18.6 C
Canberra
Monday, December 15, 2025

Sustainable practical ceramics | Nature Nanotechnology


  • Ganguly, C. CERAMICS-as we enter the third millennium. Trans. Indian Ceram. Soc. 59, 63–67 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Pampuch, R. in An Introduction to Ceramics (eds Carpenter, B. et al.) Vol. 86, 1–17 (Springer, 2014).

  • Heimann, R. B. Traditional and Superior Ceramics: From Fundamentals to Purposes (Wiley, 2010).

  • Furszyfer Del Rio, D. D. et al. Decarbonizing the ceramics {industry}: a scientific and important assessment of coverage choices, developments and sociotechnical methods. Renew. Maintain. Vitality Rev. 157, 112081 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Habashi, F. Refractories and the commercial revolution. Refractories 1, 14–18 (2012).


    Google Scholar
     

  • Greil, P. Superior engineering ceramics. Adv. Eng. Mater. 4, 247–254 (2002).

    Article 

    Google Scholar
     

  • Ibn-Mohammed, T. et al. Decarbonising ceramic manufacturing: a techno-economic evaluation of vitality environment friendly sintering applied sciences within the practical supplies sector. J. Eur. Ceram. Soc. 39, 5213–5235 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Oliveira, M. C., Iten, M., Cruz, P. L. & Monteiro, H. Overview on vitality effectivity progresses, applied sciences and methods within the ceramic sector specializing in waste warmth restoration. Energies 13, 6096 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Iron And Metal Market Dimension, Share & Developments Evaluation Report By Product (Iron Ore, Metal), By Area (NA, Europe, APAC, CSA, MEA), And Section Forecasts, 2023–2030 (Grand View Analysis, 2021); https://www.grandviewresearch.com/industry-analysis/iron-steel-market

  • Cement Market Dimension, Share & Covid-19 Influence Evaluation, by Tape (Portland, Blended, and Others), by Software (Residential, and Non-residential), and Regional Forecast, 2022–2029 (Fortune Enterprise Insights, 2021); https://www.fortunebusinessinsights.com/industry-reports/cement-market-101825

  • Plastic Market Dimension, Share & Developments Evaluation Report By Product (PE, PP, PU, PVC, PET, Polystyrene, ABS, PBT, PPO, Epoxy Polymers, LCP, PC, Polyamide), By Software, By Finish-use, By Area, And Section Forecasts, 2023–2030 (Grand View Analysis, 2021); https://www.grandviewresearch.com/industry-analysis/global-plastics-market

  • Primary Chemical substances Market by Product Kind (Natural and Inorganic) and Finish Consumer (Chemical Business, Meals & Drinks, Textiles, Prescribed drugs, Pulp & Paper, Polymer, and Others): World Alternative Evaluation and Business Forecast, 2021–2030 (Allied Market Analysis, 2021); https://www.alliedmarketresearch.com/basic-chemicals-market-A14984

  • Aluminum Market By Finish Consumer Business (Transport, Constructing & Development, Electrical Engineering, Shopper Items, Foil & Packaging, Equipment & Gear, Others), By Collection (SERIES 1, SERIES 2, SERIES 3, SERIES 4, SERIES 5, SERIES 6, SERIES 7, SERIES 8), By Processing Methodology (Flat Rolled, Castings, Extrusions, Forgings, Pigments & Powder, Rod & Bar): World Alternative Evaluation and Business Forecast, 2021–2031 (Allied Market Analysis, 2021); https://www.alliedmarketresearch.com/aluminium-market

  • Isella, A. & Manca, D. GHG emissions by (petro)chemical processes and decarbonization priorities—a assessment. Energies 15, 7560 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bauer, F., Tilsted, J. P., Pfister, S., Oberschelp, C. & Kulionis, V. Mapping GHG emissions and prospects for renewable vitality within the chemical {industry}. Curr. Opin. Chem. Eng. 39, 100881 (2023).

    Article 

    Google Scholar
     

  • Monitoring Clear Vitality Progress 2023 (Worldwide Vitality Company, 2023); https://www.iea.org/stories/tracking-clean-energy-progress-2023

  • Wright, L. & Chalasani, S. Metal GHG Emissions Reporting Steerage (RMI, 2023); https://rmi.org/wp-content/uploads/2022/09/steel_emissions_reporting_guidance.pdf

  • IPPC Local weather Change 2022:Mitigation of Local weather Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022); https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf

  • Rissman, J. et al. Applied sciences and insurance policies to decarbonize international {industry}: assessment and evaluation of mitigation drivers by 2070. Appl. Vitality 266, 114848 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Muthukannan, M. & Ganesh, A. S. C. The environmental affect brought on by the cearmic industries and evaluation methodologies. IJQR 13, 315–334 (2019).

    Article 

    Google Scholar
     

  • World Vitality Outlook 2022 (Worldwide Vitality Company, 2022); https://www.iea.org/stories/world-energy-outlook-2022

  • Regulation (EU) 2023/956 of the European Parliament and of the Council of 10 Might 2023 establishing a carbon border adjustment mechanism (textual content with EEA relevance). OJ L. 130, 52–104 (2023).

  • Ceramics Market Dimension, Share & Developments Evaluation Report By Product (Conventional, Superior), By Software (Abrasives, Tiles), By Finish-use (Industrial, Medical), By Area, And Section Forecasts, 2023–2030 (Grand View Analysis, 2023); https://www.grandviewresearch.com/industry-analysis/ceramics-market

  • Ceramic Tiles Market Dimension, Evaluation, Business Report [2023–2028] (Fortune Enterprise Insigts, 2022); https://www.fortunebusinessinsights.com/ceramic-tiles-market-102377

  • Abrasives Market Dimension, Share & Development Evaluation Report, 2030 (Grand View Analysis, 2022); https://www.grandviewresearch.com/industry-analysis/abrasives-market

  • Sanitary Ware Market Dimension World Report, 2022–2030 (Polaris Market Analysis, 2022); https://www.polarismarketresearch.com/index.php/industry-analysis/sanitary-ware-market

  • Strong State Battery Market—World Business Evaluation & Forecast (Vantage Market Analysis, 2022); https://www.vantagemarketresearch.com

  • Superior Ceramics Market Dimension, Share & COVID-19 Influence Evaluation, By Materials (TAlumina, Titanate, Silicon, Carbide, Silicon, Nitride, Others), Finish-Use (Electical & Electronics, Transportation, Medical, Chemical, Others), and Regional Forecast, 2021–2028 (Fortune Enterprise Insigts, 2021); https://www.fortunebusinessinsights.com/advanced-ceramics-market-105073

  • Perovskite Photo voltaic Cell Market Dimension, Share & COVID-19 Influence Evaluation, By Kind (Inflexible and Versatile), Finish-Consumer (BIPV, Energy Station, Transportation & Mobility, Shopper Electronics, Others) and Regional Forecast, 2023–2030 (Fortune Enterprise Insigts, 2023); https://www.fortunebusinessinsights.com/industry-reports/perovskite-solar-cell-market-101556

  • Multi-Layer Ceramic Capacitor (MLCC) Market Outlook by Kind (Basic Capacitor, Array, Serial Development, Mega Cap), Rated Voltage Vary (Low Vary, Mid-Vary, Excessive Vary), Dielectric Kind (X7R, X5R, C0G, Y5V), Finish Consumer (Electronics, Automotive, Industrial, Telecommunication)—Development Forecast to 2030 (Prescient & Strategic Intelligence, 2022); https://www.psmarketresearch.com/market-analysis/multi-layer-ceramic-capacitor-mlcc-market

  • Strong Oxide Gas Cell Market Dimension | World Development Developments, 2030 (Strategic Market Analysis, 2022); https://www.strategicmarketresearch.com/market-report/solid-oxide-fuel-cell-market

  • World battery market dimension by expertise. Statista https://www.statista.com/statistics/1339880/global-battery-market-size-by-technology/ (2022).

  • The battery cell part alternative in Europe and North America. McKinsey & Firm https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-battery-cell-component-opportunity-in-europe-and-north-america (2024).

  • Raabe, D., Tasan, C. C. & Olivetti, E. A. Methods for enhancing the sustainability of structural metals. Nature 575, 64–74 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Defferriere, T., Klotz, D., Gonzalez-Rosillo, J. C., Rupp, J. L. M. & Tuller, H. L. Picture-enhanced ionic conductivity throughout grain boundaries in polycrystalline ceramics. Nat. Mater. 21, 438–444 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Defferriere, T., Helal, A. S., Li, J., Rupp, J. L. M. & Tuller, H. L. Ionic conduction-based polycrystalline oxide gamma ray detection—radiation-ionic results. Adv. Mater. 36, 2309253 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Ok. J., Balaish, M., Wadaguchi, M., Kong, L. & Rupp, J. L. M. Strong-state Li-metal batteries: challenges and horizons of oxide and sulfide strong electrolytes and their interfaces. Adv. Vitality Mater. 11, 2002689 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bérardan, D., Franger, S., Meena, A. Ok. & Dragoe, N. Room temperature lithium superionic conductivity in excessive entropy oxides. J. Mater. Chem. A 4, 9536–9541 (2016).

    Article 

    Google Scholar
     

  • Pérez-Tomás, A., Mingorance, A., Tanenbaum, D. & Lira-Cantú, M. in The Way forward for Semiconductor Oxides in Subsequent-Technology Photo voltaic Cells (ed. Lira-Cantu, M.) 267–356 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-811165-9.00008-9

  • Kong, L., Williams, P. J., Brushett, F. & Rupp, J. L. M. Unveiling coexisting battery-type and pseudocapacitive intercalation mechanisms in lithium titanate. Adv. Vitality Mater. 15, e03080 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Abyzov, A. M. Aluminum oxide and alumina ceramics (assessment). Half 1. Properties of Al2O3 and industrial manufacturing of dispersed Al2O3. Refract. Ind. Ceram. 60, 24–32 (2019).

    Article 

    Google Scholar
     

  • Parikh, P. B. Alumina ceramics: engineering purposes and home market potential. Trans. Indian Ceram. Soc. 54, 179–184 (1995).

    Article 
    CAS 

    Google Scholar
     

  • De Bortoli, L. S., Schabbach, L. M., Fredel, M. C., Hotza, D. & Henriques, B. Ecological footprint of biomaterials for implant dentistry: is the metal-free follow an eco-friendly shift? J. Clear. Prod. 213, 723–732 (2019).

    Article 

    Google Scholar
     

  • Viazzi, C., Bonino, J. P. & Ansart, F. Synthesis by sol–gel route and characterization of yttria stabilized zirconia coatings for thermal barrier purposes. Surf. Coat. Technol. 201, 3889–3893 (2006).

    Article 
    CAS 

    Google Scholar
     

  • López-Gándara, C., Ramos, F. M. & Cirera, A. YSZ-based oxygen sensors and using nanomaterials: a assessment from classical fashions to present developments. J. Sens. 2009, 258489 (2009).

    Article 

    Google Scholar
     

  • Ormerod, R. M. Strong oxide gasoline cells. Chem. Soc. Rev. 32, 17–28 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, Ok., Lee, T. H., Suh, J. M., Yoon, S.-H. & Jang, H. W. Views and challenges in multilayer ceramic capacitors for subsequent era electronics. J. Mater. Chem. C 7, 9782–9802 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Malik, M., Chan, Ok. H. & Azimi, G. Overview on the synthesis of LiNixMnyCo1−xyO2 (NMC) cathodes for lithium-ion batteries. Mater. Immediately Vitality 28, 101066 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Huo, H. & Janek, J. Strong-state batteries: from ‘all-solid’to ‘almost-solid’. Natl Sci. Rev. 10, nwad098 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Garnet-type solid-state electrolytes: supplies, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balaish, M. et al. Processing skinny however sturdy electrolytes for solid-state batteries. Nat. Vitality 6, 227–239 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Ok. J. & Rupp, J. L. M. All ceramic cathode composite design and manufacturing in the direction of low interfacial resistance for garnet-based solid-state lithium batteries. Vitality Environ. Sci. 13, 4930–4945 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pfenninger, R., Struzik, M., Garbayo, I., Stilp, E. & Rupp, J. L. M. A low experience on processing temperature for quick lithium conduction in garnet solid-state battery movies. Nat. Vitality 4, 475–483 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Struzik, M., Garbayo, I., Pfenninger, R. & Rupp, J. L. M. A easy and quick electrochemical CO2 sensor based mostly on Li7La3Zr2O12 for environmental monitoring. Adv. Mater. 30, 1804098 (2018).

    Article 

    Google Scholar
     

  • Balaish, M. & Rupp, J. L. M. Widening the vary of trackable environmental and well being pollution for Li-garnet-based sensors. Adv. Mater. 33, 2100314 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Balaish, M. & Rupp, J. L. M. Design of triple and quadruple section boundaries and chemistries for environmental SO2 electrochemical sensing. J. Mater. Chem. A 9, 14691–14699 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Horne, R., Grant, T. & Verghese, Ok. Life Cycle Evaluation: Rules, Apply, and Prospects (CSIRO, 2009).

  • Aluminium Sector Greenhouse Fuel Emissions (Worldwide Aluminium Institute, 2023); https://international-aluminium.org/statistics/greenhouse-gas-emissions-aluminium-sector/

  • Ma, Y., Preveniou, A., Kladis, A. & Pettersen, J. B. Round economic system and life cycle evaluation of alumina manufacturing: simulation-based comparability of Pedersen and Bayer processes. J. Clear. Prod. 366, 132807 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Life-Cycle Stock Knowledge for Aluminium Manufacturing and Transformation Processes in Europe (European Aluminum, 2018); https://european-aluminium.eu/wp-content/uploads/2022/10/european-aluminium-environmental-profile-report-2018-executive-summary.pdf

  • Muthu, S. S. Evaluation of Carbon Footprint in Completely different Industrial Sectors Vol. 1 (Springer, 2014); https://doi.org/10.1007/978-981-4560-41-2

  • Solar, X., Luo, X., Zhang, Z., Meng, F. & Yang, J. Life cycle evaluation of lithium nickel cobalt manganese oxide (NCM) batteries for electrical passenger automobiles. J. Clear. Prod. 273, 123006 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rosa, D. M. Comparative Life-cycle Evaluation of the Manufacturing of 3YSZysz by Co-precipitation Course of and Emulsion Detonation Synthesis (Univ. Coimbra, 2022).

  • Smith, L., Ibn-Mohammed, T., Koh, S. C. L. & Reaney, I. M. Life cycle evaluation and environmental profile evaluations of excessive volumetric effectivity capacitors. Appl. Vitality 220, 496–513 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schreiber, A. et al. Oxide ceramic electrolytes for all-solid-state lithium batteries—cost-cutting cell design and environmental affect. Inexperienced. Chem. 25, 399–414 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Koltun, P. & Tharumarajah, A. Life cycle affect of uncommon earth components. ISRN Metall. 2014, 1–10 (2014).

    Article 

    Google Scholar
     

  • Bauer, C. et al. Charging sustainable batteries. Nat. Maintain. 5, 176–178 (2022).

    Article 

    Google Scholar
     

  • Munjal, M. et al. Course of value evaluation of efficiency challenges and their mitigations in sodium-ion battery cathode supplies. Joule https://doi.org/10.1016/j.joule.2025.101871 (2025).

  • Smith, L. et al. Comparative environmental profile assessments of business and novel materials constructions for strong oxide gasoline cells. Appl. Vitality 235, 1300–1313 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mankins, J. C. Know-how readiness assessments: a retrospective. Acta Astronaut. 65, 1216–1223 (2009).

    Article 

    Google Scholar
     

  • Jouhara, H. et al. Waste warmth restoration applied sciences and purposes. Therm. Sci. Eng. Prog. 6, 268–289 (2018).

    Article 

    Google Scholar
     

  • Garofalo, E., Bevione, M., Cecchini, L., Mattiussi, F. & Chiolerio, A. Waste warmth to energy: applied sciences, present purposes, and future potential. Vitality Technol. 8, 2000413 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Delpech, B., Axcell, B. & Jouhara, H. A assessment on waste warmth restoration from exhaust within the ceramics {industry}. E3S Internet Conf. 22, 00034 (2017).

    Article 

    Google Scholar
     

  • Ibáñez-Forés, V., Bovea, M. D. & Azapagic, A. Assessing the sustainability of finest obtainable strategies (BAT): methodology and software within the ceramic tiles {industry}. J. Clear. Prod. 51, 162–176 (2013).

    Article 

    Google Scholar
     

  • Yüksek, İ, Öztaş, S. Ok. & Tahtalı, G. The analysis of fired clay brick manufacturing by way of vitality effectivity: a case research in Turkey. Vitality Effic. 13, 1473–1483 (2020).

    Article 

    Google Scholar
     

  • Industrial Decarbonisation & Vitality Effectivity Roadmaps to 2050 (Division of Vitality and Local weather Change and the Division for Enterprise, Innovation and Abilities, 2015).

  • Wei, M., McMillan, C. A. & De La Rue Du Can, S. Electrification of {industry}: potential, challenges and outlook. Curr. Maintain. Renew. Vitality Rep. 6, 140–148 (2019).


    Google Scholar
     

  • Tromans, D. Mineral comminution: vitality effectivity issues. Miner. Eng. 21, 613–620 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Mining Business of the Future Fiscal 12 months 2004 Annual Report, Industrial Applied sciences Program, US Division of Vitality, Vitality Effectivity and Renewable Vitality, February (Division of Vitality, 2005); https://www1.eere.vitality.gov/manufacturing/sources/mining/pdfs/mining_fy2004.pdf

  • Valery, W. & Jankovic, A. The way forward for comminution. In Proc. thirty fourth IOC on Mining and Metallurgy (College of Belgrade, Technical School, 2002).

  • Rahaman, M. N. Ceramic Processing and Sintering (CRC Press, 2017); https://doi.org/10.1201/9781315274126

  • Santos, T., Hennetier, L., Costa, V. A. F. & Costa, L. C. Microwave versus standard porcelain firing: temperature measurement. J. Manuf. Course of. 41, 92–100 (2019).

    Article 

    Google Scholar
     

  • Chojnacka, Ok. et al. Enhancements in drying applied sciences—environment friendly options for cleaner manufacturing with increased vitality effectivity and decreased emission. J. Clear. Prod. 320, 128706 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Al-Shakarchi, E. Ok. Dielectric properties of BaTiO3-ceramic ready by freeze drying technique. J. Korean Phys. Soc. 57, 245–250 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Raghupathy, B. P. C. & Binner, J. G. P. Spray freeze drying of YSZ nanopowder. J. Nanopart. Res. 14, 921 (2012).

    Article 

    Google Scholar
     

  • Mann, M. et al. Analysis of scalable synthesis strategies for aluminum-substituted Li7La3Zr2O12 strong electrolytes. Supplies 14, 6809 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahaman, M. N. Sintering of Ceramics (CRC Press, 2008).

  • Schütte, P. Tantalum: Sustainability Data (Bundesanstalt für Geowissenschaften und Rohstoffe, 2021).

  • Lee, S.-S. & Hong, T.-W. Life cycle evaluation for proton conducting ceramics synthesized by the sol–gel course of. Supplies 7, 6677–6685 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flegler, A. J., Burye, T. E., Yang, Q. & Nicholas, J. D. Cubic yttria stabilized zirconia sintering additive impacts: a comparative research. Ceram. Int. 40, 16323–16335 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hallmann, L., Ulmer, P., Reusser, E., Louvel, M. & Hämmerle, C. H. F. Impact of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. J. Eur. Ceram. Soc. 32, 4091–4104 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ede, S. R. & Luo, Z. Tuning the intrinsic catalytic actions of oxygen-evolution catalysts by doping: a complete assessment. J. Mater. Chem. A 9, 20131–20163 (2021).

    Article 
    CAS 

    Google Scholar
     

  • He, D., He, G., Jiang, H., Chen, Z. & Huang, M. Enhanced sturdiness and exercise of the perovskite electrocatalyst Pr0.5Ba0.5CoO3−δ by Ca doping for the oxygen evolution response at room temperature. Chem. Commun. 53, 5132–5135 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lu, M., Wang, H., Tune, X. & Solar, F. Impact of doping stage on residual stress, coating-substrate adhesion and put on resistance of boron-doped diamond coated instruments. J. Manuf. Course of. 88, 145–156 (2023).

    Article 

    Google Scholar
     

  • Zhang, Z., Meng, Y. & Xiao, D. Tri-sites co-doping: an environment friendly technique in the direction of the belief of 4.6V-LiCoO2 with cyclic stability. Vitality Storage Mater. 56, 443–456 (2023).

    Article 

    Google Scholar
     

  • Ahaliabadeh, Z., Kong, X., Fedorovskaya, E. & Kallio, T. Intensive comparability of doping and coating methods for Ni-rich optimistic electrode supplies. J. Energy Sources 540, 231633 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Maier, J. Defect chemistry and ionic conductivity in skinny movies. Strong State Ion. 23, 59–67 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Seebauer, E. G. & Noh, Ok. W. Developments in semiconductor defect engineering on the nanoscale. Mater. Sci. Eng. R 70, 151–168 (2010).

