Sabine et al. Irritation and metabolism in tissue restore and regeneration. Science 356, 1026–1030 (2017).
Rodríguez-Morales, P. & Franklin, R. A. Macrophage phenotypes and capabilities: resolving irritation and restoring homeostasis. Traits Immunol. 44, 986–998 (2023).
Jones, D. L. & Wagers, A. J. No place like dwelling: anatomy and performance of the stem cell area of interest. Nat. Rev. Mol. Cell Biol. 9, 11–21 (2008).
Di Micco, R., Krizhanovsky, V., Baker, D., & d’Adda di Fagagna, F. Mobile senescence in ageing: from mechanisms to therapeutic alternatives. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).
Ogrodnik, M. & Gladyshev, V. N. The which means of adaptation in ageing: insights from mobile senescence, epigenetic clocks and stem cell alterations. Nat. Getting older 3, 766–775 (2023).
Hazeldine, J., Lord, J. M. & Hampson, P. Immunesenescence and inflammaging: a contributory issue within the poor consequence of the geriatric trauma affected person. Ageing Res. Rev. 24, 349–357 (2015).
Wei, T. et al. Janus liposozyme for the modulation of redox and immune homeostasis in contaminated diabetic wounds. Nat. Nanotechnol. 19, 1–12 (2024).
Ambrosi, T. H. et al. Aged skeletal stem cells generate an inflammatory degenerative area of interest. Nature 597, 256–262 (2021).
Lei, Q. et al. Extracellular vesicles deposit PCNA to rejuvenate aged bone marrow-derived mesenchymal stem cells and gradual age-related degeneration. Sci. Transl. Med. 13, eaaz8697 (2021).
Villa, C. et al. Magnetic-field-driven focusing on of exosomes modulates immune and metabolic modifications in dystrophic muscle. Nat. Nanotechnol. 19, 1532–1543 (2024).
Chen, Y. et al. Nutrient-delivery and metabolism reactivation remedy for melanoma. Nat. Nanotechnol. 19, 1399–1408 (2024).
Hu, X. et al. A synthetic metabzyme for tumour-cell-specific metabolic remedy. Nat. Nanotechnol. 19, 1712–1722 (2024).
Pålsson-McDermott, E. M. & O’Neill, L. A. J. Focusing on immunometabolism as an anti-inflammatory technique. Cell Res. 30, 300–314 (2020).
Cai, Y. et al. Decoding aging-dependent regenerative decline throughout tissues at single-cell decision. Cell Stem Cell 30, 1674–1691.e8 (2023).
Covarrubias, A. J., Perrone, R., Grozio, A. & Verdin, E. NAD+ metabolism and its roles in mobile processes throughout ageing. Nat. Rev. Mol. Cell Biol. 22, 119–141 (2021).
Verdin, E. NAD+ in ageing, metabolism, and neurodegeneration. Science 350, 1208–1213 (2015).
Zhang, H. et al. NAD+ repletion improves mitochondrial and stem cell perform and enhances life span in mice. Science 352, 1436–1443 (2016).
Minhas, P. S. et al. Macrophage de novo NAD+ synthesis specifies immune perform in ageing and irritation. Nat. Immunol. 20, 50–63 (2019).
Yeung, F. et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).
Trammell, S. A. J. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and people. Nat. Commun. 7, 12948 (2016).
Yu, Y. et al. Engineered drug-loaded mobile membrane nanovesicles for environment friendly remedy of postsurgical most cancers recurrence and metastasis. Sci. Adv. 8, eadd3599 (2022).
Fang, R. H., Gao, W. & Zhang, L. Focusing on medication to tumours utilizing cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 20, 33–48 (2023).
Liu, Y., Zhao, Y. & Chen, X. Bioengineering of metal-organic frameworks for nanomedicine. Theranostics 9, 3122–3133 (2019).
Liang, Ok. et al. Biomimetic mineralization of metal-organic frameworks as protecting coatings for biomacromolecules. Nat. Commun. 6, 7240 (2015).
Wynn, T. A. & Vannella, Ok. M. Macrophages in tissue restore, regeneration, and fibrosis. Immunity 44, 450–462 (2016).
Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).
O’Neill, L. A. J., Kishton, R. J. & Rathmell, J. A information to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).
Runtsch, M. C. et al. Itaconate and itaconate derivatives goal JAK1 to suppress various activation of macrophages. Cell Metab. 34, 487–501.e8 (2022).
Tannahill, G. M. et al. Succinate is an inflammatory sign that induces IL-1β by way of HIF-1α. Nature 496, 238–242 (2013).
Yan, J. & Horng, T. Lipid metabolism in regulation of macrophage capabilities. Traits Cell Biol. 30, 979–989 (2020).
Remmerie, A. & Scott, C. L. Macrophages and lipid metabolism. Cell Immunol. 330, 27–42 (2018).
Di Gioia, M. et al. Endogenous oxidized phospholipids reprogram mobile metabolism and increase hyperinflammation. Nat. Immunol. 21, 42–53 (2020).
O’Neill, L. A. J. & Hardie, D. G. Metabolism of irritation restricted by AMPK and pseudo-starvation. Nature 493, 346–355 (2013).
Vats, D. et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated irritation. Cell Metab. 4, 13–24 (2006).
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of ageing. Cell 153, 1194–1217 (2013).
Andreux, P. A., Houtkooper, R. H. & Auwerx, J. Pharmacological approaches to revive mitochondrial perform. Nat. Rev. Drug Discov. 12, 465–483 (2013).
Solar, N. et al. Measuring in vivo mitophagy. Mol. Cell 60, 685–696 (2015).
Yan, C. et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy 16, 419–434 (2020).
Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity by way of activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).
Gaharwar, A. Ok., Singh, I. & Khademhosseini, A. Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater. 5, 686–705 (2020).
Rodier, F. et al. Persistent DNA injury signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).
Lozano-Torres, B. et al. The chemistry of senescence. Nat. Rev. Chem. 3, 426–441 (2019).
Liang, Ok. et al. In situ biomimetic mineralization of bone-like hydroxyapatite in hydrogel for the acceleration of bone regeneration. ACS Appl. Mater. Interfaces 15, 292–308 (2023).
Chao, Y., Chen, Q. & Liu, Z. Good injectable hydrogels for most cancers immunotherapy. Adv. Funct. Mater. 30, 1902785 (2020).
Lu, Y.-Z. et al. CGRP sensory neurons promote tissue therapeutic through neutrophils and macrophages. Nature 628, 604–611 (2024).
Calcinotto, A. et al. Mobile senescence: ageing, most cancers, and harm. Physiol. Rev. 99, 1047–1078 (2019).
Gao, C. et al. Remedy of atherosclerosis by macrophage-biomimetic nanoparticles through focused pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 11, 2622 (2020).
Fang, R. H. et al. Lipid-insertion allows focusing on functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 5, 8884–8888 (2013).
Kallai, I. et al. Microcomputed tomography–primarily based structural evaluation of assorted bone tissue regeneration fashions. Nat. Protoc. 6, 105–110 (2011).
Martino, M. M. et al. Progress elements engineered for super-affinity to the extracellular matrix improve tissue therapeutic. Science 343, 885–888 (2014).