Choi, J. W. et al. Promise and actuality of post-lithium-ion batteries with excessive power densities. Nat. Rev. Mater. 1, 16013 (2016).
Vaalma, C. et al. A value and useful resource evaluation of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).
Lee, B. et al. Sodium steel anodes: rising options to dendrite development. Chem. Rev. 119, 5416–5460 (2019).
Lu, X. et al. Superior intermediate-temperature Na–S battery. Power Environ. Sci. 6, 299–306 (2013).
Li, G. et al. Superior intermediate temperature sodium-nickel chloride batteries with ultra-high power density. Nat. Commun. 7, 10683 (2016).
Jin, T. et al. Realizing full solid-solution response in excessive sodium content material P2-type cathode for high-performance sodium-ion batteries. Angew. Chem. 132, 14619–14624 (2020).
Usiskin, R. et al. Fundamentals, standing and promise of sodium-based batteries. Nat. Rev. Mater. 6, 1020–1035 (2021).
Zhao, C. et al. Rational design of layered oxide supplies for sodium-ion batteries. Science 370, 708–711 (2020).
Lu, Z. et al. Constructing a past concentrated electrolyte for high-voltage anode-free rechargeable sodium batteries. Angew. Chem. 134, e202200410 (2022).
Li, Y. et al. Interfacial engineering to attain an power density of over 200 Wh kg–1 in sodium batteries. Nat. Power 7, 511–519 (2022).
Ni, Q. et al. Anode-free rechargeable sodium-metal batteries. Batteries 8, 272 (2022).
Yang, T. et al. Anode-free sodium steel batteries as rising stars for lithium-ion options. iScience 26, 105982 (2023).
Suo, L. et al. “Water-in-salt” electrolyte makes aqueous sodium-ion battery secure, inexperienced, and long-lasting. Adv. Power Mater. 7, 1701189 (2017).
Xu, G. L. et al. Challenges in growing electrodes, electrolytes, and diagnostics instruments to know and advance sodium-ion batteries. Adv. Power Mater. 8, 1702403 (2018).
Che, H. et al. Electrolyte design methods and analysis progress for room-temperature sodium-ion batteries. Power Environ. Sci. 10, 1075–1101 (2017).
Zheng, X. et al. Crucial results of electrolyte recipes for Li and Na steel batteries. Chem 7, 2312–2346 (2021).
Xu, J. et al. Electrolyte design for Li-ion batteries beneath excessive working circumstances. Nature 614, 694–700 (2023).
Xiang, Y. et al. Visualizing the expansion technique of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy. Nat. Nanotechnol. 15, 883–890 (2020).
Han, B. et al. Probing the Na steel stable electrolyte interphase by way of cryo-transmission electron microscopy. Nat. Commun. 12, 3066 (2021).
Seh, Z. W. et al. A extremely reversible room-temperature sodium steel anode. ACS Cent. Sci. 1, 449–455 (2015).
Cao, R. et al. Enabling room temperature sodium steel batteries. Nano Power 30, 825–830 (2016).
Zhuang, R. et al. Fluorinated porous frameworks allow strong anode-less sodium steel batteries. Sci. Adv. 9, eadh8060 (2023).
Wang, C. et al. Sturdy anode-free sodium steel batteries enabled by synthetic sodium formate interface. Adv. Power Mater. 13, 2204125 (2023).
Choudhury, S. et al. Designing stable–liquid interphases for sodium batteries. Nat. Commun. 8, 898 (2017).
Zheng, X. et al. Bridging the immiscibility of an all-fluoride fireplace extinguishant with highly-fluorinated electrolytes towards secure sodium steel batteries. Power Environ. Sci. 13, 1788–1798 (2020).
Zheng, X. et al. Pulling down the kinetic obstacles in direction of fast-charging and low-temperature sodium steel batteries. Power Environ. Sci. 14, 4936–4947 (2021).
Xu, Okay. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).
Shkrob, I. A. et al. Why bis(fluorosulfonyl)imide is a “magic anion” for electrochemistry. J. Phys. Chem. C 118, 19661–19671 (2014).
Zheng, J. et al. Extraordinarily secure sodium steel batteries enabled by localized high-concentration electrolytes. ACS Power Lett. 3, 315–321 (2018).
Chen, J. et al. Excessive power density Na-metal batteries enabled by a tailor-made carbonate-based electrolyte. Power Environ. Sci. 15, 3360–3368 (2022).
Ignat’ev, N. V. et al. Comparative fluorination of N,N-dialkylamidosulfonyl halides. J. Fluor. Chem. 74, 181–184 (1995).
Fu, S.-T. et al. N,N-Dialkyl perfluoroalkanesulfonamides: synthesis, characterization and properties. J. Fluor. Chem. 147, 56–64 (2013).
Xue, W. et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Power Environ. Sci. 13, 212–220 (2020).
Xue, W. et al. Extremely-high-voltage Ni-rich layered cathodes in sensible Li steel batteries enabled by a sulfonamide-based electrolyte. Nat. Power 6, 495–505 (2021).
Cao, X. et al. Monolithic stable–electrolyte interphases fashioned in fluorinated orthoformate-based electrolytes decrease Li depletion and pulverization. Nat. Power 4, 796–805 (2019).
Suo, L. et al. “Water-in-salt” electrolyte allows high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).
Suo, L. et al. A brand new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).
Murphy, S. et al. Acyclic and cyclic alkyl and ether-functionalised sulfonium ionic liquids based mostly on the [TFSI]− and [FSI]− anions as potential electrolytes for electrochemical functions. ChemPhysChem 19, 3226–3236 (2018).
Shin, W. et al. A facile potential maintain technique for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries. Angew. Chem. 61, e202115909 (2022).
Shi, Q. et al. Excessive-performance sodium steel anodes enabled by a bifunctional potassium salt. Angew. Chem. 57, 9069–9072 (2018).
Gao, L. et al. The chemical evolution of stable electrolyte interface in sodium steel batteries. Sci. Adv. 8, eabm4606 (2022).
Holoubek, J. et al. Tailoring electrolyte solvation for Li steel batteries cycled at ultra-low temperature. Nat. Power 6, 303–313 (2021).
Yao, Y. X. et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. 60, 4090–4097 (2021).
Zheng, X. et al. Towards a secure sodium steel anode in carbonate electrolyte: a compact, inorganic alloy interface. J. Phys. Chem. Lett. 10, 707–714 (2019).
Tune, J. et al. Controlling floor section transition and chemical reactivity of O3-layered steel oxide cathodes for high-performance Na-ion batteries. ACS Power Lett. 5, 1718–1725 (2020).
Xue, W. et al. Stabilizing electrode–electrolyte interfaces to comprehend high-voltage Li||LiCoO2 batteries by a sulfonamide-based electrolyte. Power Environ. Sci. 14, 6030–6040 (2021).
Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Power 7, 718–725 (2022).
Pu, X. et al. Constructing the strong fluorinated electrode–electrolyte interface in rechargeable batteries: from fundamentals to functions. Electrochem. Power Rev. 7, 21 (2024).
Liu, H. et al. Ultrahigh Coulombic effectivity electrolyte allows Li||SPAN batteries with superior biking efficiency. Mater. As we speak 42, 17–28 (2021).
Xu, X. et al. A room-temperature sodium-sulfur battery with excessive capability and secure biking efficiency. Nat. Commun. 9, 3870 (2018).
Wu, J. et al. Non-flammable electrolyte for dendrite-free sodium-sulfur battery. Power Storage Mater. 23, 8–16 (2019).
Zhang, C.-P. et al. Dedication of pKa values of fluoroalkanesulfonamides and investigation of their nucleophilicity. J. Fluor. Chem. 131, 761–766 (2010).
Willcott, M. R. MestRe Nova. JACS 131, 13180 (2009).
Sheldrick, G. M. A brief historical past of SHELX. Acta Crystallogr. A 64, 112–122 (2008).
Sheldrick, G. M. Crystal construction refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

