Xiong, J., Hsiang, E.-L., He, Z., Zhan, T. & Wu, S.-T. Augmented actuality and digital actuality shows: Rising applied sciences and future views. Mild Sci. Appl. 10, 216 (2021).
Li, Y. et al. Metasurfaces for near-eye show purposes. Opto-Electron. Sci. 2, 230025 (2023).
Bastos, D., Monteiro, P. P., Oliveira, A. S. R. & Drummond, M. V. An summary of LiDAR necessities and strategies for autonomous driving. In 2021 Telecoms Convention 1–6 (IEEE, 2021); https://doi.org/10.1109/ConfTELE50222.2021.9435580
Chen, L. et al. Finish-to-end autonomous driving: challenges and frontiers. IEEE Trans. Sample Anal. Mach. Intell. 46, 10164–10183 (2024).
Jiao, B. J. et al. Acousto-optic scanning spatial-switching multiphoton lithography. Int. J. Excessive Manuf. 5, 035008 (2023).
Jahid, A., Alsharif, M. H. & Corridor, T. J. A recent survey on free house optical communication: potentials, technical challenges, current advances and analysis route. J. Netw. Comput. Appl. 200, 103311 (2022).
Hippke, M. Interstellar communication community. I. Overview and assumptions. Astron. J 159, 85 (2020).
Blanche, P.-A. Holography, and the way forward for 3D show. Mild Adv. Manuf. 2, 446–459 (2021).
Rosales-Guzmán, C. & Forbes, A. Learn how to Form Mild with Spatial Mild Modulators (SPIE PRESS, 2017); https://doi.org/10.1117/3.2281295
Underwood, I. in Handbook of Visible Show Expertise (eds Chen, J., Cranton, W. & Fihn, M.) 2817–2831 (Springer, 2016); https://doi.org/10.1007/978-3-319-14346-0_126.
Yang, Y., Forbes, A. & Cao, L. A evaluate of liquid crystal spatial gentle modulators: gadgets and purposes. Opto-Electron. Sci. 2, 230026 (2023).
Judy, J. W. Microelectromechanical programs (MEMS): fabrication, design and purposes. Good Mater. Struct. 10, 1115–1134 (2001).
Moser, S., Ritsch-Marte, M. & Thalhammer, G. Mannequin-based compensation of pixel crosstalk in liquid crystal spatial gentle modulators. Choose. Specific 27, 25046–25063 (2019).
Francés, J. et al. Polarimetric evaluation of cross-talk phenomena induced by the pixelation in PA-LCoS gadgets. Choose. Laser Technol. 152, 108125 (2022).
Yu, N. et al. Mild propagation with part discontinuities: generalized legal guidelines of reflection and refraction. Science 334, 333–337 (2011).
Solar, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and floor waves. Nat. Mater. 11, 426–431 (2012).
Dorrah, A. H. & Capasso, F. Tunable structured gentle with flat optics. Science 376, eabi6860 (2022).
Xiao, Y. et al. Improved spatiotemporal decision of anti-scattering super-resolution label-free microscopy by way of artificial wave 3D metalens imaging. Opto-Electron. Sci. 2, 230037 (2023).
Ren, H. et al. Complicated-amplitude metasurface-based orbital angular momentum holography in momentum house. Nat. Nanotechnol. 15, 948–955 (2020).
Wang, X. et al. 3D Nanolithography by way of holographic multi-focus metalens. Laser Photonics Rev. 18, 2400181 (2024).
Wang, C. et al. Miniature two-photon microscopic imaging utilizing dielectric metalens. Nano Lett. 23, 8256–8263 (2023).
Jang, M. et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photonics 12, 84–90 (2018).
Tzang, O. et al. Wavefront shaping in complicated media with a 350 kHz modulator by way of a 1D-to-2D rework. Nat. Photonics 13, 788–793 (2019).
Gao, H. et al. Dynamic 3D meta-holography in seen vary with giant body quantity and excessive body charge. Sci. Adv. 6, eaba8595 (2020).
Xu, Ok. et al. Simultaneous dynamic show of meta-hologram and meta-nanoprinting with excessive body charge. Laser Photonics Rev. 19, 2400815 (2025).
Juliano Martins, R. et al. Metasurface-enhanced gentle detection and ranging know-how. Nat. Commun. 13, 5724 (2022).
Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface utilizing low-loss optical phase-change materials. Nat. Nanotechnol. 16, 661–666 (2021).
Wang, Y. et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 16, 667–672 (2021).
Fang, Z. et al. Extremely-low-energy programmable non-volatile silicon photonics primarily based on phase-change supplies with graphene heaters. Nat. Nanotechnol. 17, 842–848 (2022).
Ergoktas, M. S. et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from seen to microwave wavelengths. Nat. Photonics 15, 493–498 (2021).
Li, X. et al. Athermally photoreduced graphene oxides for three-dimensional holographic pictures. Nat. Commun. 6, 6984 (2015).
Zhang, X. et al. Reconfigurable metasurface for picture processing. Nano Lett. 21, 8715–8722 (2021).
Malek, S. C., Ee, H.-S. & Agarwal, R. Pressure multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641–3645 (2017).
Karst, J. et al. Electrically switchable metallic polymer nanoantennas. Science 374, 612–616 (2021).
Doshi, S. et al. Electrochemically mutable delicate metasurfaces. Nat. Mater. 24, 205–211 (2025).
Li, S.-Q. et al. Part-only transmissive spatial gentle modulator primarily based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).
Izdebskaya, Y. V., Yang, Z., Shvedov, V. G., Neshev, D. N. & Shadrivov, I. V. Multifunctional metasurface tuning by liquid crystals in three dimensions. Nano Lett. 23, 9825–9831 (2023).
Mansha, S. et al. Excessive decision multispectral spatial gentle modulators primarily based on tunable Fabry–Perot nanocavities. Mild Sci. Appl. 11, 141 (2022).
Huang, Y.-W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).
Shirmanesh, G. Ok., Sokhoyan, R., Wu, P. C. & Atwater, H. A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).
Park, J. et al. All-solid-state spatial gentle modulator with impartial part and amplitude management for three-dimensional LiDAR purposes. Nat. Nanotechnol. 16, 69–76 (2021).
Jung, C., Lee, E. & Rho, J. The rise of electrically tunable metasurfaces. Sci. Adv. 10, eado8964 (2024).
Kuznetsov, A. I. Flat optics and nanoantenna spatial gentle modulators for imaging, LiDAR, and 3D holographic show purposes. In OPTO 2024 Excessive Distinction Metastructures XIII, PC128970E (SPIE, 2024); https://doi.org/10.1117/12.2692860
Buckley, E., Kaczorowski, A. & Demolder, A. Holographic shows for augmented actuality. In OPTO 2025 Sensible Holography XXXIX: Shows, Supplies, and Functions, 13390021 (SPIE, 2025); https://doi.org/10.1117/12.3045017
Goorden, S. A., Bertolotti, J. & Mosk, A. P. Superpixel-based spatial amplitude and part modulation utilizing a digital micromirror machine. Choose. Specific 22, 17999 (2014).
Overvig, A. C. et al. Dielectric metasurfaces for full and impartial management of the optical amplitude and part. Mild Sci. Appl. 8, 92 (2019).
Sui, X., He, Z., Chu, D. & Cao, L. Non-convex optimization for inverse drawback fixing in computer-generated holography. Mild Sci. Appl. 13, 158 (2024).
Zhu, R., Chen, L., Xiao, J. & Zhang, H. Three-dimensional pc holography with part house tailoring. PhotoniX 5, 34 (2024).
Hahn, J., Kim, H., Lim, Y., Park, G. & Lee, B. Vast viewing angle dynamic holographic stereogram with a curved array of spatial gentle modulators. Choose. Specific 16, 12372 (2008).
Perception laser 8k. Digital Projection https://www.digitalprojection.com/en/projectors/insight-laser-8k-gen-ii (2024).
Panasonic PT-RQ13K. Panasonic https://eu.join.panasonic.com/gb/en/projectors/pt-rq13k (2022).
Luan, H.-Y., Ouyang, Y.-H., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Reconfigurable moiré nanolaser arrays with part synchronization. Nature 624, 282–288 (2023).
Azzam, S. I. et al. Ten years of spasers and plasmonic nanolasers. Mild Sci. Appl. 9, 90 (2020).
Gong, J. et al. OLED illuminated metasurfaces for holographic picture projection. Mild Sci. Appl. 14, 294 (2025).
Pan, C.-F. et al. 3D-printed multilayer buildings for top–numerical aperture achromatic metalenses. Sci. Adv. 9, eadj9262 (2023).
Li, X. et al. Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning. Opto-Electron. Adv. 7, 240085 (2024).
Yang, Z., Albrow-Owen, T., Cai, W. & Hasan, T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021).
Zhou, Z. et al. Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging. Mild Sci. Appl. 13, 242 (2024).
Shi, Z. et al. Tremendous-resolution orbital angular momentum holography. Nat. Commun. 14, 1869 (2023).
