Notice: This submit is an excerpt from the forthcoming guide, Deep Studying and Scientific Computing with R torch. The chapter in query is on the Discrete Fourier Remodel (DFT), and is situated partially three. Half three is devoted to scientific computation past deep studying.
There are two chapters on the Fourier Remodel. The primary strives to, in as “verbal” and lucid a manner as was doable to me, forged a lightweight on what’s behind the magic; it additionally exhibits how, surprisingly, you may code the DFT in merely half a dozen strains. The second focuses on quick implementation (the Quick Fourier Remodel, or FFT), once more with each conceptual/explanatory in addition to sensible, code-it-yourself elements.
Collectively, these cowl much more materials than may sensibly match right into a weblog submit; due to this fact, please contemplate what follows extra as a “teaser” than a completely fledged article.
Within the sciences, the Fourier Remodel is nearly in every single place. Said very typically, it converts information from one illustration to a different, with none lack of info (if finished accurately, that’s.) For those who use torch
, it’s only a operate name away: torch_fft_fft()
goes a method, torch_fft_ifft()
the opposite. For the person, that’s handy – you “simply” must know the right way to interpret the outcomes. Right here, I wish to assist with that. We begin with an instance operate name, taking part in round with its output, after which, attempt to get a grip on what’s going on behind the scenes.
Understanding the output of torch_fft_fft()
As we care about precise understanding, we begin from the best doable instance sign, a pure cosine that performs one revolution over the entire sampling interval.
Place to begin: A cosine of frequency 1
The way in which we set issues up, there shall be sixty-four samples; the sampling interval thus equals N = 64
. The content material of frequency()
, the under helper operate used to assemble the sign, displays how we symbolize the cosine. Particularly:
[
f(x) = cos(frac p_imag) /
(p_magnitude
df <- data.frame(x = sample_positions, y = as.numeric(x))
p_signal <- ggplot(df, aes(x = x, y = y)) +
geom_line() +
xlab(“time”) +
ylab(“amplitude”) +
theme_minimal()
# in the code, I’m using Ft instead of X because not
# all operating systems treat variables as case-sensitive
Ft <- torch_fft_fft(x)
p_real <- create_plot(
sample_positions,
Ft$real,
“real part”
)
p_imag <- create_plot(
sample_positions,
Ft$imag,
“imaginary part”
)
p_magnitude <- create_plot(
sample_positions,
torch_abs(Ft),
“magnitude”
)
p_phase <- create_plot(
sample_positions,
phase(Ft),
“phase”
)
(p_signal k x)
]
Right here (x) values progress over time (or house), and (ok) is the frequency index. A cosine is periodic with interval (2 pi); so if we would like it to first return to its beginning state after sixty-four samples, and (x) runs between zero and sixty-three, we’ll need (ok) to be equal to (1). Like that, we’ll attain the preliminary state once more at place (x = frac p_imag) /
(p_magnitude plot_spacer()) /
(p_real * 1 * 64).
Let’s rapidly affirm this did what it was purported to:
df <- information.body(x = sample_positions, y = as.numeric(x))
ggplot(df, aes(x = x, y = y)) +
geom_line() +
xlab("time") +
ylab("amplitude") +
theme_minimal()

Now that we now have the enter sign, torch_fft_fft()
computes for us the Fourier coefficients, that’s, the significance of the assorted frequencies current within the sign. The variety of frequencies thought of will equal the variety of sampling factors: So (X) shall be of size sixty-four as effectively.
(In our instance, you’ll discover that the second half of coefficients will equal the primary in magnitude. That is the case for each real-valued sign. In such instances, you could possibly name torch_fft_rfft()
as a substitute, which yields “nicer” (within the sense of shorter) vectors to work with. Right here although, I wish to clarify the overall case, since that’s what you’ll discover finished in most expositions on the subject.)
Even with the sign being actual, the Fourier coefficients are complicated numbers. There are 4 methods to examine them. The primary is to extract the actual half:
[1] 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 0 0 0 0 0 0 0 32
Solely a single coefficient is non-zero, the one at place 1. (We begin counting from zero, and should discard the second half, as defined above.)
Now trying on the imaginary half, we discover it’s zero all through:
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 0 0 0 0 0 0 0 0
At this level we all know that there’s only a single frequency current within the sign, specifically, that at (ok = 1). This matches (and it higher needed to) the best way we constructed the sign: specifically, as engaging in a single revolution over the entire sampling interval.
Since, in concept, each coefficient may have non-zero actual and imaginary elements, typically what you’d report is the magnitude (the sq. root of the sum of squared actual and imaginary elements):
[1] 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 0 0 0 0 0 0 0 32
Unsurprisingly, these values precisely replicate the respective actual elements.
Lastly, there’s the section, indicating a doable shift of the sign (a pure cosine is unshifted). In torch
, we now have torch_angle()
complementing torch_abs()
, however we have to bear in mind roundoff error right here. We all know that in every however a single case, the actual and imaginary elements are each precisely zero; however attributable to finite precision in how numbers are offered in a pc, the precise values will typically not be zero. As an alternative, they’ll be very small. If we take certainly one of these “pretend non-zeroes” and divide it by one other, as occurs within the angle calculation, huge values may result. To forestall this from occurring, our customized implementation rounds each inputs earlier than triggering the division.
section <- operate(Ft, threshold = 1e5) {
torch_atan2(
torch_abs(torch_round(Ft$imag * threshold)),
torch_abs(torch_round(Ft$actual * threshold))
)
}
as.numeric(section(Ft)) %>% spherical(5)
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 0 0 0 0 0 0 0 0
As anticipated, there isn’t any section shift within the sign.
Let’s visualize what we discovered.
create_plot <- operate(x, y, amount) {
df <- information.body(
x_ = x,
y_ = as.numeric(y) %>% spherical(5)
)
ggplot(df, aes(x = x_, y = y_)) +
geom_col() +
xlab("frequency") +
ylab(amount) +
theme_minimal()
}
p_real <- create_plot(
sample_positions,
real_part,
"actual half"
)
p_imag <- create_plot(
sample_positions,
imag_part,
"imaginary half"
)
p_magnitude <- create_plot(
sample_positions,
magnitude,
"magnitude"
)
p_phase <- create_plot(
sample_positions,
section(Ft),
"section"
)
p_real + p_imag + p_magnitude + p_phase

It’s truthful to say that we now have no cause to doubt what torch_fft_fft()
has finished. However with a pure sinusoid like this, we are able to perceive precisely what’s occurring by computing the DFT ourselves, by hand. Doing this now will considerably assist us later, after we’re writing the code.
Reconstructing the magic
One caveat about this part. With a subject as wealthy because the Fourier Remodel, and an viewers who I think about to fluctuate broadly on a dimension of math and sciences schooling, my probabilities to fulfill your expectations, pricey reader, should be very near zero. Nonetheless, I wish to take the danger. For those who’re an professional on this stuff, you’ll anyway be simply scanning the textual content, searching for items of torch
code. For those who’re reasonably aware of the DFT, you should still like being reminded of its interior workings. And – most significantly – if you happen to’re moderately new, and even fully new, to this matter, you’ll hopefully take away (not less than) one factor: that what looks as if one of many biggest wonders of the universe (assuming there’s a actuality in some way comparable to what goes on in our minds) could be a surprise, however neither “magic” nor a factor reserved to the initiated.
In a nutshell, the Fourier Remodel is a foundation transformation. Within the case of the DFT – the Discrete Fourier Remodel, the place time and frequency representations each are finite vectors, not features – the brand new foundation seems to be like this:
[
begin{aligned}
&mathbf{w}^{0n}_N = e^{ifrac{2 pi}{N}* 0 * n} = 1
&mathbf{w}^{1n}_N = e^{ifrac{2 pi}{N}* 1 * n} = e^{ifrac{2 pi}{N} n}
&mathbf{w}^{2n}_N = e^{ifrac{2 pi}{N}* 2 * n} = e^{ifrac{2 pi}{N}2n}& …
&mathbf{w}^{(N-1)n}_N = e^{ifrac{2 pi}{N}* (N-1) * n} = e^{ifrac{2 pi}{N}(N-1)n}
end{aligned}
]
Right here (N), as earlier than, is the variety of samples (64, in our case); thus, there are (N) foundation vectors. With (ok) working by way of the idea vectors, they are often written:
[
mathbf{w}^{kn}_N = e^{ifrac{2 pi}{N}k n}
] {#eq-dft-1}
Like (ok), (n) runs from (0) to (N-1). To know what these foundation vectors are doing, it’s useful to briefly change to a shorter sampling interval, (N = 4), say. If we achieve this, we now have 4 foundation vectors: (mathbf{w}^{0n}_N), (mathbf{w}^{1n}_N), (mathbf{w}^{2n}_N), and (mathbf{w}^{3n}_N). The primary one seems to be like this:
[
mathbf{w}^{0n}_N
=
begin{bmatrix}
e^{ifrac{2 pi}{4}* 0 * 0}
e^{ifrac{2 pi}{4}* 0 * 1}
e^{ifrac{2 pi}{4}* 0 * 2}
e^{ifrac{2 pi}{4}* 0 * 3}
end{bmatrix}
=
begin{bmatrix}
1
1
1
1
end{bmatrix}
]
The second, like so:
[
mathbf{w}^{1n}_N
=
begin{bmatrix}
e^{ifrac{2 pi}{4}* 1 * 0}
e^{ifrac{2 pi}{4}* 1 * 1}
e^{ifrac{2 pi}{4}* 1 * 2}
e^{ifrac{2 pi}{4}* 1 * 3}
end{bmatrix}
=
begin{bmatrix}
1
e^{ifrac{pi}{2}}
e^{i pi}
e^{ifrac{3 pi}{4}}
end{bmatrix}
=
begin{bmatrix}
1
i
-1
-i
end{bmatrix}
]
That is the third:
[
mathbf{w}^{2n}_N
=
begin{bmatrix}
e^{ifrac{2 pi}{4}* 2 * 0}
e^{ifrac{2 pi}{4}* 2 * 1}
e^{ifrac{2 pi}{4}* 2 * 2}
e^{ifrac{2 pi}{4}* 2 * 3}
end{bmatrix}
=
begin{bmatrix}
1
e^{ipi}
e^{i 2 pi}
e^{ifrac{3 pi}{2}}
end{bmatrix}
=
begin{bmatrix}
1
-1
1
-1
end{bmatrix}
]
And at last, the fourth:
[
mathbf{w}^{3n}_N
=
begin{bmatrix}
e^{ifrac{2 pi}{4}* 3 * 0}
e^{ifrac{2 pi}{4}* 3 * 1}
e^{ifrac{2 pi}{4}* 3 * 2}
e^{ifrac{2 pi}{4}* 3 * 3}
end{bmatrix}
=
begin{bmatrix}
1
e^{ifrac{3 pi}{2}}
e^{i 3 pi}
e^{ifrac{9 pi}{2}}
end{bmatrix}
=
begin{bmatrix}
1
-i
-1
i
end{bmatrix}
]
We will characterize these 4 foundation vectors when it comes to their “velocity”: how briskly they transfer across the unit circle. To do that, we merely have a look at the rightmost column vectors, the place the ultimate calculation outcomes seem. The values in that column correspond to positions pointed to by the revolving foundation vector at completely different cut-off dates. Which means that taking a look at a single “replace of place”, we are able to see how briskly the vector is shifting in a single time step.
Wanting first at (mathbf{w}^{0n}_N), we see that it doesn’t transfer in any respect. (mathbf{w}^{1n}_N) goes from (1) to (i) to (-1) to (-i); another step, and it will be again the place it began. That’s one revolution in 4 steps, or a step measurement of (frac{pi}{2}). Then (mathbf{w}^{2n}_N) goes at double that tempo, shifting a distance of (pi) alongside the circle. That manner, it finally ends up finishing two revolutions total. Lastly, (mathbf{w}^{3n}_N) achieves three full loops, for a step measurement of (frac{3 pi}{2}).
The factor that makes these foundation vectors so helpful is that they’re mutually orthogonal. That’s, their dot product is zero:
[
langle mathbf{w}^{kn}_N, mathbf{w}^{ln}_N rangle = sum_{n=0}^{N-1} ({e^{ifrac{2 pi}{N}k n}})^* e^{ifrac{2 pi}{N}l n} = sum_{n=0}^{N-1} ({e^{-ifrac{2 pi}{N}k n}})e^{ifrac{2 pi}{N}l n} = 0
] {#eq-dft-2}
Let’s take, for instance, (mathbf{w}^{2n}_N) and (mathbf{w}^{3n}_N). Certainly, their dot product evaluates to zero.
[
begin{bmatrix}
1 & -1 & 1 & -1
end{bmatrix}
begin{bmatrix}
1
-i
-1
i
end{bmatrix}
=
1 + i + (-1) + (-i) = 0
]
Now, we’re about to see how the orthogonality of the Fourier foundation considerably simplifies the calculation of the DFT. Did you discover the similarity between these foundation vectors and the best way we wrote the instance sign? Right here it’s once more:
[
f(x) = cos(frac{2 pi}{N} k x)
]
If we handle to symbolize this operate when it comes to the idea vectors (mathbf{w}^{kn}_N = e^{ifrac{2 pi}{N}ok n}), the interior product between the operate and every foundation vector shall be both zero (the “default”) or a a number of of 1 (in case the operate has a element matching the idea vector in query). Fortunately, sines and cosines can simply be transformed into complicated exponentials. In our instance, that is how that goes:
[
begin{aligned}
mathbf{x}_n &= cos(frac{2 pi}{64} n)
&= frac{1}{2} (e^{ifrac{2 pi}{64} n} + e^{-ifrac{2 pi}{64} n})
&= frac{1}{2} (e^{ifrac{2 pi}{64} n} + e^{ifrac{2 pi}{64} 63n})
&= frac{1}{2} (mathbf{w}^{1n}_N + mathbf{w}^{63n}_N)
end{aligned}
]
Right here step one immediately outcomes from Euler’s formulation, and the second displays the truth that the Fourier coefficients are periodic, with frequency -1 being the identical as 63, -2 equaling 62, and so forth.
Now, the (ok)th Fourier coefficient is obtained by projecting the sign onto foundation vector (ok).
As a result of orthogonality of the idea vectors, solely two coefficients is not going to be zero: these for (mathbf{w}^{1n}_N) and (mathbf{w}^{63n}_N). They’re obtained by computing the interior product between the operate and the idea vector in query, that’s, by summing over (n). For every (n) ranging between (0) and (N-1), we now have a contribution of (frac{1}{2}), leaving us with a closing sum of (32) for each coefficients. For instance, for (mathbf{w}^{1n}_N):
[
begin{aligned}
X_1 &= langle mathbf{w}^{1n}_N, mathbf{x}_n rangle
&= langle mathbf{w}^{1n}_N, frac{1}{2} (mathbf{w}^{1n}_N + mathbf{w}^{63n}_N) rangle
&= frac{1}{2} * 64
&= 32
end{aligned}
]
And analogously for (X_{63}).
Now, trying again at what torch_fft_fft()
gave us, we see we had been in a position to arrive on the similar end result. And we’ve discovered one thing alongside the best way.
So long as we stick with indicators composed of a number of foundation vectors, we are able to compute the DFT on this manner. On the finish of the chapter, we’ll develop code that can work for all indicators, however first, let’s see if we are able to dive even deeper into the workings of the DFT. Three issues we’ll wish to discover:
-
What would occur if frequencies modified – say, a melody had been sung at the next pitch?
-
What about amplitude modifications – say, the music had been performed twice as loud?
-
What about section – e.g., there have been an offset earlier than the piece began?
In all instances, we’ll name torch_fft_fft()
solely as soon as we’ve decided the end result ourselves.
And at last, we’ll see how complicated sinusoids, made up of various parts, can nonetheless be analyzed on this manner, supplied they are often expressed when it comes to the frequencies that make up the idea.
Various frequency
Assume we quadrupled the frequency, giving us a sign that seemed like this:
[
mathbf{x}_n = cos(frac{2 pi}{N}*4*n)
]
Following the identical logic as above, we are able to specific it like so:
[
mathbf{x}_n = frac{1}{2} (mathbf{w}^{4n}_N + mathbf{w}^{60n}_N)
]
We already see that non-zero coefficients shall be obtained just for frequency indices (4) and (60). Selecting the previous, we receive
[
begin{aligned}
X_4 &= langle mathbf{w}^{4n}_N, mathbf{x}_n rangle
&= langle mathbf{w}^{4n}_N, frac{1}{2} (mathbf{w}^{4n}_N + mathbf{w}^{60n}_N) rangle
&= 32
end{aligned}
]
For the latter, we’d arrive on the similar end result.
Now, let’s make sure that our evaluation is appropriate. The next code snippet accommodates nothing new; it generates the sign, calculates the DFT, and plots them each.
x <- torch_cos(frequency(4, N) * sample_positions)
plot_ft <- operate(x) p_phase)
plot_ft(x)

This does certainly affirm our calculations.
A particular case arises when sign frequency rises to the very best one “allowed”, within the sense of being detectable with out aliasing. That would be the case at one half of the variety of sampling factors. Then, the sign will seem like so:
[
mathbf{x}_n = frac{1}{2} (mathbf{w}^{32n}_N + mathbf{w}^{32n}_N)
]
Consequently, we find yourself with a single coefficient, comparable to a frequency of 32 revolutions per pattern interval, of double the magnitude (64, thus). Listed here are the sign and its DFT:
x <- torch_cos(frequency(32, N) * sample_positions)
plot_ft(x)

Various amplitude
Now, let’s take into consideration what occurs after we fluctuate amplitude. For instance, say the sign will get twice as loud. Now, there shall be a multiplier of two that may be taken exterior the interior product. In consequence, the one factor that modifications is the magnitude of the coefficients.
Let’s confirm this. The modification is predicated on the instance we had earlier than the final one, with 4 revolutions over the sampling interval:
x <- 2 * torch_cos(frequency(4, N) * sample_positions)
plot_ft(x)

To this point, we now have not as soon as seen a coefficient with non-zero imaginary half. To alter this, we add in section.
Including section
Altering the section of a sign means shifting it in time. Our instance sign is a cosine, a operate whose worth is 1 at (t=0). (That additionally was the – arbitrarily chosen – place to begin of the sign.)
Now assume we shift the sign ahead by (frac{pi}{2}). Then the height we had been seeing at zero strikes over to (frac{pi}{2}); and if we nonetheless begin “recording” at zero, we should discover a worth of zero there. An equation describing that is the next. For comfort, we assume a sampling interval of (2 pi) and (ok=1), in order that the instance is a straightforward cosine:
[
f(x) = cos(x – phi)
]
The minus signal could look unintuitive at first. Nevertheless it does make sense: We now wish to receive a worth of 1 at (x=frac{pi}{2}), so (x – phi) ought to consider to zero. (Or to any a number of of (pi).) Summing up, a delay in time will seem as a damaging section shift.
Now, we’re going to calculate the DFT for a shifted model of our instance sign. However if you happen to like, take a peek on the phase-shifted model of the time-domain image now already. You’ll see {that a} cosine, delayed by (frac{pi}{2}), is nothing else than a sine beginning at 0.
To compute the DFT, we comply with our familiar-by-now technique. The sign now seems to be like this:
[
mathbf{x}_n = cos(frac{2 pi}{N}*4*x – frac{pi}{2})
]
First, we specific it when it comes to foundation vectors:
[
begin{aligned}
mathbf{x}_n &= cos(frac{2 pi}{64} 4 n – frac{pi}{2})
&= frac{1}{2} (e^{ifrac{2 pi}{64} 4n – frac{pi}{2}} + e^{ifrac{2 pi}{64} 60n – frac{pi}{2}})
&= frac{1}{2} (e^{ifrac{2 pi}{64} 4n} e^{-i frac{pi}{2}} + e^{ifrac{2 pi}{64} 60n} e^{ifrac{pi}{2}})
&= frac{1}{2} (e^{-i frac{pi}{2}} mathbf{w}^{4n}_N + e^{i frac{pi}{2}} mathbf{w}^{60n}_N)
end{aligned}
]
Once more, we now have non-zero coefficients just for frequencies (4) and (60). However they’re complicated now, and each coefficients are not an identical. As an alternative, one is the complicated conjugate of the opposite. First, (X_4):
[
begin{aligned}
X_4 &= langle mathbf{w}^{4n}_N, mathbf{x}_n rangle
&=langle mathbf{w}^{4n}_N, frac{1}{2} (e^{-i frac{pi}{2}} mathbf{w}^{4n}_N + e^{i frac{pi}{2}} mathbf{w}^{60n}_N) rangle
&= 32 *e^{-i frac{pi}{2}}
&= -32i
end{aligned}
]
And right here, (X_{60}):
[
begin{aligned}
X_{60} &= langle mathbf{w}^{60n}_N, mathbf{x}_N rangle
&= 32 *e^{i frac{pi}{2}}
&= 32i
end{aligned}
]
As regular, we test our calculation utilizing torch_fft_fft()
.
x <- torch_cos(frequency(4, N) * sample_positions - pi / 2)
plot_ft(x)

For a pure sine wave, the non-zero Fourier coefficients are imaginary. The section shift within the coefficients, reported as (frac{pi}{2}), displays the time delay we utilized to the sign.
Lastly – earlier than we write some code – let’s put all of it collectively, and have a look at a wave that has greater than a single sinusoidal element.
Superposition of sinusoids
The sign we assemble should still be expressed when it comes to the idea vectors, however it’s not a pure sinusoid. As an alternative, it’s a linear mixture of such:
[
begin{aligned}
mathbf{x}_n &= 3 sin(frac{2 pi}{64} 4n) + 6 cos(frac{2 pi}{64} 2n) +2cos(frac{2 pi}{64} 8n)
end{aligned}
]
I gained’t undergo the calculation intimately, however it’s no completely different from the earlier ones. You compute the DFT for every of the three parts, and assemble the outcomes. With none calculation, nonetheless, there’s fairly a number of issues we are able to say:
- Because the sign consists of two pure cosines and one pure sine, there shall be 4 coefficients with non-zero actual elements, and two with non-zero imaginary elements. The latter shall be complicated conjugates of one another.
- From the best way the sign is written, it’s simple to find the respective frequencies, as effectively: The all-real coefficients will correspond to frequency indices 2, 8, 56, and 62; the all-imaginary ones to indices 4 and 60.
- Lastly, amplitudes will end result from multiplying with (frac{64}{2}) the scaling components obtained for the person sinusoids.
Let’s test:

Now, how will we calculate the DFT for much less handy indicators?
Coding the DFT
Fortuitously, we already know what needs to be finished. We wish to venture the sign onto every of the idea vectors. In different phrases, we’ll be computing a bunch of interior merchandise. Logic-wise, nothing modifications: The one distinction is that basically, it is not going to be doable to symbolize the sign when it comes to just some foundation vectors, like we did earlier than. Thus, all projections will truly need to be calculated. However isn’t automation of tedious duties one factor we now have computer systems for?
Let’s begin by stating enter, output, and central logic of the algorithm to be carried out. As all through this chapter, we keep in a single dimension. The enter, thus, is a one-dimensional tensor, encoding a sign. The output is a one-dimensional vector of Fourier coefficients, of the identical size because the enter, every holding details about a frequency. The central concept is: To acquire a coefficient, venture the sign onto the corresponding foundation vector.
To implement that concept, we have to create the idea vectors, and for every one, compute its interior product with the sign. This may be finished in a loop. Surprisingly little code is required to perform the aim:
dft <- operate(x) {
n_samples <- size(x)
n <- torch_arange(0, n_samples - 1)$unsqueeze(1)
Ft <- torch_complex(
torch_zeros(n_samples), torch_zeros(n_samples)
)
for (ok in 0:(n_samples - 1)) {
w_k <- torch_exp(-1i * 2 * pi / n_samples * ok * n)
dot <- torch_matmul(w_k, x$to(dtype = torch_cfloat()))
Ft[k + 1] <- dot
}
Ft
}
To check the implementation, we are able to take the final sign we analysed, and examine with the output of torch_fft_fft()
.
[1] 0 0 192 0 0 0 0 0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 64 0 0 0 0 0 192 0
[1] 0 0 0 0 -96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 0 0 0 0 96 0 0 0
Reassuringly – if you happen to look again – the outcomes are the identical.
Above, did I say “little code”? In reality, a loop just isn’t even wanted. As an alternative of working with the idea vectors one-by-one, we are able to stack them in a matrix. Then every row will maintain the conjugate of a foundation vector, and there shall be (N) of them. The columns correspond to positions (0) to (N-1); there shall be (N) of them as effectively. For instance, that is how the matrix would search for (N=4):
[
mathbf{W}_4
=
begin{bmatrix}
e^{-ifrac{2 pi}{4}* 0 * 0} & e^{-ifrac{2 pi}{4}* 0 * 1} & e^{-ifrac{2 pi}{4}* 0 * 2} & e^{-ifrac{2 pi}{4}* 0 * 3}
e^{-ifrac{2 pi}{4}* 1 * 0} & e^{-ifrac{2 pi}{4}* 1 * 1} & e^{-ifrac{2 pi}{4}* 1 * 2} & e^{-ifrac{2 pi}{4}* 1 * 3}
e^{-ifrac{2 pi}{4}* 2 * 0} & e^{-ifrac{2 pi}{4}* 2 * 1} & e^{-ifrac{2 pi}{4}* 2 * 2} & e^{-ifrac{2 pi}{4}* 2 * 3}
e^{-ifrac{2 pi}{4}* 3 * 0} & e^{-ifrac{2 pi}{4}* 3 * 1} & e^{-ifrac{2 pi}{4}* 3 * 2} & e^{-ifrac{2 pi}{4}* 3 * 3}
end{bmatrix}
] {#eq-dft-3}
Or, evaluating the expressions:
[
mathbf{W}_4
=
begin{bmatrix}
1 & 1 & 1 & 1
1 & -i & -1 & i
1 & -1 & 1 & -1
1 & i & -1 & -i
end{bmatrix}
]
With that modification, the code seems to be much more elegant:
dft_vec <- operate(x) {
n_samples <- size(x)
n <- torch_arange(0, n_samples - 1)$unsqueeze(1)
ok <- torch_arange(0, n_samples - 1)$unsqueeze(2)
mat_k_m <- torch_exp(-1i * 2 * pi / n_samples * ok * n)
torch_matmul(mat_k_m, x$to(dtype = torch_cfloat()))
}
As you may simply confirm, the end result is similar.
Thanks for studying!
Picture by Trac Vu on Unsplash