13.9 C
Canberra
Friday, January 23, 2026

Nanoparticle-mediated concentrating on chimeras remodel focused protein degradation


  • Tsai, J. M., Nowak, R. P., Ebert, B. L. & Fischer, E. S. Focused protein degradation: from mechanisms to clinic. Nat. Rev. Mol. Cell Biol. 25, 740–757 (2024). This evaluate systematically examined TPD mechanisms and positioned particular emphasis on their progress in the direction of scientific translation.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garber, Ok. The PROTAC gold rush. Nat. Biotechnol. 40, 12–16 (2022). This commentary captured the thrill round PROTACs, noting their promise for‘undruggable’ targets and likewise the uncertainties of scientific success.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Békés, M., Langley, D. R. & Crews, C. M. PROTAC focused protein degraders: the previous is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022). This paper comprehensively traced the rise of PROTACs and summarized the important thing milestones that formed the sphere.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baek, Ok. & Schulman, B. A. Molecular glue idea solidifies. Nat. Chem. Biol. 16, 2–3 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon, H., Rutter, J. C., Li, Y.-D. & Ebert, B. L. Induced protein degradation for therapeutics: previous, current, and future. J. Clin. Make investments. 134, e175265 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, J. et al. PROTAC-DB 3.0: an up to date database of PROTACs with prolonged pharmacokinetic parameters. Nucleic Acids Res. 53, D1510–D1515 (2024).

    Article 
    PubMed Central 

    Google Scholar
     

  • Hsia, O. et al. Focused protein degradation through intramolecular bivalent glues. Nature 627, 204–211 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Increasing PROTACtable genome universe of E3 ligases. Nat. Commun. 14, 6509 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guenette, R. G., Yang, S. W., Min, J., Pei, B. & Potts, P. R. Goal and tissue selectivity of PROTAC degraders. Chem. Soc. Rev. 51, 5740–5756 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campone, M. et al. Vepdegestrant, a PROTAC estrogen receptor degrader, in superior breast most cancers. N. Engl. J. Med. 393, 556–568 (2025). This paper summarized the Part 3 scientific trial outcomes of the pioneering PROTAC ARV-471, demonstrating constructive advantages in sure subpopulations and highlighting the necessity for customized medication.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Allele-selective reducing of mutant HTT protein by HTT–LC3 linker compounds. Nature 575, 203–209 (2019). This examine is an early instance of utilizing high-throughput screening to find small molecules that direct mutant huntingtin to autophagosomes for degradation.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, D. et al. AUTACs: cargo-specific degraders utilizing selective autophagy. Mol. Cell 76, 797–810.e710 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, C. H. et al. The AUTOTAC chemical biology platform for focused protein degradation through the autophagy-lysosome system. Nat. Commun. 13, 904 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muhar, M. F. et al. C-terminal amides mark proteins for degradation through SCF–FBXO31. Nature 638, 519–527 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Mitochondrial protease concentrating on chimeras for mitochondrial matrix protein degradation. J. Am. Chem. Soc. 145, 12861–12869 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. X. et al. An endoplasmic reticulum (ER)-targeting DNA nanodevice for autophagy-dependent degradation of proteins in membrane-bound organelles. Angew. Chem. Int. Ed. 61, e202205509 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lu, P. et al. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders. Cell 187, 7126–7142.e7120 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, X. et al. The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation. Science 381, eadh5021 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lascaux, P. et al. TEX264 drives selective autophagy of DNA lesions to advertise DNA restore and cell survival. Cell 187, 5698–5718.e5626 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. TFAM is an autophagy receptor that limits irritation by binding to cytoplasmic mitochondrial DNA. Nat. Cell Biol. 26, 878–891 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Rpl12 is a conserved ribophagy receptor. Nat. Cell Biol. 27, 477–492 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koutsifeli, P. et al. Glycogen-autophagy: molecular equipment and mobile mechanisms of glycophagy. J. Biol. Chem. 298, 102093 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Single amino acid based mostly PROTACs set off degradation of the oncogenic kinase ABL in persistent myeloid leukemia (CML). J. Biol. Chem. 299, 104994 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. The regulation, operate, and function of lipophagy, a type of selective autophagy, in metabolic problems. Cell Loss of life Dis. 13, 132 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, H. et al. Anti-inflammatory clearance of amyloid-β by a chimeric Gas6 fusion protein. Nat. Med. 28, 1802–1812 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020). This examine pioneered lysosome-targeting chimeras for extracellular protein degradation, inspiring additional analysis.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, G. et al. Elucidating the mobile determinants of focused membrane protein degradation by lysosome-targeting chimeras. Science 382, eadf6249 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells, J. A. & Kumru, Ok. Extracellular focused protein degradation: an rising modality for drug discovery. Nat. Rev. Drug Discov. 23, 126–140 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, D. et al. Transferrin receptor concentrating on chimeras for membrane protein degradation. Nature 638, 787–795 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Focused protein degradation through mobile trafficking of nanoparticles. Nat. Nanotechnol. 20, 296–302 (2025). This examine comprehensively demonstrates that ligand-installed nanoparticles can degrade their corresponding membrane proteins throughout various nanoparticle formulations and ligand varieties.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors. Nat. Nanotechnol. 19, 545–553 (2024). This examine pioneers the usage of ligand-installed nanoparticles to degrade the intracellular protein mutant p53 and demonstrates that nanoparticle constructive cost enhances their degradation capability.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, S. et al. A plug-and-play monofunctional platform for focused degradation of extracellular proteins and vesicles. Nat. Commun. 15, 7237 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, J. et al. Semiconducting polymer nanoparticles with surface-mimicking protein secondary construction as lysosome-targeting chimaeras for self-synergistic most cancers immunotherapy. Adv. Mater. 34, 2203309 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Lysosome-targeting protein degradation by means of endocytosis pathway triggered by polyvalent nano-chimera for AD remedy. Adv. Mater. 37, 2411061 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Fan, Ok. et al. Bioengineered ferritin-based LYTAC platform for tumor-targeted remedy. Preprint at Analysis Sq. https://doi.org/10.21203/rs.3.rs-5515153/v1 (2025).

  • Jin, P. et al. Growth of a nano-targeting chimera for the degradation of membrane and cytoplasmic proteins. Acta Biomater. 195, 509–521 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mukhopadhyay, A., Basu, S., Singha, S. & Patra, H. Ok. Inside-view of nanomaterial incited protein conformational modifications: insights into designable interplay. Analysis 2018, 9712832 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune, Y., Cui, L., Liu, Z., Tang, Z. & Chen, X. Multivalent RGD peptide-mediated nanochimera for lysosomal degradation of PDL1 orotein. Nano Lett. 25, 4078–4086 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ concentrating on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene enhancing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA supply by selective organ concentrating on nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. The function of protein corona on nanodrugs for organ-targeting and its prospects of software. J. Management. Launch 360, 15–43 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, C. et al. Superior methods for overcoming endosomal/lysosomal barrier in nanodrug supply. Analysis 6, 0148 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McNally, Ok. E. & Cullen, P. J. Endosomal retrieval of cargo: retromer just isn’t alone. Traits Cell Biol. 28, 807–822 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akinc, A. et al. The Onpattro story and the scientific translation of nanomedicines containing nucleic acid-based medication. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, L. N. M. et al. The mechanisms of nanoparticle supply to stable tumours. Nat. Rev. Bioeng. 2, 201–213 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, L. N. et al. The exit of nanoparticles from stable tumours. Nat. Mater. 22, 1261–1272 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sindhwani, S. et al. The entry of nanoparticles into stable tumours. Nat. Mater. 19, 566–575 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabral, H., Li, J., Miyata, Ok. & Kataoka, Ok. Controlling the biodistribution and clearance of nanomedicines. Nat. Rev. Bioeng. 2, 214–232 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mi, P., Cabral, H. & Kataoka, Ok. Ligand-installed nanocarriers towards precision remedy. Adv. Mater. 32, 1902604 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, S. et al. Accelerated rational PROTAC design through deep studying and molecular simulations. Nat. Mach. Intell. 4, 739–748 (2022).

    Article 

    Google Scholar
     

  • Chen, D., Liu, J. & Wei, G.-W. Multiscale topology-enabled structure-to-sequence transformer for protein–ligand interplay predictions. Nat. Mach. Intell. 6, 799–810 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adir, O. et al. Integrating synthetic intelligence and nanotechnology for precision most cancers medication. Adv. Mater. 32, 1901989 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rao, L., Yuan, Y., Shen, X., Yu, G. & Chen, X. Designing nanotheranostics with machine studying. Nat. Nanotechnol. 19, 1769–1781 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles