Romero, F. J. et al. Resistive switching in graphene oxide. Entrance. Mater. 7, 1–5 (2020).
Moazzeni, A., Riyahi Madvar, H., Hamedi, S. & Kordrostami, Z. Fabrication of graphene oxide-based resistive switching reminiscence by the spray pyrolysis approach for neuromorphic computing. ACS Appl. Nano Mater. 6, 2236–2248 (2023).
Ahmed, T. et al. Blended ionic-electronic cost transport in layered black-phosphorus for low-power reminiscence. Adv. Funct. Mater. 32, 2202923 (2022).
Ge, R. et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition steel dichalcogenides. Nano Lett. 18, 434–441 (2018).
Lee, H. S. et al. Twin-gated MoS2 memtransistor crossbar array. Adv. Funct. Mater. 30, 2001339 (2020).
Wu, Q. T. et al. Two-dimensional hexagonal boron nitride primarily based memristor. Acta Phys. Sin. 66, 228504 (2017).
Zhu, Ok. et al. Graphene-boron nitride-graphene cross-point memristors with three steady resistive states. ACS Appl. Mater. Interfaces 11, 37999–38005 (2019).
Shi, Y. et al. Digital synapses product of layered two-dimensional supplies. Nat. Electron. 1, 458–465 (2018).
Xie, J., Afshari, S. & Sanchez Esqueda, I. Hexagonal boron nitride (h-BN) memristor arrays for analog-based machine studying {hardware}. npj 2D Mater. Appl. 6, 71 (2022).
Wu, X. et al. Thinnest nonvolatile reminiscence primarily based on monolayer h-BN. Adv. Mater. 31, 1900175 (2019).
Zhao, H. et al. Atomically skinny femtojoule memristive system. Adv. Mater. 29, 1703232 (2017).
Chen, S. et al. Wafer-scale integration of two-dimensional supplies in high-density memristive crossbar arrays for synthetic neural networks. Nat. Electron. 3, 638–645 (2020).
Teja Nibhanupudi, S. S. et al. Extremely-fast switching memristors primarily based on two-dimensional supplies. Nat. Commun. 15, 2334 (2024).
Afshari, S. et al. Dot-product computation and logistic regression with 2D hexagonal-boron nitride (h-BN) memristor arrays. 2D Mater. 10, 35031 (2023).
Xie, J. et al. Quantum conductance in vertical hexagonal boron nitride memristors with graphene-edge contacts. Nano Lett. 24, 2473–2480 (2024).
Chen, H. et al. Introduction of defects in hexagonal boron nitride for vacancy-based 2D memristors. Nanoscale 15, 4309–4316 (2023).
Wen, C. et al. Superior information encryption utilizing 2D supplies. Adv. Mater. 33, 2100187 (2021).
Shen, Y. et al. Variability and yield in h-BN-based memristive circuits: the function of every sort of defect. Adv. Mater. 33, e2103656 (2021).
Lanza, M. et al. Again-end-of-line integration of 2D supplies on silicon microchips. In Proc. Worldwide Electron Units Assembly 7–10 (IEEE, 2023).
Merenkov, I. S. et al. Orientation-controlled, low-temperature plasma progress and purposes of h-BN nanosheets. Nano Res. 12, 91–99 (2019).
Hoang, D. Q. et al. Progress mechanisms of hBN crystalline nanostructures with RF sputtering deposition: challenges, alternatives, and future views. Phys. Scr. 98, 085003 (2023).
Hoang, D. Q. et al. Elucidation of the expansion mechanism of sputtered 2D hexagonal boron nitride nanowalls. Cryst. Progress Des. 16, 3699–3708 (2016).
Yu, J. et al. Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet gentle emission, and superhydrophobicity. ACS Nano 4, 414–422 (2010).
Andújar, J. L., Bertran, E. & Maniette, Y. Microstructure of extremely oriented, hexagonal, boron nitride skinny movies grown on crystalline silicon by radio frequency plasma-assisted chemical vapor deposition. J. Appl. Phys. 80, 6553–6555 (1996).
Toth, P. Nanostructure quantification of turbostratic carbon by HRTEM picture evaluation: cutting-edge, biases, sensitivity and finest practices. Carbon 178, 688–707 (2021).
Yamamoto, M. et al. Low-temperature direct synthesis of multilayered h-BN with out catalysts by inductively coupled plasma-enhanced chemical vapor deposition. ACS Omega 8, 5497–5505 (2023).
Liu, D. et al. Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide units with improved mobility and thermal dissipation. Nat. Commun. 10, 5140 (2019).
Yuan, Y. et al. On the standard of economic chemical vapour deposited hexagonal boron nitride. Nat. Commun. 15, 2651 (2024).
Lee, S. H. et al. Enhancements in structural and optical properties of wafer-scale hexagonal boron nitride movie by post-growth annealing. Sci. Rep. 9, 14420 (2019).
Radhakrishnan, S. et al. Fluorinated h-BN as a magnetic semiconductor. Sci. Adv. 3, e1700842 (2017).
Yang, S. J. et al. Unstable and nonvolatile resistive switching coexistence in conductive level hexagonal boron nitride monolayer. ACS Nano 17, 13457–13466 (2023).
Lim, E. W. & Ismail, R. Conduction mechanism of valence change resistive switching reminiscence: a survey. Electron 4, 586–613 (2015).
Li, Y. et al. Resistive switching properties of monolayer h-BN atomristors with completely different electrodes. Appl. Phys. Lett. 120, 183504 (2022).
Pan, C. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27, 1703703 (2017).
Cai, Z., Liu, L. & Zhou, P. The event of switch applied sciences for superior 2D circuits integration. InfoMat 6, 304–322 (2024).
Nakatani, M. et al. Prepared-to-transfer two-dimensional supplies utilizing tunable adhesive pressure tapes. Nat. Electron. 7, 119–130 (2024).
Pham, P. V. et al. Switch of 2D movies: from imperfection to perfection. ACS Nano 18, 14841–14876 (2024).
Lupina, G. et al. Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 9, 4776–4785 (2015).
Wan, W. et al. A compute-in-memory chip primarily based on resistive random-access reminiscence. Nature 608, 504–512 (2022).
Rao, M. et al. Hundreds of conductance ranges in memristors built-in on CMOS. Nature 615, 823–829 (2023).
Kim, H., Mahmoodi, M. R., Nili, H. & Strukov, D. B. 4K-memristor analog-grade passive crossbar circuit. Nat. Commun. 12, 5191 (2021).
Haensch, W. et al. Compute in-memory with non-volatile parts for neural networks: a assessment from a co-design perspective. Adv. Mater. 35, e2204944 (2023).
Music, W. et al. Programming memristor arrays with arbitrarily excessive precision for analog computing. Science 383, 903–910 (2024).
Park, H., Mastro, M. A., Tadjer, M. J. & Kim, J. Programmable multilevel memtransistors primarily based on van der Waals heterostructures. Adv. Electron. Mater. 5, 1800720 (2019).
Khot, A. C. et al. Amorphous boron nitride memristive system for high-density reminiscence and neuromorphic computing purposes. ACS Appl. Mater. Interfaces 14, 10546–10557 (2022).
Zhu, Ok. et al. Hybrid 2D–CMOS microchips for memristive purposes. Nature 618, 57–62 (2023).
Yu, S. Neuro-inspired computing with rising nonvolatile memorys. Proc. IEEE 106, 260–285 (2018).
Kim, H., Kim, T., Kim, J. & Kim, J. J. Neural community optimized to resistive reminiscence with nonlinear current-voltage traits. ACM J. Emerg. Technol. Comput. Syst. 14, 46 (2018).
Jiang, Z. et al. COPS: an environment friendly and reliability-enhanced programming scheme for analog RRAM and on-chip implementation of denoising diffusion probabilistic mannequin. In Proc. sixtieth ACM/IEEE Design Automation Convention 8–11 (ACM, 2023).
Yao, P. et al. Totally hardware-implemented memristor convolutional neural community. Nature 577, 641–646 (2020).
Ambrogio, S. et al. Statistical fluctuations in HfOx resistive-switching reminiscence: half II—random telegraph noise. IEEE Trans. Electron Units 61, 2920–2927 (2014).
Puglisi, F. M. in Noise in Nanoscale Semiconductor Units (ed. Grasser, T.) 87–133 (Springer, 2020).
Becker, T. et al. Resistive switching units producing large random telegraph noise. IEEE Electron System Lett. 43, 146–149 (2022).
Pazos, S. et al. {Hardware} implementation of a real random quantity generator integrating a hexagonal boron nitride memristor with a business microcontroller. Nanoscale 15, 2171–2180 (2022).
Maestro, M. et al. New excessive decision random telegraph noise (RTN) characterization technique for resistive RAM. Stable. State Electron. 115, 140–145 (2016).
Martin-Martinez, J., Diaz, J., Rodriguez, R., Nafria, M. & Aymerich, X. New weighted time lag technique for the evaluation of random telegraph indicators. IEEE Electron System Lett. 35, 479–481 (2014).
Pazos, S. et al. Excessive-temporal-resolution characterization reveals excellent random telegraph noise and the origin of dielectric breakdown in h-BN memristors. Adv. Funct. Mater. 2213816, 2213816 (2023).
Huang, Y. C. et al. 15.7 A 32Mb RRAM in a 12nm FinFET expertise with a 0.0249 μm2 bit-cell, a 3.2 GB/s learn throughput, a 10K cycle write endurance and a 10-year retention at 105 °C. In Proc. IEEE Worldwide Stable-State Circuits Convention 288–290 (IEEE, 2024).
Krishnan, G. et al. Strong RRAM-based in-memory computing in gentle of mannequin stability. In Proc. IEEE Worldwide Reliability Physics Symposium 1–5 (IEEE, 2021).
