Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Reminiscence units and functions for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).
Jung, S. et al. A crossbar array of magnetoresistive reminiscence units for in-memory computing. Nature 601, 211–216 (2022).
Wan, W. et al. A compute-in-memory chip based mostly on resistive random-access reminiscence. Nature 608, 504–512 (2022).
Li, C. et al. Lengthy short-term reminiscence networks in memristor crossbar arrays. Nat. Mach. Intell. 1, 49–57 (2019).
Pagiamtzis, Okay. & Sheikholeslami, A. Content material-addressable reminiscence (CAM) circuits and architectures: a tutorial and survey. IEEE J. Strong-State Circuits 41, 712–727 (2006).
McAuley, A. J. & Francis, P. Quick routing desk lookup utilizing CAMs. In Proc. IEEE INFOCOM ’93 The Convention on Pc Communications 1382–1391 (IEEE, 1993).
Chao, H. J. Subsequent technology routers. Proc. IEEE 90, 1518–1558 (2002).
Allam, A. & Mahmoud, O. in Pc Reminiscence and Information Storage (ed Azam, S.) Ch. 5 (IntechOpen, 2023).
Graves, C. E. et al. In-memory computing with memristor content material addressable reminiscences for sample matching. Adv. Mater. 32, 2003437 (2020).
Liu, X. et al. Analog content-addressable reminiscence from complementary FeFETs. Gadget 2, 100218 (2024).
Yin, X. et al. Deep random forest with ferroelectric analog content material addressable reminiscence. Sci. Adv. 10, eadk8471 (2024).
Yin, X. et al. FeCAM: a common compact digital and analog content material addressable reminiscence utilizing ferroelectric. IEEE Trans. Electron Gadgets 67, 2785–2792 (2020).
Ni, Okay. et al. Ferroelectric ternary content-addressable reminiscence for one-shot studying. Nat. Electron. 2, 521–529 (2019).
Li, C. et al. Analog content-addressable reminiscences with memristors. Nat. Commun. 11, 1638 (2020).
Pedretti, G. et al. Tree-based machine studying carried out in-memory with memristive analog CAM. Nat. Commun. 12, 5806 (2021).
Mao, R. et al. Experimentally validated memristive reminiscence augmented neural community with environment friendly hashing and similarity search. Nat. Commun. 13, 6284 (2022).
Luo, J. et al. A novel ambipolar ferroelectric tunnel FinFET-based content-addressable reminiscence with ultra-low {hardware} value and excessive power effectivity for machine studying. In Proc. 2022 IEEE Symposium on VLSI Expertise and Circuits 226–227 (IEEE, 2022).
Qiu, H. et al. Two-dimensional supplies for future data expertise: standing and prospects. Sci. China Inf. Sci. 67, 160400 (2024).
Lin, Y.-C. et al. Current advances in 2D materials principle, synthesis, properties, and functions. ACS Nano 17, 9694–9747 (2023).
Liu, L. et al. Ultrafast non-volatile flash reminiscence based mostly on van der Waals heterostructures. Nat. Nanotechnol. 16, 874–881 (2021).
Yu, J. et al. Concurrently ultrafast and strong two-dimensional flash reminiscence units based mostly on phase-engineered edge contacts. Nat. Commun. 14, 5662 (2023).
Wu, L. et al. Atomically sharp interface enabled ultrahigh-speed non-volatile reminiscence units. Nat. Nanotechnol. 16, 882–887 (2021).
Jiang, Y. et al. A scalable integration course of for ultrafast two-dimensional flash reminiscence. Nat. Electron. 7, 868–875 (2024).
Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. Excessive efficiency multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).
Liu, X., Choi, M. S., Hwang, E., Yoo, W. J. & Solar, J. Fermi stage pinning dependent 2D semiconductor units: challenges and prospects. Adv. Mater. 34, 2108425 (2022).
Li, W. et al. Approaching the quantum restrict in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).
Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).
Gao, G. et al. Enabling extremely environment friendly, low-latency analog CAM operations with optimized MoS2 flash reminiscence units. In Proc. 2025 ninth IEEE Electron Gadgets Expertise & Manufacturing Convention (EDTM) 1–3 (IEEE, 2025).
Li, T. et al. Epitaxial progress of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).
Liu, Y. et al. Guarantees and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
Kaasbjerg, Okay., Thygesen, Okay. S. & Jacobsen, Okay. W. Phonon-limited mobility in n-type single-layer MoS2 from first ideas. Phys. Rev. B 85, 115317 (2012).
Lu, Y.-C., Huang, J.-Okay., Chao, Okay.-Y., Li, L.-J. & Hu, V. P.-H. Projected efficiency of Si- and 2D-material-based SRAM circuits starting from 16 nm to 1 nm expertise nodes. Nat. Nanotechnol. 19, 1066–1072 (2024).
Agarwal, S. et al. Utilizing floating-gate reminiscence to coach ultimate accuracy neural networks. IEEE J. Explor. Strong-State Comput. Gadgets Circuits 5, 52–57 (2019).
Yabuuchi, M., Morimoto, M., Tsukamoto, Y. & Tanaka, S. A 7 nm FinFET 4.04-Mb mm−2 TCAM with improved electromigration reliability utilizing far-side driving scheme and self-adjust reference match-line amplifier. In Proc. 2020 IEEE Symposium on VLSI Circuits 1–2 (IEEE, 2020).
Chang, M.-F. et al. 17.3 A 28 nm 256 kb 6T-SRAM with 280 mV enchancment in Vmin utilizing a dual-split-control help scheme. In Proc. 2015 IEEE Worldwide Strong-State Circuits Convention (ISSCC) Digest of Technical Papers 1–3 (IEEE, 2015).
Chang, M. F. et al. A ReRAM-based 4T2R nonvolatile TCAM utilizing RC-filtered stress-decoupled scheme for frequent-OFF instant-ON search engines like google utilized in IoT and big-data processing. IEEE J. Strong-State Circuits 51, 2786–2798 (2016).
Lin, C.-C. et al. 7.4 A 256 b-wordlength ReRAM-based TCAM with 1 ns search time and 14× enchancment in wordlength–energy-efficiency–density product utilizing 2.5T1R cell. In Proc. 2016 IEEE Worldwide Strong-State Circuits Convention (ISSCC) 136–137 (IEEE, 2016).
Yang, R. et al. Ternary content-addressable reminiscence with MoS2 transistors for massively parallel information search. Nat. Electron. 2, 108–114 (2019).
Lemke, C., Budka, M. & Gabrys, B. Metalearning: a survey of tendencies and applied sciences. Artif. Intell. Rev. 44, 117–130 (2015).
Vilalta, R. & Drissi, Y. A perspective view and survey of meta-learning. Artif. Intell. Rev. 18, 77–95 (2002).
Somvanshi, D. et al. Nature of service injection in metallic/2D-semiconductor interface and its implications for the bounds of contact resistance. Phys. Rev. B 96, 205423 (2017).
Smithe, Okay. Okay. H., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and efficiency projections of artificial monolayer MoS2 units. 2D Mater. 4, 011009 (2017).
Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).
Cui, X. et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 17, 4781–4786 (2017).
Smithe, Okay. Okay. H., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in artificial monolayer MoS2 units. ACS Nano 11, 8456–8463 (2017).
Guimarães, M. H. D. et al. Atomically skinny ohmic edge contacts between two-dimensional supplies. ACS Nano 10, 6392–6399 (2016).
Cheng, Z. et al. Immunity to contact scaling in MoS2 transistors utilizing in situ edge contacts. Nano Lett. 19, 5077–5085 (2019).
McClellan, C. J., Yalon, E., Smithe, Okay. Okay. H., Suryavanshi, S. V. & Pop, E. Excessive present density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).
Zhu, Y. et al. Monolayer molybdenum disulfide transistors with single-atom-thick gates. Nano Lett. 18, 3807–3813 (2018).
Migliato Marega, G. et al. A big-scale built-in vector–matrix multiplication processor based mostly on monolayer molybdenum disulfide reminiscences. Nat. Electron. 6, 991–998 (2023).
Vu, Q. A. et al. A high-on/off-ratio floating-gate memristor array on a versatile substrate by way of CVD-grown large-area 2D layer stacking. Adv. Mater. 29, 1703363 (2017).
Vu, Q. A. et al. Two-terminal floating-gate reminiscence with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016).
Zhang, E. et al. Tunable charge-trap reminiscence based mostly on few-layer MoS2. ACS Nano 9, 612–619 (2015).
Migliato Marega, G. et al. Logic-in-memory based mostly on an atomically skinny semiconductor. Nature 587, 72–77 (2020).
Dodda, A., Trainor, N., Redwing, J. M. & Das, S. All-in-one, bio-inspired, and low-power crypto engines for near-sensor safety based mostly on two-dimensional memtransistors. Nat. Commun. 13, 3587 (2022).
