5.7 C
Canberra
Friday, July 25, 2025

Occasion-driven retinomorphic photodiode with bio-plausible temporal dynamics


  • Raut, R., Krit, S. & Chatterjee, P. Machine Imaginative and prescient for Business 4.0: Purposes and Case Research (CRC Press, 2022).

  • Mennel, L. et al. Ultrafast machine imaginative and prescient with 2D materials neural community picture sensors. Nature 579, 62–66 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Liao, F. et al. Bioinspired in-sensor visible adaptation for correct notion. Nat. Electron. 5, 84–91 (2022).


    Google Scholar
     

  • Zhou, F. & Chai, Y. Close to-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).


    Google Scholar
     

  • Jang, H. et al. In-sensor optoelectronic computing utilizing electrostatically doped silicon. Nat. Electron. 5, 519–525 (2022).


    Google Scholar
     

  • Ma, S. et al. A 619-pixel machine imaginative and prescient enhancement chip based mostly on two-dimensional semiconductors. Sci. Adv. 8, eabn9328 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B. & Delbruck, T. Retinomorphic event-based imaginative and prescient sensors: bioinspired cameras with spiking output. Proc. IEEE 102, 1470–1484 (2014).


    Google Scholar
     

  • Gehrig, D. & Scaramuzza, D. Low-latency automotive imaginative and prescient with occasion cameras. Nature 629, 1034–1040 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paredes-Vallés, F. et al. Totally neuromorphic imaginative and prescient and management for autonomous drone flight. Sci. Robotic. 9, eadi0591 (2024).

    PubMed 

    Google Scholar
     

  • Dudek, P. et al. Sensor-level laptop imaginative and prescient with pixel processor arrays for agile robots. Sci. Robotic. 7, eabl7755 (2022).

    PubMed 

    Google Scholar
     

  • Gallego, G. et al. Occasion-based imaginative and prescient: a survey. IEEE Trans. Sample Anal. Mach. Intell. 44, 154–180 (2022).

    PubMed 

    Google Scholar
     

  • Xiao, Okay., Cui, X., Liu, Okay., Cui, X. & Wang, X. An SNN-based and neuromorphic-hardware-implementable noise filter with self-adaptive time window for event-based imaginative and prescient sensor. In 2021 Worldwide Joint Convention on Neural Networks (IJCNN) 1–8 (IEEE, 2021).

  • Chakravarthi, B., Verma, A. A., Daniilidis, Okay., Fermuller, C. & Yang, Y. Current occasion digicam improvements: a survey. In Pc Imaginative and prescient–ECCV 2024 Workshops (eds Del Bue, A., Canton, C., Pont-Tuset, J. & Tommasi, T.) 342–376 (Springer, 2025).

  • Perot, E., de Tournemire, P., Nitti, D., Masci, J. & Sironi, A. Studying to detect objects with a 1 megapixel occasion digicam. In Proc. thirty fourth Worldwide Convention on Neural Data Processing Programs (eds Larochelle, H. et al.) 16639–16652 (Curran, 2020).

  • Schon, G. et al. A 320 × 320 1/5″ BSI-CMOS stacked occasion sensor for low-power imaginative and prescient purposes. In 2023 IEEE Symposium on VLSI Expertise and Circuits (VLSI Expertise and Circuits) 1–2 (IEEE, 2023).

  • Wu, Y. et al. A spiking synthetic imaginative and prescient structure based mostly on absolutely emulating the human imaginative and prescient. Adv. Mater. 36, 2312094 (2024).

    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Computational event-driven imaginative and prescient sensors for in-sensor spiking neural networks. Nat. Electron. 6, 870–878 (2023).


    Google Scholar
     

  • Wu, S.-E. et al. Retinomorphic movement detector fabricated with natural infrared semiconductors. Adv. Sci. 10, 2304688 (2023).

    CAS 

    Google Scholar
     

  • Rogers, Okay. The Eye: the Physiology of Human Notion (Rosen, 2010).

  • Gollisch, T. & Meister, M. Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65, 150–164 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kandel, E., Koester, J. D., Mack, S. H. & Siegelbaum, S. Ideas of Neural Science sixth edn (McGraw Hill, 2021).

  • Euler, T., Haverkamp, S., Schubert, T. & Baden, T. Retinal bipolar cells: elementary constructing blocks of imaginative and prescient. Nat. Rev. Neurosci. 15, 507–519 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, U. S., Mahroo, O. A., Mollon, J. D. & Yu-Wai-Man, P. Retinal ganglion cells—variety of cell sorts and scientific relevance. Entrance. Neurol. 12, 661938 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H. R., Lee, D. & Oh, J. H. A hippocampus-inspired dual-gated natural synthetic synapse for simultaneous sensing of a neurotransmitter and lightweight. Adv. Mater. 33, 2100119 (2021).

    CAS 

    Google Scholar
     

  • Chen, Okay. et al. Natural optoelectronic synapse based mostly on photon-modulated electrochemical doping. Nat. Photon. 17, 629–637 (2023).

    CAS 

    Google Scholar
     

  • He, Z. et al. An natural transistor with mild intensity-dependent lively photoadaptation. Nat. Electron. 4, 522–529 (2021).

    CAS 

    Google Scholar
     

  • Li, L. et al. Adaptative machine imaginative and prescient with microsecond-level correct notion past human retina. Nat. Commun. 15, 6261 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. All-in-one two-dimensional retinomorphic {hardware} system for movement detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    PubMed 

    Google Scholar
     

  • Lee, Y. et al. Stretchable natural optoelectronic sensorimotor synapse. Sci. Adv. 4, eaat7387 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, H. & van Dijken, S. Dynamic machine imaginative and prescient with retinomorphic photomemristor–reservoir computing. Nat. Commun. 14, 2169 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolb, H. in Webvision: The Group of the Retina and Visible System (eds. Kolb, H. et al.) https://webvision.med.utah.edu/ebook/part-i-foundations/simple-anatomy-of-the-retina/ (College of Utah Well being Sciences Heart, 1995).

  • Baylor, D. How photons begin imaginative and prescient. Proc. Natl Acad. Sci. USA 93, 560–565 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnapf, J. L. & Copenhagen, D. R. Variations within the kinetics of rod and cone synaptic transmission. Nature 296, 862–864 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • DeVries, S. H. & Schwartz, E. A. Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina. Nature 397, 157–160 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Baden, T., Berens, P., Bethge, M. & Euler, T. Spikes in mammalian bipolar cells help temporal layering of the internal retina. Curr. Biol. 23, 48–52 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Maguire, G. Fast desensitization converts extended glutamate launch right into a transient EPSC at ribbon synapses between retinal bipolar and amacrine cells. Eur. J. Neurosci. 11, 353–362 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Torre, V., Ashmore, J., Lamb, T. & Menini, A. Transduction and adaptation in sensory receptor cells. J. Neurosci. 15, 7757–7768 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thoreson, W. B., Babai, N. & Bartoletti, T. M. Suggestions from horizontal cells to rod photoreceptors in vertebrate retina. J. Neurosci. 28, 5691–5695 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smirnakis, S. M., Berry, M. J., Warland, D. Okay., Bialek, W. & Meister, M. Adaptation of retinal processing to picture distinction and spatial scale. Nature 386, 69–73 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. An natural electrochemical transistor for multi-modal sensing, reminiscence and processing. Nat. Electron. 6, 281–291 (2023).

    CAS 

    Google Scholar
     

  • Münch, T. A. et al. Method sensitivity within the retina processed by a multifunctional neural circuit. Nat. Neurosci. 12, 1308–1316 (2009).

    PubMed 

    Google Scholar
     

  • Shapley, R. & Enroth-Cugell, C. Visible adaptation and retinal achieve controls. Prog. Retin. Res. 3, 263–346 (1984).


    Google Scholar
     

  • Lee, B. B., Pokorny, J., Smith, V. C., Martin, P. R. & Valbergt, A. Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. J. Decide. Soc. Am. A 7, 2223–2236 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Florey, E. in From Neuron to Motion (eds. Deecke, L. et al.) 413–419 (Springer, 1990).

  • Wang, J. et al. Bodily insights into non-fullerene natural photovoltaics. Nat. Rev. Phys. 1, 365–381 (2024).


    Google Scholar
     

  • Watson, A. B. in Handbook of Notion and Human Efficiency Vol. 1 (eds Boff, Okay. R. et al.) Chap. 6 (Wiley-Interscience, 1986).

  • Lian, J., Vatansever, Z., Noshad, M. & Brandt-Pearce, M. Indoor seen mild communications, networking, and purposes. J. Phys.: Photon. 1, 012001 (2019).


    Google Scholar
     

  • Adiono, T. & Fuada, S. Optical interference noise filtering over seen mild communication system using analog high-pass filter circuit. In 2017 Worldwide Symposium on Nonlinear Idea and Its Purposes (eds Ueta, T. et al.) 616–619 (IEICE, 2017).

  • Normann, R. A. & Werblin, F. S. Management of retinal sensitivity: I. Mild and darkish adaptation of vertebrate rods and cones. J. Gen. Physiol. 63, 37–61 (1974).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, D. H. Adaptation results on spatio-temporal sine-wave thresholds. Vis. Res. 12, 89–101, IN1 (1972).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Huseynova, G. et al. Benzyl viologen as an n-type dopant for natural semiconductors. Org. Electron. 62, 572–580 (2018).

    CAS 

    Google Scholar
     

  • Lu, G., Shen, Z., Wang, H., Bu, L. & Lu, G. Optical interference on the measurement of film-depth-dependent mild absorption spectroscopy and a correction method. Rev. Sci. Instrum. 94, 023907 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Okay. et al. Bioinspired dynamic camouflage from colloidal nanocrystals embedded electrochromics. Nano Lett. 21, 4500–4507 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Rebecq, H., Ranftl, R., Koltun, V. & Scaramuzza, D. Excessive velocity and excessive dynamic vary video with an occasion digicam. IEEE Trans. Sample Anal. Mach. Intell. 43, 1964–1980 (2021).

    PubMed 

    Google Scholar
     

  • Code for the paper “Excessive Velocity and Excessive Dynamic Vary Video with an Occasion Digicam” (T-PAMI, 2019). GitHub https://github.com/cedric-scheerlinck/rpg_e2vid (2019).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles