional Forecast, 2022–2029 (Fortune Enterprise Insights, 2021); https://www.fortunebusinessinsights.com/industry-reports/cement-market-101825
Plastic Market Dimension, Share & Developments Evaluation Report By Product (PE, PP, PU, PVC, PET, Polystyrene, ABS, PBT, PPO, Epoxy Polymers, LCP, PC, Polyamide), By Software, By Finish-use, By Area, And Section Forecasts, 2023–2030 (Grand View Analysis, 2021); https://www.grandviewresearch.com/industry-analysis/global-plastics-market
Primary Chemical substances Market by Product Kind (Natural and Inorganic) and Finish Consumer (Chemical Business, Meals & Drinks, Textiles, Prescribed drugs, Pulp & Paper, Polymer, and Others): World Alternative Evaluation and Business Forecast, 2021–2030 (Allied Market Analysis, 2021); https://www.alliedmarketresearch.com/basic-chemicals-market-A14984
Aluminum Market By Finish Consumer Business (Transport, Constructing & Development, Electrical Engineering, Shopper Items, Foil & Packaging, Equipment & Gear, Others), By Collection (SERIES 1, SERIES 2, SERIES 3, SERIES 4, SERIES 5, SERIES 6, SERIES 7, SERIES 8), By Processing Methodology (Flat Rolled, Castings, Extrusions, Forgings, Pigments & Powder, Rod & Bar): World Alternative Evaluation and Business Forecast, 2021–2031 (Allied Market Analysis, 2021); https://www.alliedmarketresearch.com/aluminium-market
Isella, A. & Manca, D. GHG emissions by (petro)chemical processes and decarbonization priorities—a assessment. Energies 15, 7560 (2022).
Bauer, F., Tilsted, J. P., Pfister, S., Oberschelp, C. & Kulionis, V. Mapping GHG emissions and prospects for renewable vitality within the chemical {industry}. Curr. Opin. Chem. Eng. 39, 100881 (2023).
Monitoring Clear Vitality Progress 2023 (Worldwide Vitality Company, 2023); https://www.iea.org/stories/tracking-clean-energy-progress-2023
Wright, L. & Chalasani, S. Metal GHG Emissions Reporting Steerage (RMI, 2023); https://rmi.org/wp-content/uploads/2022/09/steel_emissions_reporting_guidance.pdf
IPPC Local weather Change 2022:Mitigation of Local weather Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022); https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf
Rissman, J. et al. Applied sciences and insurance policies to decarbonize international {industry}: assessment and evaluation of mitigation drivers by 2070. Appl. Vitality 266, 114848 (2020).
Muthukannan, M. & Ganesh, A. S. C. The environmental affect brought on by the cearmic industries and evaluation methodologies. IJQR 13, 315–334 (2019).
World Vitality Outlook 2022 (Worldwide Vitality Company, 2022); https://www.iea.org/stories/world-energy-outlook-2022
Regulation (EU) 2023/956 of the European Parliament and of the Council of 10 Might 2023 establishing a carbon border adjustment mechanism (textual content with EEA relevance). OJ L. 130, 52–104 (2023).
Ceramics Market Dimension, Share & Developments Evaluation Report By Product (Conventional, Superior), By Software (Abrasives, Tiles), By Finish-use (Industrial, Medical), By Area, And Section Forecasts, 2023–2030 (Grand View Analysis, 2023); https://www.grandviewresearch.com/industry-analysis/ceramics-market
Ceramic Tiles Market Dimension, Evaluation, Business Report [2023–2028] (Fortune Enterprise Insigts, 2022); https://www.fortunebusinessinsights.com/ceramic-tiles-market-102377
Abrasives Market Dimension, Share & Development Evaluation Report, 2030 (Grand View Analysis, 2022); https://www.grandviewresearch.com/industry-analysis/abrasives-market
Sanitary Ware Market Dimension World Report, 2022–2030 (Polaris Market Analysis, 2022); https://www.polarismarketresearch.com/index.php/industry-analysis/sanitary-ware-market
Strong State Battery Market—World Business Evaluation & Forecast (Vantage Market Analysis, 2022); https://www.vantagemarketresearch.com
Superior Ceramics Market Dimension, Share & COVID-19 Influence Evaluation, By Materials (TAlumina, Titanate, Silicon, Carbide, Silicon, Nitride, Others), Finish-Use (Electical & Electronics, Transportation, Medical, Chemical, Others), and Regional Forecast, 2021–2028 (Fortune Enterprise Insigts, 2021); https://www.fortunebusinessinsights.com/advanced-ceramics-market-105073
Perovskite Photo voltaic Cell Market Dimension, Share & COVID-19 Influence Evaluation, By Kind (Inflexible and Versatile), Finish-Consumer (BIPV, Energy Station, Transportation & Mobility, Shopper Electronics, Others) and Regional Forecast, 2023–2030 (Fortune Enterprise Insigts, 2023); https://www.fortunebusinessinsights.com/industry-reports/perovskite-solar-cell-market-101556
Multi-Layer Ceramic Capacitor (MLCC) Market Outlook by Kind (Basic Capacitor, Array, Serial Development, Mega Cap), Rated Voltage Vary (Low Vary, Mid-Vary, Excessive Vary), Dielectric Kind (X7R, X5R, C0G, Y5V), Finish Consumer (Electronics, Automotive, Industrial, Telecommunication)—Development Forecast to 2030 (Prescient & Strategic Intelligence, 2022); https://www.psmarketresearch.com/market-analysis/multi-layer-ceramic-capacitor-mlcc-market
Strong Oxide Gas Cell Market Dimension | World Development Developments, 2030 (Strategic Market Analysis, 2022); https://www.strategicmarketresearch.com/market-report/solid-oxide-fuel-cell-market
World battery market dimension by expertise. Statista https://www.statista.com/statistics/1339880/global-battery-market-size-by-technology/ (2022).
The battery cell part alternative in Europe and North America. McKinsey & Firm https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-battery-cell-component-opportunity-in-europe-and-north-america (2024).
Raabe, D., Tasan, C. C. & Olivetti, E. A. Methods for enhancing the sustainability of structural metals. Nature 575, 64–74 (2019).
Defferriere, T., Klotz, D., Gonzalez-Rosillo, J. C., Rupp, J. L. M. & Tuller, H. L. Picture-enhanced ionic conductivity throughout grain boundaries in polycrystalline ceramics. Nat. Mater. 21, 438–444 (2022).
Defferriere, T., Helal, A. S., Li, J., Rupp, J. L. M. & Tuller, H. L. Ionic conduction-based polycrystalline oxide gamma ray detection—radiation-ionic results. Adv. Mater. 36, 2309253 (2024).
Kim, Ok. J., Balaish, M., Wadaguchi, M., Kong, L. & Rupp, J. L. M. Strong-state Li-metal batteries: challenges and horizons of oxide and sulfide strong electrolytes and their interfaces. Adv. Vitality Mater. 11, 2002689 (2021).
Bérardan, D., Franger, S., Meena, A. Ok. & Dragoe, N. Room temperature lithium superionic conductivity in excessive entropy oxides. J. Mater. Chem. A 4, 9536–9541 (2016).
Pérez-Tomás, A., Mingorance, A., Tanenbaum, D. & Lira-Cantú, M. in The Way forward for Semiconductor Oxides in Subsequent-Technology Photo voltaic Cells (ed. Lira-Cantu, M.) 267–356 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-811165-9.00008-9
Kong, L., Williams, P. J., Brushett, F. & Rupp, J. L. M. Unveiling coexisting battery-type and pseudocapacitive intercalation mechanisms in lithium titanate. Adv. Vitality Mater. 15, e03080 (2025).
Abyzov, A. M. Aluminum oxide and alumina ceramics (assessment). Half 1. Properties of Al2O3 and industrial manufacturing of dispersed Al2O3. Refract. Ind. Ceram. 60, 24–32 (2019).
Parikh, P. B. Alumina ceramics: engineering purposes and home market potential. Trans. Indian Ceram. Soc. 54, 179–184 (1995).
De Bortoli, L. S., Schabbach, L. M., Fredel, M. C., Hotza, D. & Henriques, B. Ecological footprint of biomaterials for implant dentistry: is the metal-free follow an eco-friendly shift? J. Clear. Prod. 213, 723–732 (2019).
Viazzi, C., Bonino, J. P. & Ansart, F. Synthesis by sol–gel route and characterization of yttria stabilized zirconia coatings for thermal barrier purposes. Surf. Coat. Technol. 201, 3889–3893 (2006).
López-Gándara, C., Ramos, F. M. & Cirera, A. YSZ-based oxygen sensors and using nanomaterials: a assessment from classical fashions to present developments. J. Sens. 2009, 258489 (2009).
Ormerod, R. M. Strong oxide gasoline cells. Chem. Soc. Rev. 32, 17–28 (2003).
Hong, Ok., Lee, T. H., Suh, J. M., Yoon, S.-H. & Jang, H. W. Views and challenges in multilayer ceramic capacitors for subsequent era electronics. J. Mater. Chem. C 7, 9782–9802 (2019).
Malik, M., Chan, Ok. H. & Azimi, G. Overview on the synthesis of LiNixMnyCo1−x−yO2 (NMC) cathodes for lithium-ion batteries. Mater. Immediately Vitality 28, 101066 (2022).
Huo, H. & Janek, J. Strong-state batteries: from ‘all-solid’to ‘almost-solid’. Natl Sci. Rev. 10, nwad098 (2023).
Wang, C. et al. Garnet-type solid-state electrolytes: supplies, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).
Balaish, M. et al. Processing skinny however sturdy electrolytes for solid-state batteries. Nat. Vitality 6, 227–239 (2021).
Kim, Ok. J. & Rupp, J. L. M. All ceramic cathode composite design and manufacturing in the direction of low interfacial resistance for garnet-based solid-state lithium batteries. Vitality Environ. Sci. 13, 4930–4945 (2020).
Pfenninger, R., Struzik, M., Garbayo, I., Stilp, E. & Rupp, J. L. M. A low experience on processing temperature for quick lithium conduction in garnet solid-state battery movies. Nat. Vitality 4, 475–483 (2019).
Struzik, M., Garbayo, I., Pfenninger, R. & Rupp, J. L. M. A easy and quick electrochemical CO2 sensor based mostly on Li7La3Zr2O12 for environmental monitoring. Adv. Mater. 30, 1804098 (2018).
Balaish, M. & Rupp, J. L. M. Widening the vary of trackable environmental and well being pollution for Li-garnet-based sensors. Adv. Mater. 33, 2100314 (2021).
Balaish, M. & Rupp, J. L. M. Design of triple and quadruple section boundaries and chemistries for environmental SO2 electrochemical sensing. J. Mater. Chem. A 9, 14691–14699 (2021).
Horne, R., Grant, T. & Verghese, Ok. Life Cycle Evaluation: Rules, Apply, and Prospects (CSIRO, 2009).
Aluminium Sector Greenhouse Fuel Emissions (Worldwide Aluminium Institute, 2023); https://international-aluminium.org/statistics/greenhouse-gas-emissions-aluminium-sector/
Ma, Y., Preveniou, A., Kladis, A. & Pettersen, J. B. Round economic system and life cycle evaluation of alumina manufacturing: simulation-based comparability of Pedersen and Bayer processes. J. Clear. Prod. 366, 132807 (2022).
Life-Cycle Stock Knowledge for Aluminium Manufacturing and Transformation Processes in Europe (European Aluminum, 2018); https://european-aluminium.eu/wp-content/uploads/2022/10/european-aluminium-environmental-profile-report-2018-executive-summary.pdf
Muthu, S. S. Evaluation of Carbon Footprint in Completely different Industrial Sectors Vol. 1 (Springer, 2014); https://doi.org/10.1007/978-981-4560-41-2
Solar, X., Luo, X., Zhang, Z., Meng, F. & Yang, J. Life cycle evaluation of lithium nickel cobalt manganese oxide (NCM) batteries for electrical passenger automobiles. J. Clear. Prod. 273, 123006 (2020).
Rosa, D. M. Comparative Life-cycle Evaluation of the Manufacturing of 3YSZysz by Co-precipitation Course of and Emulsion Detonation Synthesis (Univ. Coimbra, 2022).
Smith, L., Ibn-Mohammed, T., Koh, S. C. L. & Reaney, I. M. Life cycle evaluation and environmental profile evaluations of excessive volumetric effectivity capacitors. Appl. Vitality 220, 496–513 (2018).
Schreiber, A. et al. Oxide ceramic electrolytes for all-solid-state lithium batteries—cost-cutting cell design and environmental affect. Inexperienced. Chem. 25, 399–414 (2023).
Koltun, P. & Tharumarajah, A. Life cycle affect of uncommon earth components. ISRN Metall. 2014, 1–10 (2014).
Bauer, C. et al. Charging sustainable batteries. Nat. Maintain. 5, 176–178 (2022).
Munjal, M. et al. Course of value evaluation of efficiency challenges and their mitigations in sodium-ion battery cathode supplies. Joule https://doi.org/10.1016/j.joule.2025.101871 (2025).
Smith, L. et al. Comparative environmental profile assessments of business and novel materials constructions for strong oxide gasoline cells. Appl. Vitality 235, 1300–1313 (2019).
Mankins, J. C. Know-how readiness assessments: a retrospective. Acta Astronaut. 65, 1216–1223 (2009).
Jouhara, H. et al. Waste warmth restoration applied sciences and purposes. Therm. Sci. Eng. Prog. 6, 268–289 (2018).
Garofalo, E., Bevione, M., Cecchini, L., Mattiussi, F. & Chiolerio, A. Waste warmth to energy: applied sciences, present purposes, and future potential. Vitality Technol. 8, 2000413 (2020).
Delpech, B., Axcell, B. & Jouhara, H. A assessment on waste warmth restoration from exhaust within the ceramics {industry}. E3S Internet Conf. 22, 00034 (2017).
Ibáñez-Forés, V., Bovea, M. D. & Azapagic, A. Assessing the sustainability of finest obtainable strategies (BAT): methodology and software within the ceramic tiles {industry}. J. Clear. Prod. 51, 162–176 (2013).
Yüksek, İ, Öztaş, S. Ok. & Tahtalı, G. The analysis of fired clay brick manufacturing by way of vitality effectivity: a case research in Turkey. Vitality Effic. 13, 1473–1483 (2020).
Industrial Decarbonisation & Vitality Effectivity Roadmaps to 2050 (Division of Vitality and Local weather Change and the Division for Enterprise, Innovation and Abilities, 2015).
Wei, M., McMillan, C. A. & De La Rue Du Can, S. Electrification of {industry}: potential, challenges and outlook. Curr. Maintain. Renew. Vitality Rep. 6, 140–148 (2019).
Tromans, D. Mineral comminution: vitality effectivity issues. Miner. Eng. 21, 613–620 (2008).
Mining Business of the Future Fiscal 12 months 2004 Annual Report, Industrial Applied sciences Program, US Division of Vitality, Vitality Effectivity and Renewable Vitality, February (Division of Vitality, 2005); https://www1.eere.vitality.gov/manufacturing/sources/mining/pdfs/mining_fy2004.pdf
Valery, W. & Jankovic, A. The way forward for comminution. In Proc. thirty fourth IOC on Mining and Metallurgy (College of Belgrade, Technical School, 2002).
Rahaman, M. N. Ceramic Processing and Sintering (CRC Press, 2017); https://doi.org/10.1201/9781315274126
Santos, T., Hennetier, L., Costa, V. A. F. & Costa, L. C. Microwave versus standard porcelain firing: temperature measurement. J. Manuf. Course of. 41, 92–100 (2019).
Chojnacka, Ok. et al. Enhancements in drying applied sciences—environment friendly options for cleaner manufacturing with increased vitality effectivity and decreased emission. J. Clear. Prod. 320, 128706 (2021).
Al-Shakarchi, E. Ok. Dielectric properties of BaTiO3-ceramic ready by freeze drying technique. J. Korean Phys. Soc. 57, 245–250 (2010).
Raghupathy, B. P. C. & Binner, J. G. P. Spray freeze drying of YSZ nanopowder. J. Nanopart. Res. 14, 921 (2012).
Mann, M. et al. Analysis of scalable synthesis strategies for aluminum-substituted Li7La3Zr2O12 strong electrolytes. Supplies 14, 6809 (2021).
Rahaman, M. N. Sintering of Ceramics (CRC Press, 2008).
Schütte, P. Tantalum: Sustainability Data (Bundesanstalt für Geowissenschaften und Rohstoffe, 2021).
Lee, S.-S. & Hong, T.-W. Life cycle evaluation for proton conducting ceramics synthesized by the sol–gel course of. Supplies 7, 6677–6685 (2014).
Flegler, A. J., Burye, T. E., Yang, Q. & Nicholas, J. D. Cubic yttria stabilized zirconia sintering additive impacts: a comparative research. Ceram. Int. 40, 16323–16335 (2014).
Hallmann, L., Ulmer, P., Reusser, E., Louvel, M. & Hämmerle, C. H. F. Impact of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. J. Eur. Ceram. Soc. 32, 4091–4104 (2012).
Ede, S. R. & Luo, Z. Tuning the intrinsic catalytic actions of oxygen-evolution catalysts by doping: a complete assessment. J. Mater. Chem. A 9, 20131–20163 (2021).
He, D., He, G., Jiang, H., Chen, Z. & Huang, M. Enhanced sturdiness and exercise of the perovskite electrocatalyst Pr0.5Ba0.5CoO3−δ by Ca doping for the oxygen evolution response at room temperature. Chem. Commun. 53, 5132–5135 (2017).
Lu, M., Wang, H., Tune, X. & Solar, F. Impact of doping stage on residual stress, coating-substrate adhesion and put on resistance of boron-doped diamond coated instruments. J. Manuf. Course of. 88, 145–156 (2023).
Zhang, Z., Meng, Y. & Xiao, D. Tri-sites co-doping: an environment friendly technique in the direction of the belief of 4.6V-LiCoO2 with cyclic stability. Vitality Storage Mater. 56, 443–456 (2023).
Ahaliabadeh, Z., Kong, X., Fedorovskaya, E. & Kallio, T. Intensive comparability of doping and coating methods for Ni-rich optimistic electrode supplies. J. Energy Sources 540, 231633 (2022).
Maier, J. Defect chemistry and ionic conductivity in skinny movies. Strong State Ion. 23, 59–67 (1987).
Seebauer, E. G. & Noh, Ok. W. Developments in semiconductor defect engineering on the nanoscale. Mater. Sci. Eng. R 70, 151–168 (2010).
Lubomirsky, I. Mechanical properties and defect chemistry. Strong State Ion. 177, 1639–1642 (2006).
Loy, D. A. in Encyclopedia of Bodily Science and Know-how (ed. Meyers, R. A.) 257–276 (Elsevier, 2003); https://doi.org/10.1016/B0-12-227410-5/00697-9
Afyon, S., Krumeich, F. & Rupp, J. L. M. A shortcut to garnet-type quick Li-ion conductors for all-solid state batteries. J. Mater. Chem. A 3, 18636–18648 (2015).
Dimesso, L. in Handbook of Sol–Gel Science and Know-how (eds Klein, L. et al.) 1–22 (Springer, 2016); https://doi.org/10.1007/978-3-319-19454-7_123-1
Suchanek, W. L. & Riman, R. E. Hydrothermal synthesis of superior ceramic powders. Adv. Sci. Technol. 45, 184–193 (2006).
Panek, R., Madej, J., Bandura, L. & Słowik, G. Recycling of waste resolution after hydrothermal conversion of fly ash on a semi-technical scale for zeolite synthesis. Supplies 14, 1413 (2021).
Zhu, Y., Chon, M., Thompson, C. V. & Rupp, J. L. M. Time–temperature–transformation (TTT) diagram of battery-grade Li-garnet electrolytes for low-temperature sustainable synthesis. Angew. Chem. Int. Ed. 135, e202304581 (2023).
Košir, J., Mousavihashemi, S., Wilson, B. P., Rautama, E.-L. & Kallio, T. Comparative evaluation on the thermal, structural, and electrochemical properties of Al-doped Li7La3Zr2O12 strong electrolytes by strong state and sol–gel routes. Strong State Ion. 380, 115943 (2022).
Vijatovic, M. M., Bobic, J. D. & Stojanovic, B. D. Historical past and challenges of barium titanate: Half I. Sci. Sinter. 40, 155–165 (2008).
Weinmann, S. et al. Stabilizing interfaces of all-ceramic composite cathodes for Li-garnet batteries. Adv. Vitality Mater. 15, 2502280 (2025).
Guillon, O., Rheinheimer, W. & Bram, M. A perspective on rising and future sintering applied sciences of ceramic supplies. Adv. Eng. Mater. 25, 2201870 (2023).
Balaish, M. et al. Rising processing tips for strong electrolytes within the period of oxide-based solid-state batteries. Chem. Soc. Rev. 54, 8925–9007 (2025).
Thuault, A., Savary, E., Bazin, J. & Marinel, S. Microwave sintering of enormous dimension items with advanced form. J. Mater. Course of. Technol. 214, 470–476 (2014).
Sohrabi Baba Heidary, D., Lanagan, M. & Randall, C. A. Contrasting vitality effectivity in numerous ceramic sintering processes. J. Eur. Ceram. Soc. 38, 1018–1029 (2018).
Sutton, W. H. Microwave processing of ceramics—an outline. MRS Proc. 269, 3 (1992).
Singh, S., Gupta, D. & Jain, V. Latest purposes of microwaves in supplies becoming a member of and floor coatings. Proc. Inst. Mech. Eng. Half B 230, 603–617 (2016).
Guillon, O. et al. Area-assisted sintering expertise/spark plasma sintering: mechanisms, supplies, and expertise developments. Adv. Vitality Mater. 16, 830–849 (2014).
Manière, C. et al. Spark plasma sintering and complicated shapes: the deformed interfaces method. Powder Technol. 320, 340–345 (2017).
Guo, J. et al. Chilly sintering means of composites: bridging the processing temperature hole of ceramic and polymer supplies. Adv. Funct. Mater. 26, 7115–7121 (2016).
Scheld, W. S. et al. Blacklight sintering of garnet-based composite cathodes. J. Eur. Ceram. Soc. 44, 3039–3048 (2024).
Perednis, D. & Gauckler, L. J. Skinny movie deposition utilizing spray pyrolysis. J. Electroceram. 14, 103–111 (2005).
Rupp, J. L. M., Scherrer, B., Harvey, A. S. & Gauckler, L. J. Crystallization and grain development kinetics for precipitation-based ceramics: a case research on amorphous ceria skinny movies from spray pyrolysis. Adv. Funct. Mater. 19, 2790–2799 (2009).
Hood, Z. D. et al. A sinter-free future for solid-state battery designs. Vitality Environ. Sci. 15, 2927–2936 (2022).
Patidar, R., Burkitt, D., Hooper, Ok., Richards, D. & Watson, T. Slot-die coating of perovskite photo voltaic cells: an outline. Mater. Immediately Commun. 22, 100808 (2020).
Schneller, T., Waser, R., Kosec, M. & Payne, D. Chemical Resolution Deposition of Purposeful Oxide Skinny Movies (Springer, 2013).
Kistler, S. F. & Schweizer, P. M. Liquid Movie Coating: Scientific Rules and Their Technological Implications (Springer, 2012).
Derby, B. Inkjet printing ceramics: from drops to strong. J. Eur. Ceram. Soc. 31, 2543–2550 (2011).
Wei, L. et al. Customizable solid-state batteries towards shape-conformal and structural energy provides. Mater. Immediately 58, 297–312 (2022).
Zhu, C. et al. Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries through operando microscopy strategies. Nat. Commun. 14, 1300 (2023).
Nazarenus, T., Solar, Y., Exner, J., Kita, J. & Moos, R. Powder aerosol deposition as a technique to provide garnet-type strong ceramic electrolytes: a research on electrochemical movie properties and industrial purposes. Vitality Tech. 9, 2100211 (2021).
Wang, X. et al. Aerosol deposition expertise and its purposes in batteries. Nano Mater. Sci. https://doi.org/10.1016/j.nanoms.2023.11.002 (2023).
Hofmann, M., Hofmann, H., Hagelüken, C. & Hool, A. Vital uncooked supplies: a perspective from the supplies science group. Maintain. Mater. Technol. 17, e00074 (2018).
Barteková, E. & Kemp, R. Vital Uncooked Materials Methods in Completely different World Areas (Maastricht Univesity, 2016); https://unu-merit.nl/publications/wppdf/2016/wp2016-005.pdf
Fortier, S. M., Hammarstrom, J. H., Ryker, S. J., Day, W. C. & Seal, R. R. USGS vital minerals assessment. Mining Engineering Journal 35–47 (2023); https://apps.usgs.gov/minerals-information-archives/articles/USGS-Vital-Minerals-Overview-2022.pdf
Grohol, M. & Veeh, C. Study on the Vital Uncooked Supplies for the EU 2023 (European Fee, 2023); https://doi.org/10.2873/725585
Golroudbary, S. R., Calisaya-Azpilcueta, D. & Kraslawski, A. The life cycle of vitality consumption and greenhouse gasoline emissions from vital minerals recycling: case of lithium-ion batteries. Procedia CIRP 80, 316–321 (2019).
Harper, G. et al. Recycling lithium-ion batteries from electrical automobiles. Nature 575, 75–86 (2019).
Ciez, R. E. & Whitacre, J. F. Inspecting totally different recycling processes for lithium-ion batteries. Nat. Maintain. 2, 148–156 (2019).
Wang, Y., Goikolea, E., de Larramendi, I. R., Lanceros-Méndez, S. & Zhang, Q. Recycling strategies for various cathode chemistries—a vital assessment. J. Vitality Storage 56, 106053 (2022).
Azimi, G. & Chan, Ok. H. A assessment of up to date and rising recycling strategies for lithium-ion batteries with a give attention to NMC cathodes. Resour. Conserv. Recycl. 209, 107825 (2024).
Azhari, L., Bong, S., Ma, X. & Wang, Y. Recycling for all solid-state lithium-ion batteries. Matter 3, 1845–1861 (2020).
Beaudet, A., Larouche, F., Amouzegar, Ok., Bouchard, P. & Zaghib, Ok. Key challenges and alternatives for recycling electrical car battery supplies. Sustainability 12, 5837 (2020).
Jin, S. et al. A complete assessment on the recycling of spent lithium-ion batteries: pressing standing and expertise advances. J. Clear. Prod. 340, 130535 (2022).
Kim, H.-J. et al. A complete assessment of Li-ion battery supplies and their recycling strategies. Electronics 9, 1161 (2020).
Valente, A., Iribarren, D. & Dufour, J. Finish of lifetime of gasoline cells and hydrogen merchandise: from applied sciences to methods. Int. J. Hydrogen Vitality 44, 20965–20977 (2019).
Kikuta, Ok. et al. Low temperature recycling course of for barium titanate based mostly waste. J. Ceram. Soc. Jpn 114, 392–394 (2006).
Xu, J. et al. Environment friendly electrocatalyst nanoparticles from upcycled class II capacitors. Nanomaterials 12, 2697 (2022).
Gao, X., Niu, B. & Xu, Z. Mechanochemically reworking waste ceramic capacitors into self-doped BaTiO3 photocatalysts: an environment friendly method for high-value e-waste recycling and hydrogen manufacturing. ACS Maintain. Chem. Eng. 12, 17272–17281 (2024).
Niu, B. & Xu, Z. Innovating e-waste recycling: from waste multi-layer ceramic capacitors to NbPb codoped and Ag–Pd–Sn–Ni loaded BaTiO3 nano-photocatalyst by one-step ball milling course of. Maintain. Mater. Technol. 21, e00101 (2019).
Saffirio, S. et al. Hydrothermally-assisted restoration of yttria-stabilized zirconia (YSZ) from end-of-life strong oxide cells. Maintain. Mater. Technol. 33, e00473 (2022).
Yenesew, G. T., Quarez, E., Le gal la salle, A., Nicollet, C. & Joubert, O. Recycling and characterization of end-of-life strong oxide gasoline/electrolyzer ceramic materials cell elements. Resour. Conserv. Recycl. 190, 106809 (2023).
Saffirio, S. et al. Recycling and reuse of ceramic supplies from elements of waste strong oxide cells (SOCs). Ceram. Int. 50, 34472–34477 (2024).
Nasser, O. A. & Petranikova, M. Overview of achieved purities after Li-ion batteries hydrometallurgical therapy and impurities results on the cathode efficiency. Batteries 7, 60 (2021).
Schwich, L. et al. Recycling methods for ceramic all-solid-state batteries-Half I: Research on attainable therapies in distinction to Li-ion battery recycling. Metals 10, 1523 (2020).
Waidha, A. I. et al. Recycling of all-solid-state Li-ion batteries: a case research of the separation of particular person elements inside a system composed of LTO, LLZTO and NMC. ChemSusChem 16, e202202361 (2023).
Xu, P. et al. Environment friendly direct recycling of lithium-ion battery cathodes by focused therapeutic. Joule 4, 2609–2626 (2020).
Gaines, L., Dai, Q., Vaughey, J. T. & Gillard, S. Direct recycling R&D on the ReCell Middle. Recycling 6, 31 (2021).
Vukšić, M. et al. Evaluating recycling potential of waste alumina powder for ceramics manufacturing utilizing response floor methodology. J. Mater. Res. Technol. 11, 866–874 (2021).
Vukšić, M., Žmak, I., Ćurković, L. & Kocjan, A. Spark plasma sintering of dense alumina ceramics from industrial waste scraps. Open Ceram. 5, 100076 (2021).
Sarner, S., Schreiber, A., Menzler, N. H. & Guillon, O. Recycling methods for strong oxide cells. Adv. Vitality Mater. 12, 2201805 (2022).
Niu, B. & Xu, Z. Software of chloride metallurgy and corona electrostatic separation for recycling waste multilayer ceramic capacitors. ACS Maintain. Chem. Eng. 5, 8390–8395 (2017).
Wang, T.-W., Liu, T. & Solar, H. Direct recycling for advancing sustainable battery options. Mater. Immediately Vitality 38, 101434 (2023).
Shi, Y., Chen, G., Liu, F., Yue, X. & Chen, Z. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2particles to straight regenerate high-performance lithium-ion battery cathodes. ACS Vitality Lett. 3, 1683–1692 (2018).
Qin, Z. et al. Recycling garnet-type electrolyte towards superior biking efficiency for solid-state lithium batteries. Vitality Storage Mater. 49, 360–369 (2022).
Sugita, Ok. Historic Overview of Refractory Know-how within the Metal Business (Nippon Metal, 2008); https://www.nipponsteel.com/en/tech/report/nsc/pdf/n9803.pdf
Craddock, P. T. Scientific Investigation of Copies, Fakes and Forgeries (Elsevier/Butterworth-Heinemann, 2009).
Iron and Metal Know-how Roadmap—In the direction of Extra Sustainable Steelmaking (Worldwide Vitality Company, 2020); https://www.iea.org/stories/iron-and-steel-technology-roadmap
Gürel, S. B. & Altun, A. Reactive alumina manufacturing for the refractory {industry}. Powder Technol. 196, 115–121 (2009).
Ruys, A. J. Alumina Ceramics: Biomedical and Medical Purposes (Woodhead,2019).
Figiel, P., Rozmus, M. & Smuk, B. Properties of alumina ceramics obtained by standard and non-conventional strategies for sintering ceramics. J. Achiev. Mater. Manuf. Eng. 48, 29–34 (2011).
Thomazini, D. et al. Alumina ceramics obtained by chemical synthesis utilizing standard and microwave sintering. Cerâmica 57, 45–49 (2011).
Lee, Y. Impact of SiO2 addition on the dielectric properties and microstructure of BaTiO3-based ceramics in lowering sintering. Int. J. Miner. Metall. Mater. 16, 124–127 (2009).
Brzozowski, E. & Castro, M. S. Grain development management in Nb-doped BaTiO3. J. Mater. Course of. Technol. 168, 464–470 (2005).
Deng, X. et al. Section transitions in nanocrystalline barium titanate ceramics ready by spark plasma sintering. J. Am. Ceram. Soc. 89, 1059–1064 (2006).
Kim, H. T. & Han, Y. H. Sintering of nanocrystalline BaTiO3. Ceram. Int. 30, 1719–1723 (2004).
Xiao, C. J., Jin, C. Q. & Wang, X. H. The fabrication of nanocrystalline BaTiO3 ceramics underneath excessive temperature and excessive stress. J. Mater. Course of. Technol. 209, 2033–2037 (2009).
Qi, J., Li, L., Wang, Y., Fan, Y. & Gui, Z. Yttrium doping habits in BaTiO3 ceramics at totally different sintered temperature. Mater. Chem. Phys. 82, 423–427 (2003).
Amin, R. & Chiang, Y.-M. Characterization of digital and ionic transport in Li1−xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1−xNi0.50Mn0.20Co0.30O2 (NMC523) as a perform of Li content material. J. Electrochem. Soc. 163, A1512–A1517 (2016).
Ni, L., Wu, Z. & Zhang, C. Impact of sintering course of on ionic conductivity of Li7−xLa3Zr2−xNbxO12 (x = 0, 0.2, 0.4, 0.6). Strong Electrolytes Mater. 14, 1671 (2021).
Hitz, G. T. et al. Excessive-rate lithium biking in a scalable trilayer Li-garnet-electrolyte structure. Mater. Immediately 22, 50–57 (2019).
Grissa, R., Payandeh, S., Heinz, M. & Battaglia, C. Influence of protonation on the electrochemical efficiency of Li7La3Zr2O12 garnets. ACS Appl. Mater. Interfaces 13, 14700–14709 (2021).
Cheng, E. J. et al. Mechanical and bodily properties of LiNi0.33Mn0.33Co0.33O2 (NMC). J. Eur. Ceram. Soc. 37, 3213–3217 (2017).
Fu, Z. & Wachsman, E. Mechanical properties of three-dimensional trilayered Li-garnet electrolyte for high-rate biking in solid-state batteries. J. Am. Ceram. Soc. 107, 1481–1489 (2024).
Su, J. et al. Overcoming the irregular grain development in Ga-doped Li7La3Zr2O12 to boost the electrochemical stability in opposition to Li metallic. Ceram. Int. 45, 14991–14996 (2019).
Fu, Z. et al. Probing the mechanical properties of a Doped Li7La3Zr2O12 garnet skinny electrolyte for solid-state batteries. ACS Appl. Mater. Interfaces 12, 24693–24700 (2020).
Han, M., Tang, X., Yin, H. & Peng, S. Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Energy Sources 165, 757–763 (2007).
Tune, X. et al. Excessive-temperature thermal properties of yttria absolutely stabilized zirconia ceramics. J. Uncommon Earth 29, 155–159 (2011).
Gibson, I. R., Dransfield, G. P. & Gibson, I. R. Sinterability of business 8 mol% yttria-stabilized zirconia powders and the impact of sintered density on the ionic conductivity. J. Mater. Sci. 33, 4297–4305 (1998).
Lazar, D. et al. Y-TZP ceramic processing from coprecipitated powders: a comparative research with three industrial dental ceramics. Dent. Mater. 24, 1676–1685 (2008).
Chen, B. J., Solar, X. W. & Xu, C. X. Fabrication of zinc oxide nanostructures on gold-coated silicon substrate by thermal chemical reactions vapor transport deposition in air. Ceram. Int. 30, 1725–1729 (2004).
Bellis, M. Inventors of the spark plug. ToughtCo https://www.thoughtco.com/inventors-of-the-spark-plug-4074529 (2019).
Ho, J., Jow, T. R. & Boggs, S. Historic introduction to capacitor expertise. IEEE Electr. Insul. Magazine. 26, 20–25 (2010).
Papadopoulos, C. Strong-State Digital Gadgets: An Introduction (Springer, 2014).
Mizushima, Ok., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0<x<−1): a brand new cathode materials for batteries of excessive vitality density. Mater. Res. Bull. 15, 783–789 (1980).
Corridor, S., Buiu, O., Z. Mitrovic, I., Lu, Y. & M. Davey, W. Overview and perspective of high-okay dielectrics on silicon. J. Telecommun. Inf. Technol. https://doi.org/10.26636/jtit.2007.2.806 (2007).
Zhang, H. et al. A assessment on the event of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C 8, 16648–16667 (2020).
Uchino, Ok. in Superior Piezoelectric Supplies (ed. Uchino, Ok.) 1–92 (Elsevier, 2017); https://doi.org/10.1016/B978-0-08-102135-4.00001-1
Zhu, Y. et al. Lithium-film ceramics for solid-state lithionic gadgets. Nat. Rev. Mater. 6, 313–331 (2020).
Khosla, R. & Sharma, S. Ok. Integration of ferroelectric supplies: an final resolution for next-generation computing and storage gadgets. ACS Appl. Electron. Mater. 3, 2862–2897 (2021).
Fahrenholtz, W. G. & Hilmas, G. E. Extremely-high temperature ceramics: supplies for excessive environments. Scr. Mater. 129, 94–99 (2017).
Colombo, P., Zordan, F. & Medvedovski, E. Ceramic–polymer composites for ballistic safety. Adv. Appl. Ceram. 105, 78–83 (2006).
Chevalier, J. & Gremillard, L. Ceramics for medical purposes: an image for the subsequent 20 years. J. Eur. Ceram. Soc. 29, 1245–1255 (2009).
Cap-and-trade program. California Air Sources Board (2015); https://ww2.arb.ca.gov/our-work/packages/cap-and-trade-program/about
Concerning the EU ETS. European Fee (2024); https://local weather.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/what-eu-ets_en
Directive – 2009/29 – EN – EUR-Lex (European Union, 2009); https://eur-lex.europa.eu/eli/dir/2009/29/oj
Ceramics Roadmap to 2050—Persevering with Our Path in the direction of Local weather Neutrality (CerameUnie, 2021); https://www.cerameunie.eu/media/zyqdwwwp/ceramic-roadmap-to-2050.pdf
U.S. state carbon pricing insurance policies. Middle for Local weather and Vitality Options (2025); https://www.c2es.org/doc/us-state-carbon-pricing-policies/
Stock of U.S. Greenhouse Fuel Emissions and Sinks: 1990–2022 (United States Environmental Safety Company, 2024); https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2022
Whole web greenhouse gasoline emission developments and projections in Europe. European Atmosphere Company https://www.eea.europa.eu/en/evaluation/indicators/total-greenhouse-gas-emission-trends (2023).
Present California GHG emission stock information. California Air Sources Board (2025); https://ww2.arb.ca.gov/ghg-inventory-data
Hu, Y., Ren, S., Wang, Y. & Chen, X. Can carbon emission buying and selling scheme obtain vitality conservation and emission discount? Proof from the commercial sector in China. Vitality Econ. 85, 104590 (2020).
China points pilot guidelines for nationwide carbon emission buying and selling. The State Council (2021); http://english.www.gov.cn/statecouncil/ministries/202101/06/content_WS5ff5600fc6d0f72576943580.html
Carbon border adjustment mechanism. European Fee https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en (2023).
Zhong, J. & Pei, J. Carbon border adjustment mechanism: a scientific literature assessment of the newest developments. Clim. Coverage 24, 228–242 (2024).
BMAS—Provide Chain Act. Federal Ministery of Labour and Social Affairs (2021); https://www.bmas.de/EN/Europe-and-the-World/Worldwide/Provide-Chain-Act/supply-chain-act.html
CSR—Provide Chain Act. Federal Ministery of Labour and Social Affairs (2022); https://www.csr-in-deutschland.de/EN/Enterprise-Human-Rights/Provide-Chain-Act/supply-chain-act.html
Company sustainability due diligence. European Fee (2022); https://fee.europa.eu/business-economy-euro/doing-business-eu/corporate-sustainability-due-diligence_en
Nickel Unearthed: The Human and Local weather Prices of Indonesia’s Nickel Business (Local weather Rights Worldwide, 2024); https://cri.org/stories/nickel-unearthed/
