Breger, J. C. et al. Self-folding thermo-magnetically responsive comfortable microgrippers. ACS Appl. Mater. Interfaces 7, 3398–3405 (2015).
Gelebart, A. H. et al. Making waves in a photoactive polymer movie. Nature 546, 632–636 (2017).
Jeon, S. & Hayward, R. C. Reconfigurable microscale frameworks from concatenated helices with managed chirality. Adv. Mater. 29, 1606111 (2017).
Li, C. et al. Quick and programmable locomotion of hydrogel–steel hybrids underneath mild and magnetic fields. Sci. Robotic. 5, eabb9822 (2020).
Lendlein, A., Jiang, H., Jünger, O. & Langer, R. Gentle-induced shape-memory polymers. Nature 434, 879–882 (2005).
Hu, Y. et al. Reversible modulation of DNA-based hydrogel shapes by inner stress interactions. J. Am. Chem. Soc. 138, 16112–16119 (2016).
Kahn, J. S., Hu, Y. & Willner, I. Stimuli-responsive DNA-based hydrogels: from primary ideas to purposes. Acc. Chem. Res. 50, 680–690 (2017).
Aßhoff, S. J. et al. Excessive-power actuation from molecular photoswitches in enantiomerically paired comfortable springs. Angew. Chem. Int. Ed. 56, 3261–3265 (2017).
Liu, Y., Shaw, B., Dickey, M. D. & Genzer, J. Sequential self-folding of polymer sheets. Sci. Adv. 3, e1602417 (2017).
Zhang, T., Yashin, V. V. & Balazs, A. C. Fibers on the floor of thermo-responsive gels induce 3D form adjustments. Smooth Matter 14, 1822–1832 (2018).
Biswas, S., Yashin, V. V. & Balazs, A. C. “Patterning with loops” to dynamically reconfigure polymer gels. Smooth Matter 14, 3361–3371 (2018).
Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).
Demirer, E., Oshinowo, O. A. & Alexeev, A. Environment friendly aquatic locomotion utilizing elastic propulsors with hybrid actuation. J. Fluid Mech. 922, A21 (2021).
Cangialosi, A. et al. DNA sequence–directed form change of photopatterned hydrogels through high-degree swelling. Science 357, 1126–1130 (2017).
Yang, X. et al. Bioinspired comfortable robots primarily based on natural polymer-crystal hybrid supplies with response to temperature and humidity. Nat. Commun. 14, 2287 (2023).
Lee, J. B., Hong, J., Bonner, D. Ok., Poon, Z. & Hammond, P. T. Self-assembled RNA interference microsponges for environment friendly siRNA supply. Nat. Mater. 11, 316–322 (2012).
Zhu, G. et al. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical purposes. J. Am. Chem. Soc. 135, 16438–16445 (2013).
Solar, W. et al. Cocoon-like self-degradable DNA nanoclew for anticancer drug supply. J. Am. Chem. Soc. 136, 14722–14725 (2014).
Kim, E. et al. One-pot synthesis of a number of protein-encapsulated DNA flowers and their software in intracellular protein supply. Adv. Mater. 29, 1701086 (2017).
Lv, Y. et al. Preparation and biomedical purposes of programmable and multifunctional DNA nanoflowers. Nat. Protoc. 10, 1508–1524 (2015).
Mori, Y., Nagamine, Ok., Tomita, N. & Notomi, T. Detection of loop-mediated isothermal amplification response by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun. 289, 150–154 (2001).
Kaushik, M. et al. A bouquet of DNA buildings: rising variety. Biochem. Biophys. Rep. 5, 388–395 (2016).
Fowler, J. D. & Suo, Z. Biochemical, structural, and physiological characterization of terminal deoxynucleotidyl transferase. Chem. Rev. 106, 2092–2110 (2006).
Gehring, Ok., Leroy, J.-L. & Gueron, M. A tetrameric DNA construction with protonated cytosine-cytosine base pairs. Nature 363, 561–565 (1993).
Chang, L. M. & Bollum, F. J. A number of roles of divalent cation within the terminal deoxynucleotidyltransferase response. J. Biol. Chem. 265, 17436–17440 (1990).
Motea, E. A. & Berdis, A. J. Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Biochim. Biophys. Acta Proteins Proteom. 1804, 1151–1166 (2010).
Kim, E. et al. Bioinspired fabrication of DNA–inorganic hybrid composites utilizing artificial DNA. ACS Nano 13, 2888–2900 (2019).
Vorlíčková, M., Kejnovská, I., Bednářová, Ok., Renčiuk, D. & Kypr, J. Round dichroism spectroscopy of DNA: from duplexes to quadruplexes. Chirality 24, 691–698 (2012).
Wang, C., Huang, Z., Lin, Y., Ren, J. & Qu, X. Synthetic DNA nano-spring powered by protons. Adv. Mater. 22, 2792–2798 (2010).
Yang, B. et al. Prediction of DNA i-motifs through machine studying. Nucleic Acids Res. 52, 2188–2197 (2024).
Martella, M. et al. i-Motif formation and spontaneous deletions in human cells. Nucleic Acids Res. 50, 3445–3455 (2022).
Shi, L., Peng, P., Du, Y. & Li, T. Programmable i-motif DNA folding topology for a pH-switched reversible molecular sensing gadget. Nucleic Acids Res. 45, 4306–4314 (2017).
King, J. J. et al. DNA G-quadruplex and i-motif construction formation is interdependent in human cells. J. Am. Chem. Soc. 142, 20600–20604 (2020).
Timošenko, S. P. & Woinowsky-Krieger, S. Principle of Plates and Shells (McGraw-Hill, 1996).
Hu, Z., Zhang, X. & Li, Y. Synthesis and software of modulated polymer gels. Science 269, 525–527 (1995).
Cendula, P., Kiravittaya, S., Mei, Y. F., Deneke, C. H. & Schmidt, O. G. Bending and wrinkling as competing leisure pathways for strained free-hanging movies. Phys. Rev. B 79, 085429 (2009).
Sharon, E. & Efrati, E. The mechanics of non-Euclidean plates. Smooth Matter 6, 5693 (2010).
Egunov, A. I., Korvink, J. G. & Luchnikov, V. A. Polydimethylsiloxane bilayer movies with an embedded spontaneous curvature. Smooth Matter 12, 45–52 (2016).
Abdullah, A. M., Li, X., Braun, P. V., Rogers, J. A. & Hsia, Ok. J. Self-folded gripper-like architectures from stimuli-responsive bilayers. Adv. Mater. 30, 1801669 (2018).
Shinde, S. Ok. et al. A novel synthesized 1D nanobelt-like cobalt phosphate electrode materials for glorious supercapacitor purposes. Supplies 15, 8235 (2022).
Tang, L., Navarro, L. A., Chilkoti, A. & Zauscher, S. Excessive-molecular-weight polynucleotides by transferase-catalyzed residing chain-growth polycondensation. Angew. Chem. Int Ed. 56, 6778–6782 (2017).
Vogel, V. & Sheetz, M. Native power and geometry sensing regulate cell features. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).
Bar-Peled, L. & Kory, N. Rules and features of metabolic compartmentalization. Nat. Metab. 4, 1232–1244 (2022).
Tan, H. et al. Heterogeneous multi-compartmental hydrogel particles as artificial cells for incompatible tandem reactions. Nat. Commun. 8, 663 (2017).
Keren, Ok. et al. Mechanism of form willpower in motile cells. Nature 453, 475–480 (2008).
Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).
Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G. & Heckel, A. Gentle-controlled instruments. Angew. Chem. Int Ed. 51, 8446–8476 (2012).
Freeman, R. Reversible metamorphosis of hierarchical DNA-inorganic crystals. Zenodo https://doi.org/10.5281/zenodo.16730053 (2025).