Solar, P. Z. et al. Limits on fuel impermeability of graphene. Nature 579, 229–232 (2020).
Kim, H. W. et al. Selective fuel transport by means of few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).
Chen, M. et al. Complete characterization of fuel diffusion by means of graphene oxide membranes. J. Membr. Sci. 676, 121583 (2023).
Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013).
Polotskaya, G. A., Andreeva, D. V. & El’yashevich, G. Ok. Investigation of fuel diffusion by means of movies of fullerene-containing poly(phenylene oxide). Tech. Phys. Lett. 25, 555–557 (1999).
Ding, L. et al. MXene molecular sieving membranes for extremely environment friendly fuel separation. Nat. Commun. 9, 155 (2018).
Chen, M. et al. Management of fuel selectivity and permeability by means of COF-GO composite membranes for sustainable decarbonization and hydrogen manufacturing. Carbon 219, 118855 (2024).
Peng, Y. et al. Steel–natural framework nanosheets as constructing blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).
Wang, X. et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metallic–natural nanosheets for fuel separation. Nat. Commun. 8, 14460 (2017).
Rooney, A. P. et al. Anomalous twin boundaries in two dimensional supplies. Nat. Commun. 9, 3597 (2018).
Cranford, S. W. & Buehler, M. J. Packing effectivity and accessible floor space of crumpled graphene. Phys. Rev. B 84, 205451 (2011).
Haddad, Ok. et al. Crumpled graphene oxide for enhanced room temperature fuel sensing: understanding the important roles of floor morphology and functionalization. J. Mater. Chem. A 11, 447–459 (2023).
Luo, J. et al. Compression and aggregation-resistant particles of crumpled tender sheets. ACS Nano 5, 8943–8949 (2011).
Landau, L. D. & Lifshitz, E. M. Principle of Elasticity (Pergamon, 1970).
Meshhal, M. & Kühn, O. Diffusion of water confined between graphene oxide layers: implications for membrane filtration. ACS Appl. Nano Mater. 5, 11119–11128 (2022).
Mouhat, F., Coudert, F.-X. & Bocquet, M.-L. Construction and chemistry of graphene oxide in liquid water from first rules. Nat. Commun. 11, 1566 (2020).
Chen, M. et al. Giant-scale self-assembly of anisotropic graphene oxide movies by way of blade coating: sustainable design and stimuli-responsive efficiency for biomimicry. Mater. Des. 233, 112205 (2023).
Ma, X., Zachariah, M. R. & Zangmeister, C. D. Crumpled nanopaper from graphene oxide. Nano Lett. 12, 486–489 (2012).
Wang, W.-N., Jiang, Y. & Biswas, P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement power relationship. J. Phys. Chem. Lett. 3, 3228–3233 (2012).
Music, S. et al. Facile synthesis of crumpled graphene oxide and its excellent electrochemical efficiency as an anode in lithium ion batteries. J. Electron. Mater. 52, 877–886 (2023).
Kang, Y. et al. The position of nanowrinkles in mass transport throughout graphene‐primarily based membranes. Adv. Funct. Mater. 30, 2003159 (2020).
Zhang, P. et al. Stress pushed micron- and nano-scale wrinkles as a brand new class of transport pathways of two-dimensional laminar membranes in the direction of molecular separation. J. Membr. Sci. 648, 120354 (2022).
Gabardo, C. M., Yang, J., Smith, N. J., Adams-McGavin, R. C. & Soleymani, L. Programmable wrinkling of self-assembled nanoparticle movies on form reminiscence polymers. ACS Nano 10, 8829–8836 (2016).
Robeson, L. M. The higher certain revisited. J. Membr. Sci. 320, 390–400 (2008).
Wang, R. et al. Pyro-layered heterostructured nanosheet membrane for hydrogen separation. Nat. Commun. 14, 2161 (2023).
Wang, S. et al. A extremely permeable graphene oxide membrane with quick and selective transport nanochannels for environment friendly carbon seize. Power Environ. Sci. 9, 3107–3112 (2016).
Li, P. et al. Steady crystalline graphene papers with gigapascal energy by intercalation modulated plasticization. Nat. Commun. 11, 2645 (2020).
Zang, J. et al. Multifunctionality and management of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013).
Katsnelson, M. I. The Physics of Graphene 2nd edn (Cambridge Univ. Press, 2020).
Davidovitch, B. & Guinea, F. Indentation of stable membranes on inflexible substrates with van der Waals attraction. Phys. Rev. E 103, 043002 (2021).
Cerda, E. & Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003).
Hure, J., Roman, B. & Bico, J. Stamping and wrinkling of elastic plates. Phys. Rev. Lett. 109, 054302 (2012).
Mezard, M., Parisi, G. & Virasoro, M. A. World Scientific Lecture Notes in Physics Vol. 9 (World Scientific, 1987).
Principi, A. & Katsnelson, M. I. Stripe glasses in ferromagnetic skinny movies. Phys. Rev. B 93, 054410 (2016).
Mauri, A. & Katsnelson, M. I. Pissed off magnets within the restrict of infinite dimensions: dynamics and disorder-free glass transition. Phys. Rev. B 109, 144414 (2024).
Kamber, U. et al. Self-induced spin glass state in elemental and crystalline neodymium. Science 368, eaay6757 (2020).
Plummer, A., Hanakata, P. Z. & Nelson, D. R. Curvature as an exterior area in mechanical antiferromagnets. Phys. Rev. Mater. 6, 115203 (2022).
Savini, G. et al. Bending modes, elastic constants and mechanical stability of graphitic methods. Carbon 49, 62–69 (2011).
Abraham, J. et al. Tunable sieving of ions utilizing graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).
Joshi, R. Ok. et al. Exact and ultrafast molecular sieving by means of graphene oxide membranes. Science 343, 752–754 (2014).