16.6 C
Canberra
Thursday, October 23, 2025

Polaron superlattices in n-doped single conjugated polymers


  • Emin, D. Polarons (Cambridge Univ. Press, 2012).

  • Holstein, T. Research of polaron movement: Half I. The molecular-crystal mannequin. Ann. Phys. 8, 325–342 (1959).

    Article 
    CAS 

    Google Scholar
     

  • Holstein, T. Research of polaron movement: half II. The “small” polaron. Ann. Phys. 8, 343–389 (1959).

    Article 
    CAS 

    Google Scholar
     

  • Fröhlich, H. Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954).

    Article 

    Google Scholar
     

  • Heeger, A. J. Semiconducting polymers: the third era. Chem. Soc. Rev. 39, 2354–2371 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brédas, J. L. & Avenue, G. B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309–315 (1985).

    Article 

    Google Scholar
     

  • The Physics of Natural Superconductors and Conductors (Springer, 2008).

  • Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in supplies. Nat. Rev. Mater. 6, 560–586 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Buizza, L. R. V. & Herz, L. M. Polarons and cost localization in metal-halide semiconductors for photovoltaic and light-emitting units. Adv. Mater. 33, 2007057 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. & Facchetti, A. The journey of conducting polymers from discovery to utility. Nat. Mater. 19, 922–928 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Cost transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Gao, S., Zhang, X., Xin, J. H. & Zhang, C. Probing the character of cost carriers in one-dimensional conjugated polymers: a evaluate of the theoretical fashions, experimental tendencies, and thermoelectric purposes. J. Mater. Chem. C. 11, 12–47 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Salje, E. Ok. H. et al. (eds) Polarons and Bipolarons in Excessive-Tc Superconductors and Associated Supplies (Cambridge Univ. Press, 1995).

  • Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Koepsell, J. et al. Microscopic evolution of doped Mott insulators from polaronic metallic to Fermi liquid. Science 374, 82–86 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koschorreck, M. et al. Enticing and repulsive Fermi polarons in two dimensions. Nature 485, 619–622 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexandrov, A. S. Polarons in Superior Supplies (Springer, 2007).

  • Alexandrov, A. S. & Devreese, J. T. Advances in Polaron Physics (Springer, 2010).

  • Tang, H. et al. An answer-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mertelj, T., Kabanov, V. V. & Mihailovic, D. Charged particles on a two-dimensional lattice topic to anisotropic Jahn–Teller interactions. Phys. Rev. Lett. 94, 147003 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perfetti, L. et al. Spectroscopic indications of polaronic carriers within the quasi-one-dimensional conductor (TaSe4)2I. Phys. Rev. Lett. 87, 216404 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission research of quantum supplies. Rev. Mod. Phys. 93, 025006 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kruchinin, S. Multiband superconductors. Rev. Theor. Sci. 4, 165–178 (2016).

    Article 

    Google Scholar
     

  • Mahan, G. D. Many-Particle Physics (Springer, 2013).

  • Sio, W. H., Verdi, C., Poncé, S. & Giustino, F. Polarons from first ideas, with out supercells. Phys. Rev. Lett. 122, 246403 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sio, W. H., Verdi, C., Poncé, S. & Giustino, F. Ab initio idea of polarons: formalism and purposes. Phys. Rev. B 99, 235139 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sio, W. H. & Giustino, F. Polarons in two-dimensional atomic crystals. Nat. Phys. 19, 629–636 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bhat, V., Callaway, C. P. & Risko, C. Computational approaches for natural semiconductors: from chemical and bodily understanding to predicting new supplies. Chem. Rev. 123, 7498–7547 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, M. et al. Displacement of polarons by vibrational modes in doped conjugated polymers. Phys. Rev. Mater. 1, 055604 (2017).

    Article 

    Google Scholar
     

  • Reticcioli, M. et al. Polaron-driven floor reconstructions. Phys. Rev. X 7, 031053 (2017).


    Google Scholar
     

  • Guzelturk, B. et al. Visualization of dynamic polaronic pressure fields in hybrid lead halide perovskites. Nat. Mater. 20, 618–623 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bozin, E. S. et al. Crystallization of polarons by way of cost and spin ordering transitions in 1T-TaS2. Nat. Commun. 14, 7055 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bombile, J. H., Janik, M. J. & Milner, S. T. Polaron formation mechanisms in conjugated polymers. Phys. Chem. Chem. Phys. 20, 317–331 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Figuring out structural and chemical heterogeneities of floor species on the single-bond restrict. Science 371, 818–822 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, X. et al. Revealing intramolecular isotope results with chemical-bond precision. J. Am. Chem. Soc. 145, 13839–13845 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cirera, B. et al. Tailoring topological order and π-conjugation to engineer quasi-metallic polymers. Nat. Nanotechnol. 15, 437–443 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • González-Herrero, H. et al. Atomic scale management and visualization of topological quantum section transition in π-conjugated polymers pushed by their size. Adv. Mater. 33, e2104495 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Datar, A., Bar-Sadan, M. & Ramasubramaniam, A. Interactions between transition-metal surfaces and MoS2 monolayers: implications for hydrogen evolution and CO2 discount reactions. J. Phys. Chem. C. 124, 20116–20124 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kivelson, S. & Heeger, A. J. First-order transition to a metallic state in polyacetylene: a strong-coupling polaronic metallic. Phys. Rev. Lett. 55, 308–311 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stafström, S. et al. Polaron lattice in extremely conducting polyaniline: theoretical and optical research. Phys. Rev. Lett. 59, 1464–1467 (1987).

    Article 
    PubMed 

    Google Scholar
     

  • Pásztor, Á. et al. Multiband cost density wave uncovered in a transition metallic dichalcogenide. Nat. Commun. 12, 6037 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barja, S. et al. Cost density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 12, 751–756 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Emin, D. Small polarons. Phys. At present 35, 34–40 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Yang, B. et al. Chemical enhancement and quenching in single-molecule tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 62, e202218799 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, C. et al. Chemical identification and bond management of π-skeletons in a coupling response. J. Am. Chem. Soc. 143, 9461–9467 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, F. et al. Supermultiplexed optical imaging and barcoding with engineered polyynes. Nat. Strategies 15, 194–200 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Köppel, H., Yarkony, D. R. & Barentzen, H. The Jahn-Teller impact: Fundamentals and implications for physics and chemistry (Springer, 2009).

  • Pouget, J. P. et al. X ray remark of twookF and 4okF scatterings in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. Lett. 37, 437–440 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Schäfer, J. et al. Uncommon spectral habits of charge-density waves with imperfect nesting in a quasi-one-dimensional metallic. Phys. Rev. Lett. 91, 066401 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Giessibl, F. J. The qPlus sensor, a strong core for the atomic power microscope. Rev. Sci. Instrum. 90, 011101 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Effectivity of ab-initio whole vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density useful dispersion correction (DFT-D) for the 94 parts H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Yakovkin, I. N. Quantum confinement in free Cu(111), Ag(111), and Au(111) layers and obvious splitting of floor bands. Surf. Sci. 691, 121501 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bader, R. F. W. Atoms in molecules. Acc. Chem. Res. 18, 9–15 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader evaluation algorithm with out lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tersoff, J. & Hamann, D. R. Concept and utility for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized suggestions. Phys. Rev. B 90, 085421 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Peng, J. et al. Weakly perturbative imaging of interfacial water with submolecular decision by atomic power microscopy. Nat. Commun. 9, 122 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Dong, Z.-C. & Aizpurua, J. Theoretical therapy of single-molecule scanning Raman picoscopy in strongly inhomogeneous close to fields. J. Raman Spectrosc. 52, 296–309 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hu, W. et al. Figuring out the construction of 4-chlorophenyl isocyanide adsorbed on Au(111) and Pt(111) surfaces by first-principles simulations of Raman spectra. Phys. Chem. Chem. Phys. 19, 32389–32397 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at excessive pressures. Phys. Rev. B 78, 134106 (2008).

    Article 

    Google Scholar
     

  • Meena, R., Li, G. & Casula, M. Floor-state properties of the narrowest zigzag graphene nanoribbon from quantum Monte Carlo and comparability with density useful idea. J. Chem. Phys. 156, 084112 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tesch, R. & Kowalski, P. M. Hubbard U parameters for transition metals from first ideas. Phys. Rev. B 105, 195153 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Polaron superlattices in n-doped single conjugated polymers. Zenodo https://doi.org/10.5281/zenodo.16753004 (2025).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles