Piper RC, Katzmann DJ. Biogenesis and Perform of Multivesicular Our bodies. Annu Rev Cell Dev Biol [Internet]. 2007;23:519–47. Accessible from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and different extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89. https://doi.org/10.1146/annurev-cellbio-101512-122326.
Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Tendencies Cell Biol. 2015;25:364–72. https://doi.org/10.1016/j.tcb.2015.01.004.
Van Niel G, D’Angelo G, Raposo G. Shedding mild on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol [Internet]. 2018;19:213–28. Accessible from: https://doi.org/10.1038/nrm.2017.125
Kalluri R, LeBleu VS. The biology, perform, and biomedical purposes of exosomes. Sci (80-). 2020;367:640.
Teng F, Fussenegger M. Shedding mild on extracellular vesicle biogenesis and bioengineering. Adv Sci. 2021;8: 2003505.
Wolf P. The character and significance of platelet merchandise in human plasma. Br J Haematol. 1967;13:269. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x.
Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97:329–39.
Pan B-T, Johnstone RM. Destiny of the transferrin receptor throughout maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;3:329–39.
Raposo G, Nijman HW, Stoorvogel W, Leijendekker R, Harding CV, Melief CJM, et al. B lymphocytes secrete Antigen-presenting vesicles. J Exp Med. 1996;183:1161–72.
Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors utilizing a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4:594–600.
Bang C, Thum T. Exosomes. New gamers in cell-cell communication. Int J Biochem Cell Biol. 2012;44:2060–4. https://doi.org/10.1016/j.biocel.2012.08.007.
Tkach M, Théry C. Communication by extracellular vesicles: the place we’re and the place we have to go. Cell. 2016;164:1226–32.
Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Organic properties of extracellular vesicles and their physiological features. J Extracell Vesicles. 2015;4:27066.
Samanta S, Rajasingh S, Drosos N, Zhou Z, Daybreak B, Rajasingh J. Exosomes: new molecular targets of ailments. Acta Pharmacol Sin. 2018;39:501–13.
Van Der Meel R, Fens MHAM, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug supply techniques: Classes from the liposome subject. J Management Launch [Internet]. 2014;195:72–85. Accessible from: https://doi.org/10.1016/j.jconrel.2014.07.049
Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Making use of extracellular vesicles based mostly therapeutics in medical trials – An ISEV place paper. J Extracell Vesicles. 2015;4:30087.
Kooijmans SAA, Schiffelers RM, Zarovni N, Vago R. Modulation of tissue tropism and organic exercise of exosomes and different extracellular vesicles: new nanotools for most cancers therapy. Pharmacol Res. 2016;111:487–500. https://doi.org/10.1016/j.phrs.2016.07.006.
Stremersch S, De Smedt SC, Raemdonck Okay. Therapeutic and diagnostic purposes of extracellular vesicles. J Management Launch. 2016;244:167–83. https://doi.org/10.1016/j.jconrel.2016.07.054.
De Jong OG, Kooijmans SAA, Murphy DE, Jiang L, Evers MJW, Sluijter JPG, et al. Drug supply with extracellular vesicles: from creativeness to innovation. Acc Chem Res. 2019;52:1761–70.
Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SEL et al. Extracellular vesicles as drug supply techniques: Why and the way? Adv Drug Deliv Rev [Internet]. 2020;159:332–43. Accessible from: https://doi.org/10.1016/j.addr.2020.04.004
Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug supply system: contemplating cell supply. Drug Deliv. 2020;27:585–98. https://doi.org/10.1080/10717544.2020.1748758.
Herrmann IK, Wooden MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug supply platform. Nat Nanotechnol. 2021;16:748–59. https://doi.org/10.1038/s41565-021-00931-2.
Luan X, Sansanaphongpricha Okay, Myers I, Chen H, Yuan H, Solar D. Engineering exosomes as refined organic nanoplatforms for drug supply. Acta Pharmacol Sin. 2017;38:754–63. https://doi.org/10.1038/aps.2017.12.
Villa F, Quarto R, Tasso R. Extracellular vesicles as pure, protected and environment friendly drug supply techniques. Pharmaceutics. 2019;11:557.
Orefice NS. Improvement of latest methods utilizing extracellular vesicles loaded with exogenous nucleic acid. Pharmaceutics. 2020;12:705.
Han Y, Jones TW, Dutta S, Zhu Y, Wang X, Narayanan SP, et al. Overview and replace on strategies for cargo loading into extracellular vesicles. Processes. 2021;9:356.
Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E et al. Paclitaxel is included by mesenchymal stromal cells and launched in exosomes that inhibit in vitro tumor progress: A brand new method for drug supply. J Management Launch [Internet]. 2014;192:262–70. Accessible from: https://doi.org/10.1016/j.jconrel.2014.07.042
Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, et al. A brand new method for loading anticancer medication into mesenchymal stem cell-derived exosome mimetics for most cancers remedy. Entrance Pharmacol. 2018;9:1116.
Melzer C, Rehn V, Yang Y, Bähre H, von der Ohe J, Hass R. Taxol-loaded MSC-derived exosomes present a therapeutic automobile to focus on metastatic breast most cancers and different carcinoma cells. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11060798.
Kim SM, Yang Y, Oh SJ, Hong Y, Search engine marketing M, Jang M. Most cancers-derived exosomes as a supply platform of CRISPR/Cas9 confer most cancers cell tropism-dependent concentrating on. J Management Launch. 2017;266:8–16. https://doi.org/10.1016/j.jconrel.2017.09.013.
Kojima R, Bojar D, Rizzi G, Hamri GC, El, El-Baba MD, Saxena P, et al. Designer exosomes produced by implanted cells intracerebrally ship therapeutic cargo for Parkinson’s illness therapy. Nat Commun. 2018;9:1305.
Wang Q, Yu J, Kadungure T, Beyene J, Zhang H, Lu Q. Armms as a flexible platform for intracellular supply of macromolecules. Nat Commun. 2018;9: 960. https://doi.org/10.1038/s41467-018-03390-x.
Li Z, Zhou X, Wei M, Gao X, Zhao L, Shi R, et al. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett. 2019;19:19–28.
Reshke R, Taylor JA, Savard A, Guo H, Rhym LH, Kowalski PS, et al. Discount of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles by way of a pre-microRNA spine. Nat Biomed Eng. 2020;4:52–68. https://doi.org/10.1038/s41551-019-0502-4.
Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150 enhances focused endothelial cell migration. Mol Cell. 2010;39:133–44.
Akao Y, Iio A, Itoh T, Noguchi S, Itoh Y, Ohtsuki Y, et al. Microvesicle-mediated RNA molecule supply system utilizing monocytes/macrophages. Mol Ther. 2011;19:395–9. https://doi.org/10.1038/mt.2010.254.
Ohno SI, Takanashi M, Sudo Okay, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes focused to EGFR ship antitumor microRNA to breast most cancers cells. Mol Ther. 2013;21(1):185–91.
Yang T, Fogarty B, LaForge B, Aziz S, Pham T, Lai L, et al. Supply of small interfering RNA to inhibit vascular endothelial progress think about zebrafish utilizing pure mind endothelia cell-secreted exosome nanovesicles for the therapy of mind most cancers. AAPS J. 2017;19:475–86.
Ramon J, Xiong R, De Smedt SC, Raemdonck Okay, Braeckmans Okay. Vapor nanobubble-mediated photoporation constitutes a flexible intracellular supply expertise. Curr Opin Colloid Interface Sci. 2021;54: 101453. https://doi.org/10.1016/j.cocis.2021.101453.
Xiong R, Raemdonck Okay, Peynshaert Okay, Lentacker I, De Cock I, Demeester J, et al. Comparability of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in reside cells. ACS Nano. 2014;8:6288–96. https://doi.org/10.1021/nn5017742.
Wayteck L, Xiong R, Braeckmans Okay, De Smedt SC, Raemdonck Okay. Evaluating photoporation and nucleofection for supply of small interfering RNA to cytotoxic T cells. J Management Launch. 2017;267:154–62. https://doi.org/10.1016/j.jconrel.2017.08.002.
Raes L, Stremersch S, Fraire JC, Brans T, Goetgeluk G, De Munter S, et al. Intracellular supply of mRNA in adherent and suspension cells by vapor nanobubble photoporation. Nano-Micro Lett. 2020;12: 185. https://doi.org/10.1007/s40820-020-00523-0.
Raes L, Pille M, Harizaj A, Goetgeluk G, Van Hoeck J, Stremersch S, et al. Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering. Mol Ther – Nucleic Acids. 2021;25:696–707.
Harizaj A, Wels M, Raes L, Stremersch S, Goetgeluk G, Brans T, et al. Photoporation with biodegradable polydopamine nanosensitizers permits protected and environment friendly supply of mRNA in human T cells. Adv Funct Mater. 2021;31:2102472.
De Schutter E, Ramon J, Pfeuty B, De Tender C, Stremersch S, Raemdonck Okay, et al. Plasma membrane perforation by GSDME throughout apoptosis-driven secondary necrosis. Cell Mol Life Sci. 2022;79: 19. https://doi.org/10.1007/s00018-021-04078-0.
Xiong R, Joris F, Liang S, De Rycke R, Lippens S, Demeester J, et al. Cytosolic supply of nanolabels prevents their uneven inheritance and permits prolonged quantitative in vivo cell imaging. Nano Lett. 2016;16:5975–86. https://doi.org/10.1021/acs.nanolett.6b01411.
Fraire JC, Houthaeve G, Liu J, Raes L, Vermeulen L, Stremersch S, et al. Vapor nanobubble is the extra dependable photothermal mechanism for inducing endosomal escape of siRNA with out disturbing cell homeostasis. J Management Launch. 2020;319:262–75. https://doi.org/10.1016/j.jconrel.2019.12.050.
Houthaeve G, Barriga GG-D, Stremersch S, De Keersmaecker H, Fraire J, Vandesompele J, et al. Transient nuclear lamin A/C accretion aids in restoration from vapor nanobubble-induced permeabilisation of the plasma membrane. Cell Mol Life Sci. 2022;79:23.
Xiong R, Sauvage F, Fraire JC, Huang C, De Smedt SC, Braeckmans Okay. Photothermal nanomaterial-mediated photoporation. Acc Chem Res. 2023;56(6):631–43.
Lapotko D. Optical excitation and detection of vapor bubbles round plasmonic nanoparticles. Decide Categorical. 2009;17:2538–56. https://doi.org/10.1364/OE.17.002538.
Lukianova-Hleb E, Hu Y, Latterini L, Tarpani L, Lee S, Drezek RA, et al. Plasmonic nanobubbles as transient vapor nanobubbles generated round plasmonic nanoparticles. ACS Nano. 2010;4:2109–23. https://doi.org/10.1021/nn1000222.
Xiong R, Drullion C, Verstraelen P, Demeester J, Skirtach AG, Abbadie C, et al. Quick spatial-selective supply into reside cells. J Management Launch. 2017;266:198–204. https://doi.org/10.1016/j.jconrel.2017.09.033.
Xiong R, Hua D, Van Hoeck J, Berdecka D, Léger L, De Munter S, et al. Photothermal nanofibres allow protected engineering of therapeutic cells. Nat Nanotechnol. 2021;16:1281–91.
Berdecka D, Minsart M, Lu T, Punj D, De Rycke R, Nikolić M et al. Photothermal nanofibers allow macromolecule supply in unstimulated human T cells. Appl Mater As we speak. 2023;35:101991.
Hinnekens C, Harizaj A, Berdecka D, Aernout I, Shariati M, Peeters S et al. Photoporation of NK-92MI cells with biodegradable polydopamine nanosensitizers as a promising technique for the era of engineered NK cell therapies. Appl Mater As we speak [Internet]. 2024;40:102402. Accessible from: https://doi.org/10.1016/j.apmt.2024.102402
Hinnekens C, Ramon J, Birben M, Germeraad WTV, Harizaj A, De Velder M, et al. Light and environment friendly engineering of main human NK cells by photoporation with polydopamine nanosensitizers. J Management Launch. 2025;382: 113742.
Eyckerman S, Titeca Okay, Van Quickelberghe E, Cloots E, Verhee A, Samyn N, et al. Trapping mammalian protein complexes in viral particles. Nat Commun. 2016;7:11416.
Gould SJ, Sales space AM, Hildreth JEK. The Trojan exosome speculation. PNAS. 2003;100:10592–7.
Fujii Okay, Hurley JH, Freed EO. Past Tsg101: the function of alix in escrting HIV-1. Nat Rev Microbiol. 2007;5:912–6.
Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G et al. The era and use of recombinant extracellular vesicles as organic reference materials. Nat Commun [Internet]. 2019;10:3288. Accessible from: http://www.nature.com/articles/s41467-019-11182-0
Sales space AM, Fang Y, Fallon JK, Yang JM, Hildreth JEK, Gould SJ. Exosomes and HIV gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol. 2006;172:923–35.
Geeurickx E, Lippens L, Rappu P, De Geest BG, De Wever O, Hendrix A. Recombinant extracellular vesicles as organic reference materials for technique improvement, knowledge normalization and evaluation of (pre-)analytical variables. Nat Protoc. 2021;16:603–33. https://doi.org/10.1038/s41596-020-00446-5.
Raes L, Van Hecke C, Michiels J, Stremersch S, Fraire JC, Brans T, et al. Gold nanoparticle-mediated photoporation permits supply of macromolecules over a variety of molecular weights in human CD4 + T cells. Crystals. 2019;9: 411. https://doi.org/10.3390/cryst9080411.
Théry C, Clayton A, Amigorena S, Raposo G. Isolation and characterization of exosomes from cell tradition supernatants and organic fluids. Curr Protoc Cell Biol. 2006;30:3221–32229.
Stremersch S, Brans T, Braeckmans Okay, De Smedt S, Raemdonck Okay. Nucleic acid loading and fluorescent labeling of remoted extracellular vesicles requires ample purification. Int J Pharm. 2018;548:783–92. https://doi.org/10.1016/j.ijpharm.2017.10.022.
Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo methods for intracellular supply. Nature. 2016;538:183–92. https://doi.org/10.1038/nature19764.
Stewart MP, Lorenz A, Dahlman J, Sahay G. Challenges in carrier-mediated intracellular supply: shifting past endosomal obstacles. WIREs Nanomed Nanobiotechnol. 2016;8:465–78. https://doi.org/10.1002/wnan.1377.
Stewart MP, Langer R, Jensen KF. Intracellular supply by membrane disruption: mechanisms, methods, and ideas. Chem Rev. 2018;118:7409–531. https://doi.org/10.1021/acs.chemrev.7b00678.
Nordin JZ. Transfection reagents have an effect on extracellular vesicle cargo switch to recipient cells: the significance of acceptable controls in EV analysis. J Extracell Vesicles. 2022;11:e12227.
McCann J, Sosa-Miranda CD, Guo H, Reshke R, Savard A, Zardini Buzatto A, et al. Contaminating transfection complexes can masquerade as small extracellular vesicles and impair their supply of RNA. J Extracell Vesicles. 2022;11:e12220.
McConnell RE, Youniss M, Gnanasambandam B, Shah P, Zhang W, Finn JD. Transfection reagent artefact probably accounts for some experiences of extracellular vesicle perform. J Extracell Vesicles. 2022;11:e12253.
Berdecka D, Harizaj A, Goemaere I, Punj D, Goetgeluk G, De Munter S, et al. Supply of macromolecules in unstimulated T cells by photoporation with polydopamine nanoparticles. J Management Launch. 2023;354:680–93. https://doi.org/10.1016/j.jconrel.2023.01.047.
Yang Z, Shi J, Xie J, Wang Y, Solar J, Liu T, et al. Massive-scale era of practical mRNA-encapsulating exosomes by way of mobile nanoporation. Nat Biomed Eng. 2020;4:69–83.
Ruan S, Erwin N, He M. Gentle-induced high-efficient mobile manufacturing of immune practical extracellular vesicles. J Extracell Vesicles. 2022;11:e12194.
Ageta H, Ageta-Ishihara N, Hitachi Okay, Karayel O, Onouchi T, Yamaguchi H, et al. UBL3 modification influences protein sorting to small extracellular vesicles. Nat Commun. 2018;9:3936.
Moreno-Gonzalo O, Fernandez-Delgado I, Sanchez-Madrid F. Submit-translational add-ons mark the trail in exosomal protein sorting. Cell Mol Life Sci. 2018;75:1–19.
Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Ströbel T, Erkan EP, et al. miR-1289 and zipcode-like sequence enrich mRNAs in microvesicles. Mol Ther – Nucleic Acids. 2012;1:e10.
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes by way of binding to particular motifs. Nat Commun. 2013;4: 2980.
Mukherjee Okay, Ghoshal B, Ghosh S, Chakrabarty Y, Shwetha S, Das S, et al. Reversible HuR-microRNA binding controls extracellular export of miR‐122 and augments stress response. EMBO Rep. 2016;17:1184–203.