23.1 C
Canberra
Friday, February 13, 2026

On-chip non-Hermitian cavity quantum electrodynamics


  • Chen, H.-Z. et al. Revealing the lacking dimension at an distinctive level. Nat. Phys. 16, 571–578 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Electromagnetically induced transparency at a chiral distinctive level. Nat. Phys. 16, 334–340 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rüter, C. E. et al. Statement of parity-time symmetry in optic. Nat. Phys. 6, 192–195 (2010).

    Article 

    Google Scholar
     

  • El-Ganainy, R. et al. Non-Hermitian physics and PT symmetr. Nat. Phys. 14, 11–19 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Peng, B. et al. Loss-induced suppression and revival of lasin. Science 346, 328–332 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, A. et al. Distinctive factors and non-Hermitian photonics on the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, H. et al. Nonconservative coupling in a passive silicon microring resonator. Phys. Rev. Lett. 124, 013606 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soleymani, S. et al. Chiral and degenerate good absorption on distinctive surfaces. Nat. Commun. 13, 599 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics 10, 657–661 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Q. et al. Sensing with distinctive surfaces as a way to mix sensitivity with robustness. Phys. Rev. Lett. 122, 153902 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, Okay., Yu, Z. & Fan, S. Photonic Aharonov–Bohm impact based mostly on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Cohen, E. et al. Geometric part from Aharonov–Bohm to Pancharatnam–Berry and past. Nat. Rev. Phys. 1, 437–449 (2019).

    Article 

    Google Scholar
     

  • Li, E. et al. Photonic Aharonov–Bohm impact in photon-phonon interactions. Nat. Commun. 5, 3225 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Peng, B. et al. Chiral modes and directional lasing at distinctive factors. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H. et al. Chiral distinctive level enhanced energetic tuning and nonreciprocity in micro-resonators. Gentle Sci. Appl. 14, 45 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Electrically reconfigurable mode chirality in built-in microring resonators. Laser Photonics Rev. 18, 2301289 (2024).

    Article 

    Google Scholar
     

  • Wang, C. et al. Coherent good absorption at an distinctive level. Science 373, 1261–1265 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sweeney, W. R. et al. Completely absorbing distinctive factors and chiral absorbers. Phys. Rev. Lett. 122, 093901 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maayani, S. et al. Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hokmabadi, M. P., Schumer, A. & Christodoulides, D. N. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. Single-cavity loss-enabled nanometrology. Nat. Nanotechnol. 19, 1472–1477 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruan, Y.-P. et al. Statement of loss-enhanced magneto-optical impact. Nat. Photonics 19, 109–115 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Mao, W. et al. Distinctive-point-enhanced part sensing. Sci. Adv. 10, ead15037 (2024).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Tunable topological cost vortex microlaser. Science 368, 760–763 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madiot, G. et al. Harnessing coupled nanolasers close to distinctive factors for directional emission. Sci. Adv. 10, eadr8283 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jahromi, A. Okay. et al. Statistical parity-time-symmetric lasing in an optical fibre community. Nat. Commun. 8, 1359 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrier, L. et al. Unveiling the enhancement of spontaneous emission at distinctive factors. Phys. Rev. Lett. 129, 083602 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, R. et al. Nonreciprocal photon blockade. Phys. Rev. Lett. 121, 153601 (2023).

    Article 

    Google Scholar
     

  • Lu, X. et al. Nonreciprocity and quantum correlations of sunshine transport in sizzling atoms through reservoir engineering. Phys. Rev. Lett. 126, 223603 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Chirality-induced quantum nonreciprocity. Nat. Photonics 19, 840–846 (2025).

  • Zhong, Q. et al. Management of spontaneous emission dynamics in microcavities with chiral distinctive surfaces. Phys. Rev. Res. 3, 013220 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Choose, A. et al. Normal idea of spontaneous emission close to distinctive factors. Choose. Categorical 25, 12325–12348 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Khanbekyan, M. & Wiersig, J. Decay suppression of spontaneous emission of a single emitter in a high-Q cavity at distinctive factors. Phys. Rev. Res. 2, 023375 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Y. et al. Anomalous spontaneous emission dynamics at chiral distinctive factors. Choose. Categorical 30, 41784–41803 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot units. Nat. Commun. 8, 889 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aghaeimeibodi, S. et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett. 113, 221102 (2018).

    Article 

    Google Scholar
     

  • Wan, N. H. et al. Giant-scale integration of synthetic atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larocque, H. et al. Tunable quantum emitters on large-scale foundry silicon photonics. Nat. Commun. 15, 5781 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elshaari, A. W. et al. Hybrid built-in quantum photonic circuits. Nat. Photonics 14, 285–298 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lomonte, E. et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun. 12, 6847 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue, W. & Yi-jian, J. Crystal orientation dependence of piezoelectric properties in LiNbO3 and LiTaO3. Choose. Mater. 23, 403–408 (2003).

    Article 

    Google Scholar
     

  • Wang, X. et al. Giant-scale quantum dot-lithium niobate hybrid built-in photonic circuits enabling on-chip quantum networking. Nat. Mater. 24, 1898–1905 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, M. et al. Built-in femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Built-in lithium niobate electro-optic modulators working at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uppu, R. et al. Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum expertise. Nat. Nanotechnol. 16, 1308–1317 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, X. et al. Excessive-efficiency single-photon supply above the loss-tolerant threshold for environment friendly linear optical quantum computing. Nat. Photonics 19, 387–391 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Tomm, N. et al. A vivid and quick supply of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Somaschi, N. et al. Close to-optimal single-photon sources within the strong state. Nat. Photonics 10, 340–345 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Uppu, R. et al. Scalable built-in single-photon supply. Sci. Adv. 6, eabc8268 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Najer, D. et al. A gated quantum dot strongly coupled to an optical microcavity. Nature 575, 622–627 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holzgrafe, J. et al. Leisure of the electro-optic response in thin-film lithium niobate modulators. Choose. Categorical 32, 3619–3631 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. In situ three-dimensional pressure engineering of solid-state quantum emitters in photonic constructions in the direction of scalable quantum networks. Nat. Commun. 16, 5564 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogel, M. M. et al. Affect of lateral electrical fields on multiexcitonic transitions and wonderful construction of single quantum dots. Appl. Phys. Lett. 91, 051904 (2007).

    Article 

    Google Scholar
     

  • Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shambat, G. et al. Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode. Nat. Commun. 2, 539 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Jin, C.-Y. et al. Ultrafast non-local management of spontaneous emission. Nat. Nanotechnol. 9, 886–890 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. On-chip non-Hermitian cavity quantum electrodynamics. figshare https://doi.org/10.6084/m9.figshare.31046719 (2026).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles