26.6 C
Canberra
Wednesday, February 18, 2026

Spatial gentle modulator by way of optically addressed metasurface


  • Xiong, J., Hsiang, E.-L., He, Z., Zhan, T. & Wu, S.-T. Augmented actuality and digital actuality shows: Rising applied sciences and future views. Mild Sci. Appl. 10, 216 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Metasurfaces for near-eye show purposes. Opto-Electron. Sci. 2, 230025 (2023).

    Article 

    Google Scholar
     

  • Bastos, D., Monteiro, P. P., Oliveira, A. S. R. & Drummond, M. V. An summary of LiDAR necessities and strategies for autonomous driving. In 2021 Telecoms Convention 1–6 (IEEE, 2021); https://doi.org/10.1109/ConfTELE50222.2021.9435580

  • Chen, L. et al. Finish-to-end autonomous driving: challenges and frontiers. IEEE Trans. Sample Anal. Mach. Intell. 46, 10164–10183 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Jiao, B. J. et al. Acousto-optic scanning spatial-switching multiphoton lithography. Int. J. Excessive Manuf. 5, 035008 (2023).

    CAS 

    Google Scholar
     

  • Jahid, A., Alsharif, M. H. & Corridor, T. J. A recent survey on free house optical communication: potentials, technical challenges, current advances and analysis route. J. Netw. Comput. Appl. 200, 103311 (2022).

    Article 

    Google Scholar
     

  • Hippke, M. Interstellar communication community. I. Overview and assumptions. Astron. J 159, 85 (2020).

    Article 

    Google Scholar
     

  • Blanche, P.-A. Holography, and the way forward for 3D show. Mild Adv. Manuf. 2, 446–459 (2021).


    Google Scholar
     

  • Rosales-Guzmán, C. & Forbes, A. Learn how to Form Mild with Spatial Mild Modulators (SPIE PRESS, 2017); https://doi.org/10.1117/3.2281295

  • Underwood, I. in Handbook of Visible Show Expertise (eds Chen, J., Cranton, W. & Fihn, M.) 2817–2831 (Springer, 2016); https://doi.org/10.1007/978-3-319-14346-0_126.

  • Yang, Y., Forbes, A. & Cao, L. A evaluate of liquid crystal spatial gentle modulators: gadgets and purposes. Opto-Electron. Sci. 2, 230026 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Judy, J. W. Microelectromechanical programs (MEMS): fabrication, design and purposes. Good Mater. Struct. 10, 1115–1134 (2001).

    Article 

    Google Scholar
     

  • Moser, S., Ritsch-Marte, M. & Thalhammer, G. Mannequin-based compensation of pixel crosstalk in liquid crystal spatial gentle modulators. Choose. Specific 27, 25046–25063 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Francés, J. et al. Polarimetric evaluation of cross-talk phenomena induced by the pixelation in PA-LCoS gadgets. Choose. Laser Technol. 152, 108125 (2022).

    Article 

    Google Scholar
     

  • Yu, N. et al. Mild propagation with part discontinuities: generalized legal guidelines of reflection and refraction. Science 334, 333–337 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Solar, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and floor waves. Nat. Mater. 11, 426–431 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dorrah, A. H. & Capasso, F. Tunable structured gentle with flat optics. Science 376, eabi6860 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiao, Y. et al. Improved spatiotemporal decision of anti-scattering super-resolution label-free microscopy by way of artificial wave 3D metalens imaging. Opto-Electron. Sci. 2, 230037 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ren, H. et al. Complicated-amplitude metasurface-based orbital angular momentum holography in momentum house. Nat. Nanotechnol. 15, 948–955 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, X. et al. 3D Nanolithography by way of holographic multi-focus metalens. Laser Photonics Rev. 18, 2400181 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Miniature two-photon microscopic imaging utilizing dielectric metalens. Nano Lett. 23, 8256–8263 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jang, M. et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photonics 12, 84–90 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tzang, O. et al. Wavefront shaping in complicated media with a 350 kHz modulator by way of a 1D-to-2D rework. Nat. Photonics 13, 788–793 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gao, H. et al. Dynamic 3D meta-holography in seen vary with giant body quantity and excessive body charge. Sci. Adv. 6, eaba8595 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu, Ok. et al. Simultaneous dynamic show of meta-hologram and meta-nanoprinting with excessive body charge. Laser Photonics Rev. 19, 2400815 (2025).

    Article 

    Google Scholar
     

  • Juliano Martins, R. et al. Metasurface-enhanced gentle detection and ranging know-how. Nat. Commun. 13, 5724 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface utilizing low-loss optical phase-change materials. Nat. Nanotechnol. 16, 661–666 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 16, 667–672 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fang, Z. et al. Extremely-low-energy programmable non-volatile silicon photonics primarily based on phase-change supplies with graphene heaters. Nat. Nanotechnol. 17, 842–848 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ergoktas, M. S. et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from seen to microwave wavelengths. Nat. Photonics 15, 493–498 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, X. et al. Athermally photoreduced graphene oxides for three-dimensional holographic pictures. Nat. Commun. 6, 6984 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Reconfigurable metasurface for picture processing. Nano Lett. 21, 8715–8722 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Malek, S. C., Ee, H.-S. & Agarwal, R. Pressure multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641–3645 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Karst, J. et al. Electrically switchable metallic polymer nanoantennas. Science 374, 612–616 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Doshi, S. et al. Electrochemically mutable delicate metasurfaces. Nat. Mater. 24, 205–211 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, S.-Q. et al. Part-only transmissive spatial gentle modulator primarily based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Izdebskaya, Y. V., Yang, Z., Shvedov, V. G., Neshev, D. N. & Shadrivov, I. V. Multifunctional metasurface tuning by liquid crystals in three dimensions. Nano Lett. 23, 9825–9831 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mansha, S. et al. Excessive decision multispectral spatial gentle modulators primarily based on tunable Fabry–Perot nanocavities. Mild Sci. Appl. 11, 141 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang, Y.-W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shirmanesh, G. Ok., Sokhoyan, R., Wu, P. C. & Atwater, H. A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Park, J. et al. All-solid-state spatial gentle modulator with impartial part and amplitude management for three-dimensional LiDAR purposes. Nat. Nanotechnol. 16, 69–76 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jung, C., Lee, E. & Rho, J. The rise of electrically tunable metasurfaces. Sci. Adv. 10, eado8964 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kuznetsov, A. I. Flat optics and nanoantenna spatial gentle modulators for imaging, LiDAR, and 3D holographic show purposes. In OPTO 2024 Excessive Distinction Metastructures XIII, PC128970E (SPIE, 2024); https://doi.org/10.1117/12.2692860

  • Buckley, E., Kaczorowski, A. & Demolder, A. Holographic shows for augmented actuality. In OPTO 2025 Sensible Holography XXXIX: Shows, Supplies, and Functions, 13390021 (SPIE, 2025); https://doi.org/10.1117/12.3045017

  • Goorden, S. A., Bertolotti, J. & Mosk, A. P. Superpixel-based spatial amplitude and part modulation utilizing a digital micromirror machine. Choose. Specific 22, 17999 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Overvig, A. C. et al. Dielectric metasurfaces for full and impartial management of the optical amplitude and part. Mild Sci. Appl. 8, 92 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sui, X., He, Z., Chu, D. & Cao, L. Non-convex optimization for inverse drawback fixing in computer-generated holography. Mild Sci. Appl. 13, 158 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhu, R., Chen, L., Xiao, J. & Zhang, H. Three-dimensional pc holography with part house tailoring. PhotoniX 5, 34 (2024).

    Article 

    Google Scholar
     

  • Hahn, J., Kim, H., Lim, Y., Park, G. & Lee, B. Vast viewing angle dynamic holographic stereogram with a curved array of spatial gentle modulators. Choose. Specific 16, 12372 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Perception laser 8k. Digital Projection https://www.digitalprojection.com/en/projectors/insight-laser-8k-gen-ii (2024).

  • Panasonic PT-RQ13K. Panasonic https://eu.join.panasonic.com/gb/en/projectors/pt-rq13k (2022).

  • Luan, H.-Y., Ouyang, Y.-H., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Reconfigurable moiré nanolaser arrays with part synchronization. Nature 624, 282–288 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Azzam, S. I. et al. Ten years of spasers and plasmonic nanolasers. Mild Sci. Appl. 9, 90 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gong, J. et al. OLED illuminated metasurfaces for holographic picture projection. Mild Sci. Appl. 14, 294 (2025).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pan, C.-F. et al. 3D-printed multilayer buildings for top–numerical aperture achromatic metalenses. Sci. Adv. 9, eadj9262 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, X. et al. Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning. Opto-Electron. Adv. 7, 240085 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Z., Albrow-Owen, T., Cai, W. & Hasan, T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou, Z. et al. Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging. Mild Sci. Appl. 13, 242 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shi, Z. et al. Tremendous-resolution orbital angular momentum holography. Nat. Commun. 14, 1869 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles