Chen, H.-Z. et al. Revealing the lacking dimension at an distinctive level. Nat. Phys. 16, 571–578 (2020).
Wang, C. et al. Electromagnetically induced transparency at a chiral distinctive level. Nat. Phys. 16, 334–340 (2020).
Rüter, C. E. et al. Statement of parity-time symmetry in optic. Nat. Phys. 6, 192–195 (2010).
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetr. Nat. Phys. 14, 11–19 (2018).
Peng, B. et al. Loss-induced suppression and revival of lasin. Science 346, 328–332 (2014).
Li, A. et al. Distinctive factors and non-Hermitian photonics on the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).
Du, H. et al. Nonconservative coupling in a passive silicon microring resonator. Phys. Rev. Lett. 124, 013606 (2020).
Soleymani, S. et al. Chiral and degenerate good absorption on distinctive surfaces. Nat. Commun. 13, 599 (2022).
Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics 10, 657–661 (2016).
Zhong, Q. et al. Sensing with distinctive surfaces as a way to mix sensitivity with robustness. Phys. Rev. Lett. 122, 153902 (2019).
Fang, Okay., Yu, Z. & Fan, S. Photonic Aharonov–Bohm impact based mostly on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).
Cohen, E. et al. Geometric part from Aharonov–Bohm to Pancharatnam–Berry and past. Nat. Rev. Phys. 1, 437–449 (2019).
Li, E. et al. Photonic Aharonov–Bohm impact in photon-phonon interactions. Nat. Commun. 5, 3225 (2014).
Peng, B. et al. Chiral modes and directional lasing at distinctive factors. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).
Lee, H. et al. Chiral distinctive level enhanced energetic tuning and nonreciprocity in micro-resonators. Gentle Sci. Appl. 14, 45 (2025).
Chen, Y. et al. Electrically reconfigurable mode chirality in built-in microring resonators. Laser Photonics Rev. 18, 2301289 (2024).
Wang, C. et al. Coherent good absorption at an distinctive level. Science 373, 1261–1265 (2021).
Sweeney, W. R. et al. Completely absorbing distinctive factors and chiral absorbers. Phys. Rev. Lett. 122, 093901 (2019).
Maayani, S. et al. Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018).
Hokmabadi, M. P., Schumer, A. & Christodoulides, D. N. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).
Xu, J. et al. Single-cavity loss-enabled nanometrology. Nat. Nanotechnol. 19, 1472–1477 (2024).
Ruan, Y.-P. et al. Statement of loss-enhanced magneto-optical impact. Nat. Photonics 19, 109–115 (2025).
Mao, W. et al. Distinctive-point-enhanced part sensing. Sci. Adv. 10, ead15037 (2024).
Zhang, Z. et al. Tunable topological cost vortex microlaser. Science 368, 760–763 (2020).
Madiot, G. et al. Harnessing coupled nanolasers close to distinctive factors for directional emission. Sci. Adv. 10, eadr8283 (2024).
Jahromi, A. Okay. et al. Statistical parity-time-symmetric lasing in an optical fibre community. Nat. Commun. 8, 1359 (2017).
Ferrier, L. et al. Unveiling the enhancement of spontaneous emission at distinctive factors. Phys. Rev. Lett. 129, 083602 (2022).
Huang, R. et al. Nonreciprocal photon blockade. Phys. Rev. Lett. 121, 153601 (2023).
Lu, X. et al. Nonreciprocity and quantum correlations of sunshine transport in sizzling atoms through reservoir engineering. Phys. Rev. Lett. 126, 223603 (2021).
Zhang, Z. et al. Chirality-induced quantum nonreciprocity. Nat. Photonics 19, 840–846 (2025).
Zhong, Q. et al. Management of spontaneous emission dynamics in microcavities with chiral distinctive surfaces. Phys. Rev. Res. 3, 013220 (2021).
Choose, A. et al. Normal idea of spontaneous emission close to distinctive factors. Choose. Categorical 25, 12325–12348 (2017).
Khanbekyan, M. & Wiersig, J. Decay suppression of spontaneous emission of a single emitter in a high-Q cavity at distinctive factors. Phys. Rev. Res. 2, 023375 (2020).
Lu, Y. et al. Anomalous spontaneous emission dynamics at chiral distinctive factors. Choose. Categorical 30, 41784–41803 (2022).
Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot units. Nat. Commun. 8, 889 (2017).
Aghaeimeibodi, S. et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett. 113, 221102 (2018).
Wan, N. H. et al. Giant-scale integration of synthetic atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).
Larocque, H. et al. Tunable quantum emitters on large-scale foundry silicon photonics. Nat. Commun. 15, 5781 (2024).
Elshaari, A. W. et al. Hybrid built-in quantum photonic circuits. Nat. Photonics 14, 285–298 (2020).
Lomonte, E. et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun. 12, 6847 (2021).
Yue, W. & Yi-jian, J. Crystal orientation dependence of piezoelectric properties in LiNbO3 and LiTaO3. Choose. Mater. 23, 403–408 (2003).
Wang, X. et al. Giant-scale quantum dot-lithium niobate hybrid built-in photonic circuits enabling on-chip quantum networking. Nat. Mater. 24, 1898–1905 (2025).
Yu, M. et al. Built-in femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).
Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).
Wang, C. et al. Built-in lithium niobate electro-optic modulators working at CMOS-compatible voltages. Nature 562, 101–104 (2018).
Uppu, R. et al. Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum expertise. Nat. Nanotechnol. 16, 1308–1317 (2021).
Ding, X. et al. Excessive-efficiency single-photon supply above the loss-tolerant threshold for environment friendly linear optical quantum computing. Nat. Photonics 19, 387–391 (2025).
Tomm, N. et al. A vivid and quick supply of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).
Somaschi, N. et al. Close to-optimal single-photon sources within the strong state. Nat. Photonics 10, 340–345 (2016).
Uppu, R. et al. Scalable built-in single-photon supply. Sci. Adv. 6, eabc8268 (2020).
Najer, D. et al. A gated quantum dot strongly coupled to an optical microcavity. Nature 575, 622–627 (2019).
Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).
Holzgrafe, J. et al. Leisure of the electro-optic response in thin-film lithium niobate modulators. Choose. Categorical 32, 3619–3631 (2024).
Chen, Y. et al. In situ three-dimensional pressure engineering of solid-state quantum emitters in photonic constructions in the direction of scalable quantum networks. Nat. Commun. 16, 5564 (2025).
Vogel, M. M. et al. Affect of lateral electrical fields on multiexcitonic transitions and wonderful construction of single quantum dots. Appl. Phys. Lett. 91, 051904 (2007).
Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).
Shambat, G. et al. Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode. Nat. Commun. 2, 539 (2011).
Jin, C.-Y. et al. Ultrafast non-local management of spontaneous emission. Nat. Nanotechnol. 9, 886–890 (2014).
Chen, Y. On-chip non-Hermitian cavity quantum electrodynamics. figshare https://doi.org/10.6084/m9.figshare.31046719 (2026).