    Article 

    Google Scholar
     

  • Lubomirsky, I. Mechanical properties and defect chemistry. Strong State Ion. 177, 1639–1642 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Loy, D. A. in Encyclopedia of Bodily Science and Know-how (ed. Meyers, R. A.) 257–276 (Elsevier, 2003); https://doi.org/10.1016/B0-12-227410-5/00697-9

  • Afyon, S., Krumeich, F. & Rupp, J. L. M. A shortcut to garnet-type quick Li-ion conductors for all-solid state batteries. J. Mater. Chem. A 3, 18636–18648 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dimesso, L. in Handbook of Sol–Gel Science and Know-how (eds Klein, L. et al.) 1–22 (Springer, 2016); https://doi.org/10.1007/978-3-319-19454-7_123-1

  • Suchanek, W. L. & Riman, R. E. Hydrothermal synthesis of superior ceramic powders. Adv. Sci. Technol. 45, 184–193 (2006).

  • Panek, R., Madej, J., Bandura, L. & Słowik, G. Recycling of waste resolution after hydrothermal conversion of fly ash on a semi-technical scale for zeolite synthesis. Supplies 14, 1413 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y., Chon, M., Thompson, C. V. & Rupp, J. L. M. Time–temperature–transformation (TTT) diagram of battery-grade Li-garnet electrolytes for low-temperature sustainable synthesis. Angew. Chem. Int. Ed. 135, e202304581 (2023).

    Article 

    Google Scholar
     

  • Košir, J., Mousavihashemi, S., Wilson, B. P., Rautama, E.-L. & Kallio, T. Comparative evaluation on the thermal, structural, and electrochemical properties of Al-doped Li7La3Zr2O12 strong electrolytes by strong state and sol–gel routes. Strong State Ion. 380, 115943 (2022).

    Article 

    Google Scholar
     

  • Vijatovic, M. M., Bobic, J. D. & Stojanovic, B. D. Historical past and challenges of barium titanate: Half I. Sci. Sinter. 40, 155–165 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Weinmann, S. et al. Stabilizing interfaces of all-ceramic composite cathodes for Li-garnet batteries. Adv. Vitality Mater. 15, 2502280 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Guillon, O., Rheinheimer, W. & Bram, M. A perspective on rising and future sintering applied sciences of ceramic supplies. Adv. Eng. Mater. 25, 2201870 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Balaish, M. et al. Rising processing tips for strong electrolytes within the period of oxide-based solid-state batteries. Chem. Soc. Rev. 54, 8925–9007 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thuault, A., Savary, E., Bazin, J. & Marinel, S. Microwave sintering of enormous dimension items with advanced form. J. Mater. Course of. Technol. 214, 470–476 (2014).

    Article 

    Google Scholar
     

  • Sohrabi Baba Heidary, D., Lanagan, M. & Randall, C. A. Contrasting vitality effectivity in numerous ceramic sintering processes. J. Eur. Ceram. Soc. 38, 1018–1029 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sutton, W. H. Microwave processing of ceramics—an outline. MRS Proc. 269, 3 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Singh, S., Gupta, D. & Jain, V. Latest purposes of microwaves in supplies becoming a member of and floor coatings. Proc. Inst. Mech. Eng. Half B 230, 603–617 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Guillon, O. et al. Area-assisted sintering expertise/spark plasma sintering: mechanisms, supplies, and expertise developments. Adv. Vitality Mater. 16, 830–849 (2014).

    CAS 

    Google Scholar
     

  • Manière, C. et al. Spark plasma sintering and complicated shapes: the deformed interfaces method. Powder Technol. 320, 340–345 (2017).

    Article 

    Google Scholar
     

  • Guo, J. et al. Chilly sintering means of composites: bridging the processing temperature hole of ceramic and polymer supplies. Adv. Funct. Mater. 26, 7115–7121 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Scheld, W. S. et al. Blacklight sintering of garnet-based composite cathodes. J. Eur. Ceram. Soc. 44, 3039–3048 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Perednis, D. & Gauckler, L. J. Skinny movie deposition utilizing spray pyrolysis. J. Electroceram. 14, 103–111 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Rupp, J. L. M., Scherrer, B., Harvey, A. S. & Gauckler, L. J. Crystallization and grain development kinetics for precipitation-based ceramics: a case research on amorphous ceria skinny movies from spray pyrolysis. Adv. Funct. Mater. 19, 2790–2799 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hood, Z. D. et al. A sinter-free future for solid-state battery designs. Vitality Environ. Sci. 15, 2927–2936 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Patidar, R., Burkitt, D., Hooper, Ok., Richards, D. & Watson, T. Slot-die coating of perovskite photo voltaic cells: an outline. Mater. Immediately Commun. 22, 100808 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schneller, T., Waser, R., Kosec, M. & Payne, D. Chemical Resolution Deposition of Purposeful Oxide Skinny Movies (Springer, 2013).

  • Kistler, S. F. & Schweizer, P. M. Liquid Movie Coating: Scientific Rules and Their Technological Implications (Springer, 2012).

  • Derby, B. Inkjet printing ceramics: from drops to strong. J. Eur. Ceram. Soc. 31, 2543–2550 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wei, L. et al. Customizable solid-state batteries towards shape-conformal and structural energy provides. Mater. Immediately 58, 297–312 (2022).

    Article 

    Google Scholar
     

  • Zhu, C. et al. Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries through operando microscopy strategies. Nat. Commun. 14, 1300 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nazarenus, T., Solar, Y., Exner, J., Kita, J. & Moos, R. Powder aerosol deposition as a technique to provide garnet-type strong ceramic electrolytes: a research on electrochemical movie properties and industrial purposes. Vitality Tech. 9, 2100211 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Aerosol deposition expertise and its purposes in batteries. Nano Mater. Sci. https://doi.org/10.1016/j.nanoms.2023.11.002 (2023).

  • Hofmann, M., Hofmann, H., Hagelüken, C. & Hool, A. Vital uncooked supplies: a perspective from the supplies science group. Maintain. Mater. Technol. 17, e00074 (2018).

    CAS 

    Google Scholar
     

  • Barteková, E. & Kemp, R. Vital Uncooked Materials Methods in Completely different World Areas (Maastricht Univesity, 2016); https://unu-merit.nl/publications/wppdf/2016/wp2016-005.pdf

  • Fortier, S. M., Hammarstrom, J. H., Ryker, S. J., Day, W. C. & Seal, R. R. USGS vital minerals assessment. Mining Engineering Journal 35–47 (2023); https://apps.usgs.gov/minerals-information-archives/articles/USGS-Vital-Minerals-Overview-2022.pdf

  • Grohol, M. & Veeh, C. Study on the Vital Uncooked Supplies for the EU 2023 (European Fee, 2023); https://doi.org/10.2873/725585

  • Golroudbary, S. R., Calisaya-Azpilcueta, D. & Kraslawski, A. The life cycle of vitality consumption and greenhouse gasoline emissions from vital minerals recycling: case of lithium-ion batteries. Procedia CIRP 80, 316–321 (2019).

    Article 

    Google Scholar
     

  • Harper, G. et al. Recycling lithium-ion batteries from electrical automobiles. Nature 575, 75–86 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciez, R. E. & Whitacre, J. F. Inspecting totally different recycling processes for lithium-ion batteries. Nat. Maintain. 2, 148–156 (2019).

    Article 

    Google Scholar
     

  • Wang, Y., Goikolea, E., de Larramendi, I. R., Lanceros-Méndez, S. & Zhang, Q. Recycling strategies for various cathode chemistries—a vital assessment. J. Vitality Storage 56, 106053 (2022).

    Article 

    Google Scholar
     

  • Azimi, G. & Chan, Ok. H. A assessment of up to date and rising recycling strategies for lithium-ion batteries with a give attention to NMC cathodes. Resour. Conserv. Recycl. 209, 107825 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Azhari, L., Bong, S., Ma, X. & Wang, Y. Recycling for all solid-state lithium-ion batteries. Matter 3, 1845–1861 (2020).

    Article 

    Google Scholar
     

  • Beaudet, A., Larouche, F., Amouzegar, Ok., Bouchard, P. & Zaghib, Ok. Key challenges and alternatives for recycling electrical car battery supplies. Sustainability 12, 5837 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jin, S. et al. A complete assessment on the recycling of spent lithium-ion batteries: pressing standing and expertise advances. J. Clear. Prod. 340, 130535 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H.-J. et al. A complete assessment of Li-ion battery supplies and their recycling strategies. Electronics 9, 1161 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Valente, A., Iribarren, D. & Dufour, J. Finish of lifetime of gasoline cells and hydrogen merchandise: from applied sciences to methods. Int. J. Hydrogen Vitality 44, 20965–20977 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kikuta, Ok. et al. Low temperature recycling course of for barium titanate based mostly waste. J. Ceram. Soc. Jpn 114, 392–394 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Environment friendly electrocatalyst nanoparticles from upcycled class II capacitors. Nanomaterials 12, 2697 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, X., Niu, B. & Xu, Z. Mechanochemically reworking waste ceramic capacitors into self-doped BaTiO3 photocatalysts: an environment friendly method for high-value e-waste recycling and hydrogen manufacturing. ACS Maintain. Chem. Eng. 12, 17272–17281 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Niu, B. & Xu, Z. Innovating e-waste recycling: from waste multi-layer ceramic capacitors to NbPb codoped and Ag–Pd–Sn–Ni loaded BaTiO3 nano-photocatalyst by one-step ball milling course of. Maintain. Mater. Technol. 21, e00101 (2019).

    CAS 

    Google Scholar
     

  • Saffirio, S. et al. Hydrothermally-assisted restoration of yttria-stabilized zirconia (YSZ) from end-of-life strong oxide cells. Maintain. Mater. Technol. 33, e00473 (2022).

    CAS 

    Google Scholar
     

  • Yenesew, G. T., Quarez, E., Le gal la salle, A., Nicollet, C. & Joubert, O. Recycling and characterization of end-of-life strong oxide gasoline/electrolyzer ceramic materials cell elements. Resour. Conserv. Recycl. 190, 106809 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Saffirio, S. et al. Recycling and reuse of ceramic supplies from elements of waste strong oxide cells (SOCs). Ceram. Int. 50, 34472–34477 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Nasser, O. A. & Petranikova, M. Overview of achieved purities after Li-ion batteries hydrometallurgical therapy and impurities results on the cathode efficiency. Batteries 7, 60 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schwich, L. et al. Recycling methods for ceramic all-solid-state batteries-Half I: Research on attainable therapies in distinction to Li-ion battery recycling. Metals 10, 1523 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Waidha, A. I. et al. Recycling of all-solid-state Li-ion batteries: a case research of the separation of particular person elements inside a system composed of LTO, LLZTO and NMC. ChemSusChem 16, e202202361 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, P. et al. Environment friendly direct recycling of lithium-ion battery cathodes by focused therapeutic. Joule 4, 2609–2626 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gaines, L., Dai, Q., Vaughey, J. T. & Gillard, S. Direct recycling R&D on the ReCell Middle. Recycling 6, 31 (2021).

    Article 

    Google Scholar
     

  • Vukšić, M. et al. Evaluating recycling potential of waste alumina powder for ceramics manufacturing utilizing response floor methodology. J. Mater. Res. Technol. 11, 866–874 (2021).

    Article 

    Google Scholar
     

  • Vukšić, M., Žmak, I., Ćurković, L. & Kocjan, A. Spark plasma sintering of dense alumina ceramics from industrial waste scraps. Open Ceram. 5, 100076 (2021).

    Article 

    Google Scholar
     

  • Sarner, S., Schreiber, A., Menzler, N. H. & Guillon, O. Recycling methods for strong oxide cells. Adv. Vitality Mater. 12, 2201805 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Niu, B. & Xu, Z. Software of chloride metallurgy and corona electrostatic separation for recycling waste multilayer ceramic capacitors. ACS Maintain. Chem. Eng. 5, 8390–8395 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, T.-W., Liu, T. & Solar, H. Direct recycling for advancing sustainable battery options. Mater. Immediately Vitality 38, 101434 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Y., Chen, G., Liu, F., Yue, X. & Chen, Z. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2particles to straight regenerate high-performance lithium-ion battery cathodes. ACS Vitality Lett. 3, 1683–1692 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Qin, Z. et al. Recycling garnet-type electrolyte towards superior biking efficiency for solid-state lithium batteries. Vitality Storage Mater. 49, 360–369 (2022).

    Article 

    Google Scholar
     

  • Sugita, Ok. Historic Overview of Refractory Know-how within the Metal Business (Nippon Metal, 2008); https://www.nipponsteel.com/en/tech/report/nsc/pdf/n9803.pdf

  • Craddock, P. T. Scientific Investigation of Copies, Fakes and Forgeries (Elsevier/Butterworth-Heinemann, 2009).

  • Iron and Metal Know-how Roadmap—In the direction of Extra Sustainable Steelmaking (Worldwide Vitality Company, 2020); https://www.iea.org/stories/iron-and-steel-technology-roadmap

  • Gürel, S. B. & Altun, A. Reactive alumina manufacturing for the refractory {industry}. Powder Technol. 196, 115–121 (2009).

    Article 

    Google Scholar
     

  • Ruys, A. J. Alumina Ceramics: Biomedical and Medical Purposes (Woodhead,2019).

  • Figiel, P., Rozmus, M. & Smuk, B. Properties of alumina ceramics obtained by standard and non-conventional strategies for sintering ceramics. J. Achiev. Mater. Manuf. Eng. 48, 29–34 (2011).


    Google Scholar
     

  • Thomazini, D. et al. Alumina ceramics obtained by chemical synthesis utilizing standard and microwave sintering. Cerâmica 57, 45–49 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y. Impact of SiO2 addition on the dielectric properties and microstructure of BaTiO3-based ceramics in lowering sintering. Int. J. Miner. Metall. Mater. 16, 124–127 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Brzozowski, E. & Castro, M. S. Grain development management in Nb-doped BaTiO3. J. Mater. Course of. Technol. 168, 464–470 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Deng, X. et al. Section transitions in nanocrystalline barium titanate ceramics ready by spark plasma sintering. J. Am. Ceram. Soc. 89, 1059–1064 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. T. & Han, Y. H. Sintering of nanocrystalline BaTiO3. Ceram. Int. 30, 1719–1723 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, C. J., Jin, C. Q. & Wang, X. H. The fabrication of nanocrystalline BaTiO3 ceramics underneath excessive temperature and excessive stress. J. Mater. Course of. Technol. 209, 2033–2037 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Qi, J., Li, L., Wang, Y., Fan, Y. & Gui, Z. Yttrium doping habits in BaTiO3 ceramics at totally different sintered temperature. Mater. Chem. Phys. 82, 423–427 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Amin, R. & Chiang, Y.-M. Characterization of digital and ionic transport in Li1xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1xNi0.50Mn0.20Co0.30O2 (NMC523) as a perform of Li content material. J. Electrochem. Soc. 163, A1512–A1517 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ni, L., Wu, Z. & Zhang, C. Impact of sintering course of on ionic conductivity of Li7xLa3Zr2xNbxO12 (x = 0, 0.2, 0.4, 0.6). Strong Electrolytes Mater. 14, 1671 (2021).

    CAS 

    Google Scholar
     

  • Hitz, G. T. et al. Excessive-rate lithium biking in a scalable trilayer Li-garnet-electrolyte structure. Mater. Immediately 22, 50–57 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Grissa, R., Payandeh, S., Heinz, M. & Battaglia, C. Influence of protonation on the electrochemical efficiency of Li7La3Zr2O12 garnets. ACS Appl. Mater. Interfaces 13, 14700–14709 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, E. J. et al. Mechanical and bodily properties of LiNi0.33Mn0.33Co0.33O2 (NMC). J. Eur. Ceram. Soc. 37, 3213–3217 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Z. & Wachsman, E. Mechanical properties of three-dimensional trilayered Li-garnet electrolyte for high-rate biking in solid-state batteries. J. Am. Ceram. Soc. 107, 1481–1489 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Su, J. et al. Overcoming the irregular grain development in Ga-doped Li7La3Zr2O12 to boost the electrochemical stability in opposition to Li metallic. Ceram. Int. 45, 14991–14996 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Z. et al. Probing the mechanical properties of a Doped Li7La3Zr2O12 garnet skinny electrolyte for solid-state batteries. ACS Appl. Mater. Interfaces 12, 24693–24700 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, M., Tang, X., Yin, H. & Peng, S. Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Energy Sources 165, 757–763 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Tune, X. et al. Excessive-temperature thermal properties of yttria absolutely stabilized zirconia ceramics. J. Uncommon Earth 29, 155–159 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gibson, I. R., Dransfield, G. P. & Gibson, I. R. Sinterability of business 8 mol% yttria-stabilized zirconia powders and the impact of sintered density on the ionic conductivity. J. Mater. Sci. 33, 4297–4305 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Lazar, D. et al. Y-TZP ceramic processing from coprecipitated powders: a comparative research with three industrial dental ceramics. Dent. Mater. 24, 1676–1685 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, B. J., Solar, X. W. & Xu, C. X. Fabrication of zinc oxide nanostructures on gold-coated silicon substrate by thermal chemical reactions vapor transport deposition in air. Ceram. Int. 30, 1725–1729 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Bellis, M. Inventors of the spark plug. ToughtCo https://www.thoughtco.com/inventors-of-the-spark-plug-4074529 (2019).

  • Ho, J., Jow, T. R. & Boggs, S. Historic introduction to capacitor expertise. IEEE Electr. Insul. Magazine. 26, 20–25 (2010).

    Article 

    Google Scholar
     

  • Papadopoulos, C. Strong-State Digital Gadgets: An Introduction (Springer, 2014).

  • Mizushima, Ok., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0<x<−1): a brand new cathode materials for batteries of excessive vitality density. Mater. Res. Bull. 15, 783–789 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Corridor, S., Buiu, O., Z. Mitrovic, I., Lu, Y. & M. Davey, W. Overview and perspective of high-okay dielectrics on silicon. J. Telecommun. Inf. Technol. https://doi.org/10.26636/jtit.2007.2.806 (2007).

  • Zhang, H. et al. A assessment on the event of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C 8, 16648–16667 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Uchino, Ok. in Superior Piezoelectric Supplies (ed. Uchino, Ok.) 1–92 (Elsevier, 2017); https://doi.org/10.1016/B978-0-08-102135-4.00001-1

  • Zhu, Y. et al. Lithium-film ceramics for solid-state lithionic gadgets. Nat. Rev. Mater. 6, 313–331 (2020).

    Article 

    Google Scholar
     

  • Khosla, R. & Sharma, S. Ok. Integration of ferroelectric supplies: an final resolution for next-generation computing and storage gadgets. ACS Appl. Electron. Mater. 3, 2862–2897 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fahrenholtz, W. G. & Hilmas, G. E. Extremely-high temperature ceramics: supplies for excessive environments. Scr. Mater. 129, 94–99 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Colombo, P., Zordan, F. & Medvedovski, E. Ceramic–polymer composites for ballistic safety. Adv. Appl. Ceram. 105, 78–83 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Chevalier, J. & Gremillard, L. Ceramics for medical purposes: an image for the subsequent 20 years. J. Eur. Ceram. Soc. 29, 1245–1255 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Cap-and-trade program. California Air Sources Board (2015); https://ww2.arb.ca.gov/our-work/packages/cap-and-trade-program/about

  • Concerning the EU ETS. European Fee (2024); https://local weather.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/what-eu-ets_en

  • Directive – 2009/29 – EN – EUR-Lex (European Union, 2009); https://eur-lex.europa.eu/eli/dir/2009/29/oj

  • Ceramics Roadmap to 2050—Persevering with Our Path in the direction of Local weather Neutrality (CerameUnie, 2021); https://www.cerameunie.eu/media/zyqdwwwp/ceramic-roadmap-to-2050.pdf

  • U.S. state carbon pricing insurance policies. Middle for Local weather and Vitality Options (2025); https://www.c2es.org/doc/us-state-carbon-pricing-policies/

  • Stock of U.S. Greenhouse Fuel Emissions and Sinks: 1990–2022 (United States Environmental Safety Company, 2024); https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2022

  • Whole web greenhouse gasoline emission developments and projections in Europe. European Atmosphere Company https://www.eea.europa.eu/en/evaluation/indicators/total-greenhouse-gas-emission-trends (2023).

  • Present California GHG emission stock information. California Air Sources Board (2025); https://ww2.arb.ca.gov/ghg-inventory-data

  • Hu, Y., Ren, S., Wang, Y. & Chen, X. Can carbon emission buying and selling scheme obtain vitality conservation and emission discount? Proof from the commercial sector in China. Vitality Econ. 85, 104590 (2020).

    Article 

    Google Scholar
     

  • China points pilot guidelines for nationwide carbon emission buying and selling. The State Council (2021); http://english.www.gov.cn/statecouncil/ministries/202101/06/content_WS5ff5600fc6d0f72576943580.html

  • Carbon border adjustment mechanism. European Fee https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en (2023).

  • Zhong, J. & Pei, J. Carbon border adjustment mechanism: a scientific literature assessment of the newest developments. Clim. Coverage 24, 228–242 (2024).

    Article 

    Google Scholar
     

  • BMAS—Provide Chain Act. Federal Ministery of Labour and Social Affairs (2021); https://www.bmas.de/EN/Europe-and-the-World/Worldwide/Provide-Chain-Act/supply-chain-act.html

  • CSR—Provide Chain Act. Federal Ministery of Labour and Social Affairs (2022); https://www.csr-in-deutschland.de/EN/Enterprise-Human-Rights/Provide-Chain-Act/supply-chain-act.html

  • Company sustainability due diligence. European Fee (2022); https://fee.europa.eu/business-economy-euro/doing-business-eu/corporate-sustainability-due-diligence_en

  • Nickel Unearthed: The Human and Local weather Prices of Indonesia’s Nickel Business (Local weather Rights Worldwide, 2024); https://cri.org/stories/nickel-unearthed/

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles