8.4 C
Canberra
Tuesday, August 19, 2025

Pre-formation loading of extracellular vesicles with exogenous molecules utilizing photoporation | Journal of Nanobiotechnology


  • Piper RC, Katzmann DJ. Biogenesis and Perform of Multivesicular Our bodies. Annu Rev Cell Dev Biol [Internet]. 2007;23:519–47. Accessible from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf

  • Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and different extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89. https://doi.org/10.1146/annurev-cellbio-101512-122326.

    CAS 
    PubMed 

    Google Scholar
     

  • Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Tendencies Cell Biol. 2015;25:364–72. https://doi.org/10.1016/j.tcb.2015.01.004.

    CAS 
    PubMed 

    Google Scholar
     

  • Van Niel G, D’Angelo G, Raposo G. Shedding mild on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol [Internet]. 2018;19:213–28. Accessible from: https://doi.org/10.1038/nrm.2017.125

  • Kalluri R, LeBleu VS. The biology, perform, and biomedical purposes of exosomes. Sci (80-). 2020;367:640.


    Google Scholar
     

  • Teng F, Fussenegger M. Shedding mild on extracellular vesicle biogenesis and bioengineering. Adv Sci. 2021;8: 2003505.

    CAS 

    Google Scholar
     

  • Wolf P. The character and significance of platelet merchandise in human plasma. Br J Haematol. 1967;13:269. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x.

    CAS 
    PubMed 

    Google Scholar
     

  • Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97:329–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Pan B-T, Johnstone RM. Destiny of the transferrin receptor throughout maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;3:329–39.


    Google Scholar
     

  • Raposo G, Nijman HW, Stoorvogel W, Leijendekker R, Harding CV, Melief CJM, et al. B lymphocytes secrete Antigen-presenting vesicles. J Exp Med. 1996;183:1161–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors utilizing a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4:594–600.

    CAS 
    PubMed 

    Google Scholar
     

  • Bang C, Thum T. Exosomes. New gamers in cell-cell communication. Int J Biochem Cell Biol. 2012;44:2060–4. https://doi.org/10.1016/j.biocel.2012.08.007.

    CAS 
    PubMed 

    Google Scholar
     

  • Tkach M, Théry C. Communication by extracellular vesicles: the place we’re and the place we have to go. Cell. 2016;164:1226–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Organic properties of extracellular vesicles and their physiological features. J Extracell Vesicles. 2015;4:27066.

    PubMed 

    Google Scholar
     

  • Samanta S, Rajasingh S, Drosos N, Zhou Z, Daybreak B, Rajasingh J. Exosomes: new molecular targets of ailments. Acta Pharmacol Sin. 2018;39:501–13.

    CAS 
    PubMed 

    Google Scholar
     

  • Van Der Meel R, Fens MHAM, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug supply techniques: Classes from the liposome subject. J Management Launch [Internet]. 2014;195:72–85. Accessible from: https://doi.org/10.1016/j.jconrel.2014.07.049

  • Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Making use of extracellular vesicles based mostly therapeutics in medical trials – An ISEV place paper. J Extracell Vesicles. 2015;4:30087.

    PubMed 

    Google Scholar
     

  • Kooijmans SAA, Schiffelers RM, Zarovni N, Vago R. Modulation of tissue tropism and organic exercise of exosomes and different extracellular vesicles: new nanotools for most cancers therapy. Pharmacol Res. 2016;111:487–500. https://doi.org/10.1016/j.phrs.2016.07.006.

    CAS 
    PubMed 

    Google Scholar
     

  • Stremersch S, De Smedt SC, Raemdonck Okay. Therapeutic and diagnostic purposes of extracellular vesicles. J Management Launch. 2016;244:167–83. https://doi.org/10.1016/j.jconrel.2016.07.054.

    CAS 
    PubMed 

    Google Scholar
     

  • De Jong OG, Kooijmans SAA, Murphy DE, Jiang L, Evers MJW, Sluijter JPG, et al. Drug supply with extracellular vesicles: from creativeness to innovation. Acc Chem Res. 2019;52:1761–70.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SEL et al. Extracellular vesicles as drug supply techniques: Why and the way? Adv Drug Deliv Rev [Internet]. 2020;159:332–43. Accessible from: https://doi.org/10.1016/j.addr.2020.04.004

  • Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug supply system: contemplating cell supply. Drug Deliv. 2020;27:585–98. https://doi.org/10.1080/10717544.2020.1748758.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrmann IK, Wooden MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug supply platform. Nat Nanotechnol. 2021;16:748–59. https://doi.org/10.1038/s41565-021-00931-2.

    CAS 
    PubMed 

    Google Scholar
     

  • Luan X, Sansanaphongpricha Okay, Myers I, Chen H, Yuan H, Solar D. Engineering exosomes as refined organic nanoplatforms for drug supply. Acta Pharmacol Sin. 2017;38:754–63. https://doi.org/10.1038/aps.2017.12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villa F, Quarto R, Tasso R. Extracellular vesicles as pure, protected and environment friendly drug supply techniques. Pharmaceutics. 2019;11:557.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orefice NS. Improvement of latest methods utilizing extracellular vesicles loaded with exogenous nucleic acid. Pharmaceutics. 2020;12:705.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Y, Jones TW, Dutta S, Zhu Y, Wang X, Narayanan SP, et al. Overview and replace on strategies for cargo loading into extracellular vesicles. Processes. 2021;9:356.

    CAS 
    PubMed 

    Google Scholar
     

  • Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E et al. Paclitaxel is included by mesenchymal stromal cells and launched in exosomes that inhibit in vitro tumor progress: A brand new method for drug supply. J Management Launch [Internet]. 2014;192:262–70. Accessible from: https://doi.org/10.1016/j.jconrel.2014.07.042

  • Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, et al. A brand new method for loading anticancer medication into mesenchymal stem cell-derived exosome mimetics for most cancers remedy. Entrance Pharmacol. 2018;9:1116.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melzer C, Rehn V, Yang Y, Bähre H, von der Ohe J, Hass R. Taxol-loaded MSC-derived exosomes present a therapeutic automobile to focus on metastatic breast most cancers and different carcinoma cells. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11060798.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim SM, Yang Y, Oh SJ, Hong Y, Search engine marketing M, Jang M. Most cancers-derived exosomes as a supply platform of CRISPR/Cas9 confer most cancers cell tropism-dependent concentrating on. J Management Launch. 2017;266:8–16. https://doi.org/10.1016/j.jconrel.2017.09.013.

    CAS 
    PubMed 

    Google Scholar
     

  • Kojima R, Bojar D, Rizzi G, Hamri GC, El, El-Baba MD, Saxena P, et al. Designer exosomes produced by implanted cells intracerebrally ship therapeutic cargo for Parkinson’s illness therapy. Nat Commun. 2018;9:1305.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Yu J, Kadungure T, Beyene J, Zhang H, Lu Q. Armms as a flexible platform for intracellular supply of macromolecules. Nat Commun. 2018;9: 960. https://doi.org/10.1038/s41467-018-03390-x.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Zhou X, Wei M, Gao X, Zhao L, Shi R, et al. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett. 2019;19:19–28.

    CAS 
    PubMed 

    Google Scholar
     

  • Reshke R, Taylor JA, Savard A, Guo H, Rhym LH, Kowalski PS, et al. Discount of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles by way of a pre-microRNA spine. Nat Biomed Eng. 2020;4:52–68. https://doi.org/10.1038/s41551-019-0502-4.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150 enhances focused endothelial cell migration. Mol Cell. 2010;39:133–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Akao Y, Iio A, Itoh T, Noguchi S, Itoh Y, Ohtsuki Y, et al. Microvesicle-mediated RNA molecule supply system utilizing monocytes/macrophages. Mol Ther. 2011;19:395–9. https://doi.org/10.1038/mt.2010.254.

    CAS 
    PubMed 

    Google Scholar
     

  • Ohno SI, Takanashi M, Sudo Okay, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes focused to EGFR ship antitumor microRNA to breast most cancers cells. Mol Ther. 2013;21(1):185–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang T, Fogarty B, LaForge B, Aziz S, Pham T, Lai L, et al. Supply of small interfering RNA to inhibit vascular endothelial progress think about zebrafish utilizing pure mind endothelia cell-secreted exosome nanovesicles for the therapy of mind most cancers. AAPS J. 2017;19:475–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Ramon J, Xiong R, De Smedt SC, Raemdonck Okay, Braeckmans Okay. Vapor nanobubble-mediated photoporation constitutes a flexible intracellular supply expertise. Curr Opin Colloid Interface Sci. 2021;54: 101453. https://doi.org/10.1016/j.cocis.2021.101453.

    CAS 

    Google Scholar
     

  • Xiong R, Raemdonck Okay, Peynshaert Okay, Lentacker I, De Cock I, Demeester J, et al. Comparability of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in reside cells. ACS Nano. 2014;8:6288–96. https://doi.org/10.1021/nn5017742.

    CAS 
    PubMed 

    Google Scholar
     

  • Wayteck L, Xiong R, Braeckmans Okay, De Smedt SC, Raemdonck Okay. Evaluating photoporation and nucleofection for supply of small interfering RNA to cytotoxic T cells. J Management Launch. 2017;267:154–62. https://doi.org/10.1016/j.jconrel.2017.08.002.

    CAS 
    PubMed 

    Google Scholar
     

  • Raes L, Stremersch S, Fraire JC, Brans T, Goetgeluk G, De Munter S, et al. Intracellular supply of mRNA in adherent and suspension cells by vapor nanobubble photoporation. Nano-Micro Lett. 2020;12: 185. https://doi.org/10.1007/s40820-020-00523-0.

    CAS 

    Google Scholar
     

  • Raes L, Pille M, Harizaj A, Goetgeluk G, Van Hoeck J, Stremersch S, et al. Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering. Mol Ther – Nucleic Acids. 2021;25:696–707.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harizaj A, Wels M, Raes L, Stremersch S, Goetgeluk G, Brans T, et al. Photoporation with biodegradable polydopamine nanosensitizers permits protected and environment friendly supply of mRNA in human T cells. Adv Funct Mater. 2021;31:2102472.

    CAS 

    Google Scholar
     

  • De Schutter E, Ramon J, Pfeuty B, De Tender C, Stremersch S, Raemdonck Okay, et al. Plasma membrane perforation by GSDME throughout apoptosis-driven secondary necrosis. Cell Mol Life Sci. 2022;79: 19. https://doi.org/10.1007/s00018-021-04078-0.

    CAS 

    Google Scholar
     

  • Xiong R, Joris F, Liang S, De Rycke R, Lippens S, Demeester J, et al. Cytosolic supply of nanolabels prevents their uneven inheritance and permits prolonged quantitative in vivo cell imaging. Nano Lett. 2016;16:5975–86. https://doi.org/10.1021/acs.nanolett.6b01411.

    CAS 
    PubMed 

    Google Scholar
     

  • Fraire JC, Houthaeve G, Liu J, Raes L, Vermeulen L, Stremersch S, et al. Vapor nanobubble is the extra dependable photothermal mechanism for inducing endosomal escape of siRNA with out disturbing cell homeostasis. J Management Launch. 2020;319:262–75. https://doi.org/10.1016/j.jconrel.2019.12.050.

    CAS 
    PubMed 

    Google Scholar
     

  • Houthaeve G, Barriga GG-D, Stremersch S, De Keersmaecker H, Fraire J, Vandesompele J, et al. Transient nuclear lamin A/C accretion aids in restoration from vapor nanobubble-induced permeabilisation of the plasma membrane. Cell Mol Life Sci. 2022;79:23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong R, Sauvage F, Fraire JC, Huang C, De Smedt SC, Braeckmans Okay. Photothermal nanomaterial-mediated photoporation. Acc Chem Res. 2023;56(6):631–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Lapotko D. Optical excitation and detection of vapor bubbles round plasmonic nanoparticles. Decide Categorical. 2009;17:2538–56. https://doi.org/10.1364/OE.17.002538.

    CAS 
    PubMed 

    Google Scholar
     

  • Lukianova-Hleb E, Hu Y, Latterini L, Tarpani L, Lee S, Drezek RA, et al. Plasmonic nanobubbles as transient vapor nanobubbles generated round plasmonic nanoparticles. ACS Nano. 2010;4:2109–23. https://doi.org/10.1021/nn1000222.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong R, Drullion C, Verstraelen P, Demeester J, Skirtach AG, Abbadie C, et al. Quick spatial-selective supply into reside cells. J Management Launch. 2017;266:198–204. https://doi.org/10.1016/j.jconrel.2017.09.033.

    CAS 
    PubMed 

    Google Scholar
     

  • Xiong R, Hua D, Van Hoeck J, Berdecka D, Léger L, De Munter S, et al. Photothermal nanofibres allow protected engineering of therapeutic cells. Nat Nanotechnol. 2021;16:1281–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berdecka D, Minsart M, Lu T, Punj D, De Rycke R, Nikolić M et al. Photothermal nanofibers allow macromolecule supply in unstimulated human T cells. Appl Mater As we speak. 2023;35:101991.

  • Hinnekens C, Harizaj A, Berdecka D, Aernout I, Shariati M, Peeters S et al. Photoporation of NK-92MI cells with biodegradable polydopamine nanosensitizers as a promising technique for the era of engineered NK cell therapies. Appl Mater As we speak [Internet]. 2024;40:102402. Accessible from: https://doi.org/10.1016/j.apmt.2024.102402

  • Hinnekens C, Ramon J, Birben M, Germeraad WTV, Harizaj A, De Velder M, et al. Light and environment friendly engineering of main human NK cells by photoporation with polydopamine nanosensitizers. J Management Launch. 2025;382: 113742.

    CAS 
    PubMed 

    Google Scholar
     

  • Eyckerman S, Titeca Okay, Van Quickelberghe E, Cloots E, Verhee A, Samyn N, et al. Trapping mammalian protein complexes in viral particles. Nat Commun. 2016;7:11416.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gould SJ, Sales space AM, Hildreth JEK. The Trojan exosome speculation. PNAS. 2003;100:10592–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujii Okay, Hurley JH, Freed EO. Past Tsg101: the function of alix in escrting HIV-1. Nat Rev Microbiol. 2007;5:912–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G et al. The era and use of recombinant extracellular vesicles as organic reference materials. Nat Commun [Internet]. 2019;10:3288. Accessible from: http://www.nature.com/articles/s41467-019-11182-0

  • Sales space AM, Fang Y, Fallon JK, Yang JM, Hildreth JEK, Gould SJ. Exosomes and HIV gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol. 2006;172:923–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geeurickx E, Lippens L, Rappu P, De Geest BG, De Wever O, Hendrix A. Recombinant extracellular vesicles as organic reference materials for technique improvement, knowledge normalization and evaluation of (pre-)analytical variables. Nat Protoc. 2021;16:603–33. https://doi.org/10.1038/s41596-020-00446-5.

    CAS 
    PubMed 

    Google Scholar
     

  • Raes L, Van Hecke C, Michiels J, Stremersch S, Fraire JC, Brans T, et al. Gold nanoparticle-mediated photoporation permits supply of macromolecules over a variety of molecular weights in human CD4 + T cells. Crystals. 2019;9: 411. https://doi.org/10.3390/cryst9080411.

    CAS 

    Google Scholar
     

  • Théry C, Clayton A, Amigorena S, Raposo G. Isolation and characterization of exosomes from cell tradition supernatants and organic fluids. Curr Protoc Cell Biol. 2006;30:3221–32229.


    Google Scholar
     

  • Stremersch S, Brans T, Braeckmans Okay, De Smedt S, Raemdonck Okay. Nucleic acid loading and fluorescent labeling of remoted extracellular vesicles requires ample purification. Int J Pharm. 2018;548:783–92. https://doi.org/10.1016/j.ijpharm.2017.10.022.

    CAS 
    PubMed 

    Google Scholar
     

  • Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo methods for intracellular supply. Nature. 2016;538:183–92. https://doi.org/10.1038/nature19764.

    CAS 
    PubMed 

    Google Scholar
     

  • Stewart MP, Lorenz A, Dahlman J, Sahay G. Challenges in carrier-mediated intracellular supply: shifting past endosomal obstacles. WIREs Nanomed Nanobiotechnol. 2016;8:465–78. https://doi.org/10.1002/wnan.1377.


    Google Scholar
     

  • Stewart MP, Langer R, Jensen KF. Intracellular supply by membrane disruption: mechanisms, methods, and ideas. Chem Rev. 2018;118:7409–531. https://doi.org/10.1021/acs.chemrev.7b00678.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nordin JZ. Transfection reagents have an effect on extracellular vesicle cargo switch to recipient cells: the significance of acceptable controls in EV analysis. J Extracell Vesicles. 2022;11:e12227.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCann J, Sosa-Miranda CD, Guo H, Reshke R, Savard A, Zardini Buzatto A, et al. Contaminating transfection complexes can masquerade as small extracellular vesicles and impair their supply of RNA. J Extracell Vesicles. 2022;11:e12220.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McConnell RE, Youniss M, Gnanasambandam B, Shah P, Zhang W, Finn JD. Transfection reagent artefact probably accounts for some experiences of extracellular vesicle perform. J Extracell Vesicles. 2022;11:e12253.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berdecka D, Harizaj A, Goemaere I, Punj D, Goetgeluk G, De Munter S, et al. Supply of macromolecules in unstimulated T cells by photoporation with polydopamine nanoparticles. J Management Launch. 2023;354:680–93. https://doi.org/10.1016/j.jconrel.2023.01.047.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Shi J, Xie J, Wang Y, Solar J, Liu T, et al. Massive-scale era of practical mRNA-encapsulating exosomes by way of mobile nanoporation. Nat Biomed Eng. 2020;4:69–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Ruan S, Erwin N, He M. Gentle-induced high-efficient mobile manufacturing of immune practical extracellular vesicles. J Extracell Vesicles. 2022;11:e12194.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ageta H, Ageta-Ishihara N, Hitachi Okay, Karayel O, Onouchi T, Yamaguchi H, et al. UBL3 modification influences protein sorting to small extracellular vesicles. Nat Commun. 2018;9:3936.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Gonzalo O, Fernandez-Delgado I, Sanchez-Madrid F. Submit-translational add-ons mark the trail in exosomal protein sorting. Cell Mol Life Sci. 2018;75:1–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Ströbel T, Erkan EP, et al. miR-1289 and zipcode-like sequence enrich mRNAs in microvesicles. Mol Ther – Nucleic Acids. 2012;1:e10.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes by way of binding to particular motifs. Nat Commun. 2013;4: 2980.

    PubMed 

    Google Scholar
     

  • Mukherjee Okay, Ghoshal B, Ghosh S, Chakrabarty Y, Shwetha S, Das S, et al. Reversible HuR-microRNA binding controls extracellular export of miR‐122 and augments stress response. EMBO Rep. 2016;17:1184–203.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles