Raut, R., Krit, S. & Chatterjee, P. Machine Imaginative and prescient for Business 4.0: Purposes and Case Research (CRC Press, 2022).
Mennel, L. et al. Ultrafast machine imaginative and prescient with 2D materials neural community picture sensors. Nature 579, 62–66 (2020).
Liao, F. et al. Bioinspired in-sensor visible adaptation for correct notion. Nat. Electron. 5, 84–91 (2022).
Zhou, F. & Chai, Y. Close to-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).
Jang, H. et al. In-sensor optoelectronic computing utilizing electrostatically doped silicon. Nat. Electron. 5, 519–525 (2022).
Ma, S. et al. A 619-pixel machine imaginative and prescient enhancement chip based mostly on two-dimensional semiconductors. Sci. Adv. 8, eabn9328 (2022).
Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B. & Delbruck, T. Retinomorphic event-based imaginative and prescient sensors: bioinspired cameras with spiking output. Proc. IEEE 102, 1470–1484 (2014).
Gehrig, D. & Scaramuzza, D. Low-latency automotive imaginative and prescient with occasion cameras. Nature 629, 1034–1040 (2024).
Paredes-Vallés, F. et al. Totally neuromorphic imaginative and prescient and management for autonomous drone flight. Sci. Robotic. 9, eadi0591 (2024).
Dudek, P. et al. Sensor-level laptop imaginative and prescient with pixel processor arrays for agile robots. Sci. Robotic. 7, eabl7755 (2022).
Gallego, G. et al. Occasion-based imaginative and prescient: a survey. IEEE Trans. Sample Anal. Mach. Intell. 44, 154–180 (2022).
Xiao, Okay., Cui, X., Liu, Okay., Cui, X. & Wang, X. An SNN-based and neuromorphic-hardware-implementable noise filter with self-adaptive time window for event-based imaginative and prescient sensor. In 2021 Worldwide Joint Convention on Neural Networks (IJCNN) 1–8 (IEEE, 2021).
Chakravarthi, B., Verma, A. A., Daniilidis, Okay., Fermuller, C. & Yang, Y. Current occasion digicam improvements: a survey. In Pc Imaginative and prescient–ECCV 2024 Workshops (eds Del Bue, A., Canton, C., Pont-Tuset, J. & Tommasi, T.) 342–376 (Springer, 2025).
Perot, E., de Tournemire, P., Nitti, D., Masci, J. & Sironi, A. Studying to detect objects with a 1 megapixel occasion digicam. In Proc. thirty fourth Worldwide Convention on Neural Data Processing Programs (eds Larochelle, H. et al.) 16639–16652 (Curran, 2020).
Schon, G. et al. A 320 × 320 1/5″ BSI-CMOS stacked occasion sensor for low-power imaginative and prescient purposes. In 2023 IEEE Symposium on VLSI Expertise and Circuits (VLSI Expertise and Circuits) 1–2 (IEEE, 2023).
Wu, Y. et al. A spiking synthetic imaginative and prescient structure based mostly on absolutely emulating the human imaginative and prescient. Adv. Mater. 36, 2312094 (2024).
Zhou, Y. et al. Computational event-driven imaginative and prescient sensors for in-sensor spiking neural networks. Nat. Electron. 6, 870–878 (2023).
Wu, S.-E. et al. Retinomorphic movement detector fabricated with natural infrared semiconductors. Adv. Sci. 10, 2304688 (2023).
Rogers, Okay. The Eye: the Physiology of Human Notion (Rosen, 2010).
Gollisch, T. & Meister, M. Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65, 150–164 (2010).
Kandel, E., Koester, J. D., Mack, S. H. & Siegelbaum, S. Ideas of Neural Science sixth edn (McGraw Hill, 2021).
Euler, T., Haverkamp, S., Schubert, T. & Baden, T. Retinal bipolar cells: elementary constructing blocks of imaginative and prescient. Nat. Rev. Neurosci. 15, 507–519 (2014).
Kim, U. S., Mahroo, O. A., Mollon, J. D. & Yu-Wai-Man, P. Retinal ganglion cells—variety of cell sorts and scientific relevance. Entrance. Neurol. 12, 661938 (2021).
Lee, H. R., Lee, D. & Oh, J. H. A hippocampus-inspired dual-gated natural synthetic synapse for simultaneous sensing of a neurotransmitter and lightweight. Adv. Mater. 33, 2100119 (2021).
Chen, Okay. et al. Natural optoelectronic synapse based mostly on photon-modulated electrochemical doping. Nat. Photon. 17, 629–637 (2023).
He, Z. et al. An natural transistor with mild intensity-dependent lively photoadaptation. Nat. Electron. 4, 522–529 (2021).
Li, L. et al. Adaptative machine imaginative and prescient with microsecond-level correct notion past human retina. Nat. Commun. 15, 6261 (2024).
Zhang, Z. et al. All-in-one two-dimensional retinomorphic {hardware} system for movement detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).
Lee, Y. et al. Stretchable natural optoelectronic sensorimotor synapse. Sci. Adv. 4, eaat7387 (2018).
Tan, H. & van Dijken, S. Dynamic machine imaginative and prescient with retinomorphic photomemristor–reservoir computing. Nat. Commun. 14, 2169 (2023).
Kolb, H. in Webvision: The Group of the Retina and Visible System (eds. Kolb, H. et al.) https://webvision.med.utah.edu/ebook/part-i-foundations/simple-anatomy-of-the-retina/ (College of Utah Well being Sciences Heart, 1995).
Baylor, D. How photons begin imaginative and prescient. Proc. Natl Acad. Sci. USA 93, 560–565 (1996).
Schnapf, J. L. & Copenhagen, D. R. Variations within the kinetics of rod and cone synaptic transmission. Nature 296, 862–864 (1982).
DeVries, S. H. & Schwartz, E. A. Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina. Nature 397, 157–160 (1999).
Baden, T., Berens, P., Bethge, M. & Euler, T. Spikes in mammalian bipolar cells help temporal layering of the internal retina. Curr. Biol. 23, 48–52 (2013).
Maguire, G. Fast desensitization converts extended glutamate launch right into a transient EPSC at ribbon synapses between retinal bipolar and amacrine cells. Eur. J. Neurosci. 11, 353–362 (1999).
Torre, V., Ashmore, J., Lamb, T. & Menini, A. Transduction and adaptation in sensory receptor cells. J. Neurosci. 15, 7757–7768 (1995).
Thoreson, W. B., Babai, N. & Bartoletti, T. M. Suggestions from horizontal cells to rod photoreceptors in vertebrate retina. J. Neurosci. 28, 5691–5695 (2008).
Smirnakis, S. M., Berry, M. J., Warland, D. Okay., Bialek, W. & Meister, M. Adaptation of retinal processing to picture distinction and spatial scale. Nature 386, 69–73 (1997).
Wang, S. et al. An natural electrochemical transistor for multi-modal sensing, reminiscence and processing. Nat. Electron. 6, 281–291 (2023).
Münch, T. A. et al. Method sensitivity within the retina processed by a multifunctional neural circuit. Nat. Neurosci. 12, 1308–1316 (2009).
Shapley, R. & Enroth-Cugell, C. Visible adaptation and retinal achieve controls. Prog. Retin. Res. 3, 263–346 (1984).
Lee, B. B., Pokorny, J., Smith, V. C., Martin, P. R. & Valbergt, A. Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. J. Decide. Soc. Am. A 7, 2223–2236 (1990).
Florey, E. in From Neuron to Motion (eds. Deecke, L. et al.) 413–419 (Springer, 1990).
Wang, J. et al. Bodily insights into non-fullerene natural photovoltaics. Nat. Rev. Phys. 1, 365–381 (2024).
Watson, A. B. in Handbook of Notion and Human Efficiency Vol. 1 (eds Boff, Okay. R. et al.) Chap. 6 (Wiley-Interscience, 1986).
Lian, J., Vatansever, Z., Noshad, M. & Brandt-Pearce, M. Indoor seen mild communications, networking, and purposes. J. Phys.: Photon. 1, 012001 (2019).
Adiono, T. & Fuada, S. Optical interference noise filtering over seen mild communication system using analog high-pass filter circuit. In 2017 Worldwide Symposium on Nonlinear Idea and Its Purposes (eds Ueta, T. et al.) 616–619 (IEICE, 2017).
Normann, R. A. & Werblin, F. S. Management of retinal sensitivity: I. Mild and darkish adaptation of vertebrate rods and cones. J. Gen. Physiol. 63, 37–61 (1974).
Kelly, D. H. Adaptation results on spatio-temporal sine-wave thresholds. Vis. Res. 12, 89–101, IN1 (1972).
Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).
Huseynova, G. et al. Benzyl viologen as an n-type dopant for natural semiconductors. Org. Electron. 62, 572–580 (2018).
Lu, G., Shen, Z., Wang, H., Bu, L. & Lu, G. Optical interference on the measurement of film-depth-dependent mild absorption spectroscopy and a correction method. Rev. Sci. Instrum. 94, 023907 (2023).
Chen, Okay. et al. Bioinspired dynamic camouflage from colloidal nanocrystals embedded electrochromics. Nano Lett. 21, 4500–4507 (2021).
Rebecq, H., Ranftl, R., Koltun, V. & Scaramuzza, D. Excessive velocity and excessive dynamic vary video with an occasion digicam. IEEE Trans. Sample Anal. Mach. Intell. 43, 1964–1980 (2021).
Code for the paper “Excessive Velocity and Excessive Dynamic Vary Video with an Occasion Digicam” (T-PAMI, 2019). GitHub https://github.com/cedric-scheerlinck/rpg_e2vid (2019).