Singh S, Singh S. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory ailments: A complete assessment. Int J Biol Macromol. 2024;260(Pt 1):129374. https://doi.org/10.1016/j.ijbiomac.2024.129374.
Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical functions. Chem Soc Rev. 2019;48(14):3683–704. https://doi.org/10.1039/c8cs00718g.
Gao W, Wang Y, Zheng Y, Cai X. Prussian blue nanoparticle: from a photothermal conversion agent and a drug supply system, to a bioactive drug. Acc Mater Res. 2024;5(6):687–98. https://doi.org/10.1021/accountsmr.3c00260.
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based mostly drug supply programs: current developments and future prospects. J Nanobiotechnol. 2018;16(1):71. https://doi.org/10.1186/s12951-018-0392-8.
Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, et al. Nanozymes-recent growth and biomedical functions. J Nanobiotechnol. 2022;20(1):92. https://doi.org/10.1186/s12951-022-01295-y.
Vernekar AA, Sinha D, Srivastava S, Paramasivam PU, D’Silva P, Mugesh G. An antioxidant nanozyme that uncovers the cytoprotective potential of Vanadia nanowires. Nat Commun. 2014;5(1). https://doi.org/10.1038/ncomms6301.
Jiang P, Zhang L, Liu X, Ye C, Zhu P, Tan T, et al. Tuning oxidant and antioxidant actions of ceria by anchoring copper single-site for antibacterial utility. Nat Commun. 2024;15(1):1010. https://doi.org/10.1038/s41467-024-45255-6.
Wang Z, Wu J, Zheng J-J, Shen X, Yan L, Wei H, et al. Accelerated discovery of superoxide-dismutase nanozymes through high-throughput computational screening. Nat Commun. 2021;12(1):6866. https://doi.org/10.1038/s41467-021-27194-8.
Dong S, Li X, Pan Q, Wang Ok, Liu N, Yutao W, Zhang Y. Nanotechnology-based approaches for antibacterial remedy. Eur J Med Chem. 2024;279: 116798. https://doi.org/10.1016/j.ejmech.2024.116798. Epub 2024 Aug 27. PMID: 39270451.
Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of irritation associated ailments. Nat Commun. 2020;11(1):2788. https://doi.org/10.1038/s41467-020-16544-7.
Bardi G, Boselli L, Pompa PP. Anti-inflammatory potential of platinum nanozymes: mechanisms and views. Nanoscale. 2023;15(35):14284–300. https://doi.org/10.1039/d3nr03016d.
Hu H, Yang J, Zhong Y, Wang J, Cai J, Luo C, et al. Polydopamine-Pd nanozymes as potent ROS scavengers together with near-infrared irradiation for osteoarthritis remedy. iScience. 2023;26(5):106605. https://doi.org/10.1016/j.isci.2023.106605.
Aldrich JL, Panicker A, Ovalle R Jr, Sharma B. Drug supply methods and nanozyme applied sciences to beat limitations for concentrating on oxidative stress in osteoarthritis. Prescription drugs (Basel). 2023;16(7). https://doi.org/10.3390/ph16071044.
Zhang R, Yan X, Fan Ok. Nanozymes impressed by pure enzymes. Acc Mater Res. 2021;2(7):534–47. https://doi.org/10.1021/accountsmr.1c00074.
Keum C, Hirschbiegel C-M, Chakraborty S, Jin S, Jeong Y, Rotello VM. Biomimetic and bioorthogonal nanozymes for biomedical functions. Nano Converg. 2023;10(1):42. https://doi.org/10.1186/s40580-023-00390-6.
Verrando P, Hsi BL, Yeh CJ, Pisani A, Serieys N, Ortonne JP. Monoclonal antibody GB3, a brand new probe for the research of human basement membranes and hemidesmosomes. Exp Cell Res. 1987;170(1):116–28. https://doi.org/10.1016/0014-4827(87)90121-2.
Niu X, Cheng N, Ruan X, Du D, Lin Y. Evaluation—nanozyme-based immunosensors and immunoassays: current developments and future developments. J Electrochem Soc. 2020;167(3):037508. https://doi.org/10.1149/2.0082003jes.
Wang D, Jana D, Zhao Y. Metallic-organic framework derived nanozymes in biomedicine. Acc Chem Res. 2020;53(7):1389–400. https://doi.org/10.1021/acs.accounts.0c00268.
Fan Y, Liu S, Yi Y, Rong H, Zhang J. Catalytic nanomaterials towards atomic ranges for biomedical functions: from metallic clusters to single-atom catalysts. ACS Nano. 2021;15(2):2005–37. https://doi.org/10.1021/acsnano.0c06962.
Zhang L, Zhang L, Deng H, Li H, Tang W, Guan L, et al. In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori. Nat Commun. 2021;12(1):2002. https://doi.org/10.1038/s41467-021-22286-x.
Gao L, Yan X, Nanozymes. Biomedical functions of enzymatic Fe3O4 nanoparticles from in vitro to in vivo. Adv Exp Med Biol. 2019;1174:291–312. https://doi.org/10.1007/978-981-13-9791-2_9.
Lin LS, Tune J, Tune L. Simultaneous fenton-like ion supply and glutathione depletion by MnO2-based nanoagent to boost chemodynamic remedy. Angew Chem Int Ed. 2018;57:4902–6.
Cao S, Fan J, Solar W, Li F, Li Ok, Tai X, et al. A novel Mn-Cu bimetallic complicated for enhanced chemodynamic remedy with simultaneous glutathione depletion. Chem Commun (Camb). 2019;55(86):12956–9. https://doi.org/10.1039/c9cc06040e.
Fu L-H, Wan Y, Qi C, He J, Li C, Yang C, et al. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species technology for environment friendly most cancers remedy. Adv Mater. 2021;33(7):e2006892. https://doi.org/10.1002/adma.202006892.
Wang C, Wang H, Xu B, Liu H. Photograph-responsive nanozymes: mechanism, exercise regulation, and biomedical functions. View (Beijing). 2021;2(1):20200045. https://doi.org/10.1002/viw.20200045.
Dong H, Fan Y, Zhang W, Gu N, Zhang Y. Catalytic mechanisms of nanozymes and their functions in biomedicine. Bioconjug Chem. 2019;30(5):1273–96. https://doi.org/10.1021/acs.bioconjchem.9b00171.
Cardiovascular ailments (CVDs). WHO [cited 2025 Mar 6, 2025]. http://www.who.int/news-room/fact-sheets/element/cardiovascular-diseases-(cvds).
Zamani P, Fereydouni N, Butler AE, Navashenaq JG, Sahebkar A. The therapeutic and diagnostic function of exosomes in cardiovascular ailments. Developments Cardiovasc Med. 2019;29(6):313–23. https://doi.org/10.1016/j.tcm.2018.10.010.
Ciarambino T, Menna G, Sansone G, Giordano M, Cardiomyopathies. An summary. Int J Mol Sci. 2021;22(14):7722. https://doi.org/10.3390/ijms22147722.
Flora GD, Nayak MK. A quick assessment of cardiovascular ailments, related threat components and present remedy regimes. Curr Pharm Des. 2019;25(38):4063–84. https://doi.org/10.2174/1381612825666190925163827.
Portegies MLP, Koudstaal PJ, Ikram MA. Cerebrovascular illness. Handb Clin Neurol. 2016;138:239–61. https://doi.org/10.1016/B978-0-12-802973-2.00014-8.
Salmela MB, Mortazavi S, Jagadeesan BD, Broderick DF, Burns J. ACR appropriateness Standards(®) cerebrovascular illness. J Am Coll Radiol. 2017;14:S34–61.
Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5(1):70. https://doi.org/10.1038/s41572-019-0118-8.
Mazzacane F, Mazzoleni V, Scola E, Mancini S, Lombardo I, Busto G, et al. Vessel wall magnetic resonance imaging in cerebrovascular ailments. Diagnostics (Basel). 2022;12(2):258. https://doi.org/10.3390/diagnostics12020258.
Grosset L, Jouvent E. Cerebral small-vessel ailments: A glance again from 1991 to immediately. Cerebrovasc Dis. 2022;51(2):131–7. https://doi.org/10.1159/000522213.
Tune W, Zhao B, Wang C, Ozaki Y, Lu X. Practical nanomaterials with distinctive enzyme-like traits for sensing functions. J Mater Chem B Mater Biol Med. 2019;7(6):850–75. https://doi.org/10.1039/c8tb02878h.
Niu X, Shi Q, Zhu W, Liu D, Tian H, Fu S, et al. Unprecedented peroxidase-mimicking exercise of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens Bioelectron. 2019;142(111495):111495. https://doi.org/10.1016/j.bios.2019.111495.
Wang X, Tu Q, Zhao B, An Y, Wang J-C, Liu W, et al. Results of poly(L-lysine)-modified Fe3O4 nanoparticles on endogenous reactive oxygen species in most cancers stem cells. Biomaterials. 2013;34(4):1155–69. https://doi.org/10.1016/j.biomaterials.2012.10.063.
Fan S, Zhao M, Ding L, Li H, Chen S. Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens Bioelectron. 2017;89(Pt 2):846–52. https://doi.org/10.1016/j.bios.2016.09.108.
Chen Q, Li S, Liu Y, Zhang X, Tang Y, Chai H, et al. Measurement-controllable Fe-N/C single-atom nanozyme with distinctive oxidase-like exercise for delicate detection of alkaline phosphatase. Sens Actuators B Chem. 2020;305(127511):127511. https://doi.org/10.1016/j.snb.2019.127511.
Zhang A, Pan S, Zhang Y, Chang J, Cheng J, Huang Z, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative remedy. Theranostics. 2019;9(12):3443–58. https://doi.org/10.7150/thno.33266.
Zhang A, Zhang Q, Alfranca G, Pan S, Huang Z, Cheng J, et al. GSH-triggered sequential catalysis for tumor imaging and eradication based mostly on star-like au/pt enzyme service system. Nano Res. 2020;13(1):160–72. https://doi.org/10.1007/s12274-019-2591-5.
Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Tune L, Tune M, et al. Twin enzyme-like actions of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano. 2012;6(5):4001–12. https://doi.org/10.1021/nn300291r.
Kim MS, Lee J, Kim HS, Cho A, Shim KH. Heme cofactor-resembling Fe-N single website embedded graphene as nanozymes to selectively detect H2O2 with excessive sensitivity. Adv Funct Mater. 2020;30(1).
Xiong X, Huang Y, Lin C, Liu XY, Lin Y. Latest advances in nanoparticulate biomimetic catalysts for combating micro organism and biofilms. Nanoscale. 2019;11(46):22206–15. https://doi.org/10.1039/c9nr05054j.
Chong Y, Liu Q, Ge C. Advances in Oxidase-MimickingNanozymes: classification, exercise regulation and biomedical functions. Nano At this time. 2021;37.
Zhao J, Cai X, Gao W, Zhang L, Zou D, Zheng Y, et al. Prussian blue nanozyme with multienzyme exercise reduces colitis in mice. ACS Appl Mater Interfaces. 2018;10(31):26108–17. https://doi.org/10.1021/acsami.8b10345.
Huang Y, Ren J, Qu X, Nanozymes. Classification, catalytic mechanisms, exercise regulation, and functions. Chem Rev. 2019;119(6):4357–412. https://doi.org/10.1021/acs.chemrev.8b00672.
Chen W, Li S, Wang J, Solar Ok, Si Y. Metallic and metal-oxide nanozymes: bioenzymatic traits, catalytic mechanism, and eco-environmental functions. Nanoscale. 2019;11(34):15783–93. https://doi.org/10.1039/c9nr04771a.
Golchin J, Golchin Ok, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, et al. Nanozyme functions in biology and medication: an summary. Artif Cells Nanomed Biotechnol. 2017;45(6):1069–76. https://doi.org/10.1080/21691401.2017.1313268.
Cai S, Yang R. In: Nanozymology, editor. Noble Metallic-Based mostly nanozymes. Singapore: Springer Singapore; 2020. pp. 331–65.
Zhang A, Guo W, Ke H, Zhang X, Zhang H, Huang C, et al. Sandwich-format ECL immunosensor based mostly on Au star@BSA-Luminol nanocomposites for willpower of human chorionic gonadotropin. Biosens Bioelectron. 2018;101:219–26. https://doi.org/10.1016/j.bios.2017.10.040.
Tan F, Zhang Y, Wang J, Wei J, Cai Y, Qian X. An environment friendly technique for dephosphorylation of phosphopeptides by cerium oxide. J Mass Spectrom. 2008;43(5):628–32. https://doi.org/10.1002/jms.1362.
Knott AB, Bossy-Wetzel E. Nitric oxide in well being and illness of the nervous system. Antioxid Redox Sign. 2009;11(3):541–54. https://doi.org/10.1089/ars.2008.2234.
Dowding JM, Dosani T, Kumar A, Seal S, Self WT. Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO). Chem Commun (Camb). 2012;48(40):4896–8. https://doi.org/10.1039/c2cc30485f.
Cling C, Moawad MS, Lin Z, Guo H, Xiong H, Zhang M, et al. Biosafe cerium oxide nanozymes defend human pluripotent stem cells and cardiomyocytes from oxidative stress. J Nanobiotechnol. 2024;22(1):132. https://doi.org/10.1186/s12951-024-02383-x.
Yan BC, Cao J, Liu J, Gu Y, Xu Z, Li D. Dietary Fe(3)O(4) nanozymes stop the harm of neurons and Blood-Mind barrier integrity from cerebral ischemic stroke. ACS Biomater Sci Eng. 2021;7:299–310.
Jiang S, Cai G, Yang Z, Shi H, Zeng H, Ye Q, Hu Z, Wang Z. Biomimetic nanovesicles as a twin gene supply system for the synergistic gene remedy of alzheimer’s illness. ACS Nano. 2024;18(18):11753–11768. https://doi.org/10.1186/s12987-019-0123-z. Epub 2024 Apr 22. PMID: 38649866.
Ren C, Li D, Zhou Q, Hu X. Mitochondria-targeted TPP-MoS2 with twin enzyme exercise offers environment friendly neuroprotection via M1/M2 microglial polarization in an alzheimer’s illness mannequin. Biomaterials. 2020;232(119752):119752. https://doi.org/10.1016/j.biomaterials.2019.119752.
Wang Q, Yao H, Liu W, Ya B, Cheng H, Xing Z, et al. Microglia polarization in alzheimer’s illness: mechanisms and a possible therapeutic goal. Entrance Growing older Neurosci. 2021;13:772717. https://doi.org/10.3389/fnagi.2021.772717.
Zhang S, Liu Y, Solar S, Wang J, Li Q, Yan R, et al. Catalytic patch with redox Cr/CeO2 nanozyme of noninvasive intervention for mind trauma. Theranostics. 2021;11(6):2806–21. https://doi.org/10.7150/thno.51912.
Mu X, Wang J, He H, Li Q, Yang B, Wang J, et al. An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute mind harm. Sci Adv. 2021;7(46):eabk1210. https://doi.org/10.1126/sciadv.abk1210.
Kaya D, Küçükada Ok, Alemdar N. Modeling the drug launch from decreased graphene oxide-reinforced hyaluronic acid/gelatin/poly(ethylene oxide) polymeric movies. Carbohydr Polym. 2019;215:189–97. https://doi.org/10.1016/j.carbpol.2019.03.041.
Huang L, Zhu Q, Zhu J, Luo L, Pu S, Zhang W, et al. Moveable colorimetric detection of mercury(II) based mostly on a non-noble metallic nanozyme with tunable exercise. Inorg Chem. 2019;58(2):1638–46. https://doi.org/10.1021/acs.inorgchem.8b03193.
Fu Q, Wei C, Wang M. Transition-metal-based nanozymes: synthesis, mechanisms of therapeutic motion, and functions in most cancers remedy. ACS Nano. 2024;18(19):12049–95. https://doi.org/10.1021/acsnano.4c02265.
Zare Y. Estimation of fabric and interfacial/interphase properties in clay/polymer nanocomposites by yield power knowledge. Appl Clay Sci. 2015;115:61–6. https://doi.org/10.1016/j.clay.2015.07.021.
Shamsabadi A, Haghighi T, Carvalho S, Frenette LC, Stevens MM. The nanozyme revolution: enhancing the efficiency of medical biosensing platforms. Adv Mater. 2024;36(10):e2300184. https://doi.org/10.1002/adma.202300184.
Fan L, Solar P, Huang Y, Xu Z, Lu X, Xi J, et al. One-pot synthesis of Fe/N-doped Hole carbon nanospheres with multienzyme mimic actions in opposition to irritation. ACS Appl Bio Mater. 2020;3(2):1147–57. https://doi.org/10.1021/acsabm.9b01079.
Peng Y, He D, Ge X, Lu Y, Chai Y, Zhang Y, et al. Building of heparin-based hydrogel integrated with Cu5. 4O ultrasmall nanozymes for wound therapeutic and irritation Inhibition. Bioactive Mater. 2021;6(10):3109–24.
Garg B, Bisht T. Carbon nanodots as peroxidase nanozymes for biosensing. Molecules. 2016;21(12):1653. https://doi.org/10.3390/molecules21121653.
Cui R, Han Z, Zhu J-J. Helical carbon nanotubes: intrinsic peroxidase catalytic exercise and its utility for biocatalysis and biosensing. Chemistry. 2011;17(34):9377–84. https://doi.org/10.1002/chem.201100478.
Zhou Y, Wei Y, Ren J, Qu X. A chiral covalent natural framework (COF) nanozyme with ultrahigh enzymatic exercise. Mater Horiz. 2020;7(12):3291–7. https://doi.org/10.1039/d0mh01535k.
Li S, Liu X, Chai H, Huang Y. Latest advances within the development and analytical functions of metal-organic frameworks-based nanozymes. Developments Analyt Chem. 2018;105:391–403. https://doi.org/10.1016/j.trac.2018.06.001.
Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK. Metallic–natural frameworks: purposeful luminescent and photonic supplies for sensing functions. Chem Soc Rev. 2017;46(11):3242–85. https://doi.org/10.1039/c6cs00930a.
Wang Q, Jiang J, Gao L. Nanozyme-based medication for enzymatic remedy: progress and challenges. Biomed Mater. 2021;16(4):042002. https://doi.org/10.1088/1748-605X/abe7b4.
Liang M, Yan X, Nanozymes. From new ideas, mechanisms, and requirements to functions. Acc Chem Res. 2019;52(8):2190–200. https://doi.org/10.1021/acs.accounts.9b00140.
Mishra S, Abdal-hay A, Somewhat SU, Tripathi RM, Shekh FA. Latest advances in silver nanozymes: idea, mechanism, and functions in detection. Adv Mater Interfaces. 2022;9(30):2200928. https://doi.org/10.1002/admi.202200928.
Moradi Hasan-Abad A, Shabankare A, Atapour A, Hamidi GA, Salami Zavareh M, Sobhani-Nasab A. The applying of peroxidase mimetic nanozymes in most cancers analysis and remedy. Entrance Pharmacol. 2024;15:1339580. https://doi.org/10.3389/fphar.2024.1339580.
Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile uncommon Earth nanomaterial for organic functions. NPG Asia Mater. 2014;6(3):e90–90. https://doi.org/10.1038/am.2013.88.
Liang Y-J, Xie J, Yu J, Zheng Z, Liu F, Yang A. Latest advances of excessive efficiency magnetic iron oxide nanoparticles: managed synthesis, properties tuning and most cancers theranostics. Nano Sel. 2021;2(2):216–50. https://doi.org/10.1002/nano.202000169.
Wang H, Jiang H, Wang S, Shi W, He J, Liu H, et al. Fe3O4–MWCNT magnetic nanocomposites as environment friendly peroxidase mimic catalysts in a Fenton-like response for water purification with out pH limitation. RSC Adv. 2014;4(86):45809–15. https://doi.org/10.1039/c4ra07327d.
Ren X, Hu Q. Zhou graphene oxide quantum Dots scale back oxidative stress and inhibit neurotoxicity in vitro and in vivo via catalase-like exercise and metabolic regulation. Adv Sci. 2018;5(5).
Shi W, Wang Q, Lengthy Y, Cheng Z, Chen S, Zheng H. Huang carbon nanodots as peroxidase mimetics and their functions to glucose detection. Chem Commun. 2011;47(23):6695–7.
Ali SS, Hardt JI, Fast KL, Kim Han JS, Erlanger BF, Huang TT, et al. A biologically efficient fullerene (C60) by-product with superoxide dismutase mimetic properties. Free Radic Biol Med. 2004;37(8):1191–202.
Boutorine AS, Takasugi M, Hélène C, Tokuyama H, Isobe H, Nakamura E. Fullerene–oligonucleotide conjugates: photoinduced sequence-specific DNA cleavage. Angew Chem Int Ed Engl. 1995;33(23–24):2462–5. https://doi.org/10.1002/anie.199424621.
Purich DL. Enzyme catalysis: a brand new definition accounting for noncovalent substrate- and product-like States. Developments Biochem Sci. 2001;26(7):417–21. https://doi.org/10.1016/s0968-0004(01)01880-1.
Bilal M, Khaliq N, Ashraf M, Hussain N, Baqar Z, Zdarta J, et al. Enzyme mimic nanomaterials as nanozymes with catalytic attributes. Colloids Surf B Biointerfaces. 2023;221(112950):112950. https://doi.org/10.1016/j.colsurfb.2022.112950.
Demirsoy Z, Gulseren G. Self-assembled fullerene nanostructures for mimicking and Understanding of pure enzymes. ACS Appl Nano Mater. 2022;5(10):14285–95. https://doi.org/10.1021/acsanm.2c02194.
Lewandowska H, Wójciuk Ok, Karczmarczyk U. Metallic nanozymes: new horizons in mobile homeostasis regulation. Appl Sci (Basel). 2021;11(19):9019. https://doi.org/10.3390/app11199019.
Zeng G, Duan M, Xu Y, Ge F, Wang W. Platinum (II)-doped graphitic carbon nitride with enhanced peroxidase-like exercise for detection of glucose and H2O2. Spectrochim Acta Mol Biomol Spectrosc. 2020;241(118649):118649. https://doi.org/10.1016/j.saa.2020.118649.
Wang Y, He X, Huang Ok, Cheng N. Nanozyme as a rising star for metabolic illness administration. J Nanobiotechnol. 2024;22(1):226. https://doi.org/10.1186/s12951-024-02478-5.
Sisakhtnezhad S, Rahimi M, Mohammadi S. Biomedical functions of MnO2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother. 2023;163(114833):114833. https://doi.org/10.1016/j.biopha.2023.114833.
Gao X, Zhang J, Gong Y, Yan L. The biomedical functions of nanozymes in orthopaedics based mostly on regulating reactive oxygen species. J Nanobiotechnol. 2024;22(1):569. https://doi.org/10.1186/s12951-024-02844-3.
Manoharan D, Wang L-C, Chen Y-C, Li W-P, Yeh C-S. Catalytic nanoparticles in biomedical functions: exploiting superior nanozymes for therapeutics and diagnostics. Adv Healthc Mater. 2024;13(22):e2400746. https://doi.org/10.1002/adhm.202400746.
Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, et al. Nanoenzymes: A radiant hope for the early analysis and efficient remedy of breast and ovarian cancers. Int J Nanomed. 2024;19:5813–35. https://doi.org/10.2147/IJN.S460712.
Liu J, Han X, Zhang T, Tian Ok, Li Z, Luo F. ROS scavenging biomaterials for anti-inflammatory ailments: from mechanism to remedy. J Hematol Oncol. 2023;16(1):116. https://doi.org/10.1186/s13045-023-01512-7.
Zhang S, Chen J, Lian M-L, Yang W-S, Chen X. An engineered, self-propelled nanozyme as reactive oxygen species scavenger. Chem Eng J. 2022;446(136794):136794. https://doi.org/10.1016/j.cej.2022.136794.
Maddheshiya S, Nara S. Latest developments in composite nanozymes and their pro-oxidative function in therapeutics. Entrance Bioeng Biotechnol. 2022;10:880214. https://doi.org/10.3389/fbioe.2022.880214.
Nashat N, Haider Z. Therapeutic functions of nanozymes and their function in heart problems. Int J Nanomater Nanotechnol Nanomed. 2021;7(1):9–18.
Li S, Wang L, Zhang X, Chai H, Huang Y. N co-doped hierarchically porous carbon hybrid as a extremely environment friendly oxidase mimetic for glutathione detection Sens. Sens Actuators B: Chem. 2018;264:312–9.
Li Y, Li Y, Wang H, Liu R, Yb3+. Er3 + codoped cerium oxide upconversion nanoparticles enhanced the enzymelike catalytic exercise and antioxidative exercise for parkinson’s illness remedy. ACS Appl Mater Interfaces. 2021;13(12):13968–77. https://doi.org/10.1021/acsami.1c00157.
Li Z, Zhao Y, Huang H, Zhang C, Liu H, Wang Z et al. A Nanozyme-Immobilized hydrogel with endogenous ROS-Scavenging and oxygen technology talents for considerably selling oxidative diabetic wound therapeutic. Adv Healthc Mater. 2022;11.
Model MD. The websites and topology of mitochondrial superoxide manufacturing. Exp Gerontol. 2010;45(7–8):466–72. https://doi.org/10.1016/j.exger.2010.01.003.
Hu D, Li R, Li Y, Wang M, Wang L, Wang S, et al. Irritation-targeted nanomedicines alleviate oxidative stress and reprogram macrophages polarization for myocardial infarction remedy. Adv Sci (Weinh). 2024;11(21):e2308910. https://doi.org/10.1002/advs.202308910.
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to enhance concentrating on methods in nanomedicine. Chem Soc Rev. 2021;50(9):5397–434. https://doi.org/10.1039/d0cs01127d.
Abdel-Mageed HM, Abd El Aziz AE, Abdel Raouf BM, Mohamed SA, Nada D. Antioxidant-biocompatible and secure catalase-based gelatin-alginate hydrogel scaffold with thermal wound therapeutic functionality: immobilization and supply method. 3 Biotech. 2022;12(3):73. https://doi.org/10.1007/s13205-022-03131-4.
Wang L, Zhu B, Deng Y, Li T, Tian Q, Yuan Z, et al. Biocatalytic and antioxidant nanostructures for ROS scavenging and biotherapeutics. Adv Funct Mater. 2021;31(31):2101804. https://doi.org/10.1002/adfm.202101804.
Liu Y, Wang X, Li X, Qiao S, Huang G, Hermann DM, et al. Correction to A co-doped Fe3O4 nanozyme reveals enhanced reactive oxygen and nitrogen species scavenging exercise and ameliorates the deleterious results of ischemic stroke. ACS Appl Mater Interfaces. 2022;14(38):44015. https://doi.org/10.1021/acsami.2c12150.
Zhang Y, Liu W, Wang X, Liu Y, Wei H. Nanozyme-enabled remedy of cardio- and cerebrovascular ailments. Small. 2023;19(13):e2204809. https://doi.org/10.1002/smll.202204809.
Singh N, Mugesh G. CeVO4 nanozymes catalyze the discount of dioxygen to water with out releasing partially decreased oxygen species. Angew Chem Int Ed Engl. 2019;58(23):7797–801. https://doi.org/10.1002/anie.201903427.
Guan Y, Li M, Dong Ok, Gao N, Ren J, Zheng Y, et al. Ceria/POMs hybrid nanoparticles as a mimicking metallopeptidase for remedy of neurotoxicity of amyloid-β peptide. Biomaterials. 2016;98:92–102. https://doi.org/10.1016/j.biomaterials.2016.05.005.
Liu Y-Q, Mao Y, Xu E, Jia H, Zhang S, Dawson VL, et al. Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in parkinson’s illness. Nano At this time. 2021;36(101027):101027. https://doi.org/10.1016/j.nantod.2020.101027.
Tian R, Ma H, Ye W, Li Y, Wang S, Zhang Z, et al. Se-containing MOF coated twin‐Fe‐atom nanozymes with multi‐enzyme cascade actions defend in opposition to cerebral ischemic reperfusion harm. Adv Funct Mater. 2022;32(36):2204025. https://doi.org/10.1002/adfm.202204025.
Medzhitov R. Origin and physiological roles of irritation. Nature. 2008;454(7203):428–35. https://doi.org/10.1038/nature07201.
Singh S. Cerium oxide based mostly nanozymes: redox phenomenon at biointerfaces. Biointerphases. 2016;11(4):04B202. https://doi.org/10.1116/1.4966535.
Jin J, Li L, Zhang L, Luan Z, Xin S, Tune Ok. Progress within the utility of carbon dots-based nanozymes. Entrance Chem. 2021;9:748044. https://doi.org/10.3389/fchem.2021.748044.
Abed A, Derakhshan M, Karimi M, Shirazinia M, Mahjoubin-Tehran M, Homayonfal M, et al. Platinum nanoparticles in biomedicine: preparation, anti-cancer exercise, and drug supply automobiles. Entrance Pharmacol. 2022;13:797804. https://doi.org/10.3389/fphar.2022.797804.
Li DY, Hu XX, Tian ZR, Ning QW, Liu JQ, Yue Y, Yuan W, Meng B, Li JL, Zhang Y, PanZW, Zhuang YT, Lu YJ. eIF4A1 exacerbates myocardial ischemia-reperfusion harm in mice bypromoting nuclear translocation of transgelin/p53. Acta Pharmacol Sin. 2025;46(5):1236-1249. Epub 2025 Jan 24. PMID: 39856433; PMCID:PMC12032080. https://doi.org/10.1038/s41401-024-01467-6
Li X, Zhang Y, Ren X, Wang Y, Chen D, Li Q, et al. Ischemic microenvironment-responsive therapeutics for cardiovascular ailments. Adv Mater. 2021;33(52). https://doi.org/10.1002/adma.202105348.
Lengthy M, Wang L, Kang L, Liu D, Lengthy T, Ding H, et al. Prussian blue nanozyme that includes enhanced superoxide dismutase-like exercise for myocardial ischemia reperfusion harm remedy. ACS Nano. 2025;19(4):4561–81. https://doi.org/10.1021/acsnano.4c14445.
Liu X, Chen B, Chen J, Wang X, Dai X, Li Y, et al. A cardiac-targeted nanozyme interrupts the inflammation-free radical cycle in myocardial infarction. Adv Mater. 2024;36(2):e2308477. https://doi.org/10.1002/adma.202308477.
Li Q, Liu Y, Dai X, Jiang W, Zhao H. Nanozymes regulate redox homeostasis in ROS-related irritation. Entrance Chem. 2021;9:740607. https://doi.org/10.3389/fchem.2021.740607.
Xing J, Ma X, Yu Y, Xiao Y, Chen L, Yuan W, et al. A cardiac-targeting and anchoring bimetallic cluster nanozyme alleviates chemotherapy-induced cardiac ferroptosis and PANoptosis. Adv Sci (Weinh). 2025;12(1):e2405597. https://doi.org/10.1002/advs.202405597.
Nakai M, Iwanaga Y, Sumita Y, Wada S, Hiramatsu H, Iihara Ok, et al. Associations amongst cardiovascular and cerebrovascular ailments: evaluation of the nationwide claims-based JROAD-DPC dataset. PLoS ONE. 2022;17(3):e0264390. https://doi.org/10.1371/journal.pone.0264390.
Xu J, Wei Z, Wang X, Li X, Wang W. The chance of cardiovascular and cerebrovascular illness in overlap syndrome: a meta-analysis. J Clin Sleep Med. 2020;16(7):1199–207. https://doi.org/10.5664/jcsm.8466.
GBD 2017 Causes of Demise Collaborators. World, regional, and Nationwide age-sex-specific mortality for 282 causes of demise in 195 international locations and territories, 1980–2017: a scientific evaluation for the worldwide burden of illness research 2017. Lancet. 2018;392(10159):1736–88. https://doi.org/10.1016/S0140-6736(18)32203-7.
Wu Y, Xiong Y, Wang P, Liu R, Jia X, Kong Y, et al. Threat components of cardiovascular and cerebrovascular ailments in younger and middle-aged adults: A meta-analysis. Med (Baltim). 2022;101(48):e32082. https://doi.org/10.1097/MD.0000000000032082.
Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The worldwide burden of cardiovascular ailments and threat: A compass for future well being. J Am Coll Cardiol. 2022;80(25):2361–71. https://doi.org/10.1016/j.jacc.2022.11.005.
Achim A, Péter OÁ, Cocoi M, Serban A, Mot S, Dadarlat-Pop A, et al. Correlation between coronary artery illness with different arterial programs: related, albeit separate, underlying pathophysiologic mechanisms. J Cardiovasc Dev Dis. 2023;10(5). https://doi.org/10.3390/jcdd10050210.
Patial S, Sharma A, Raj Ok, Shukla G, Atherosclerosis. Development, Threat Elements, Prognosis, Therapy, Probiotics and Synbiotics as a New Prophylactic Hope. The Microbe. 2024.
Gutierrez J, Bos D, Turan TN, Hoh B, Hilal S, Arenillas JF, et al. Pathology-based mind arterial illness phenotypes and their radiographic correlates. J Stroke Cerebrovasc Dis. 2024;33(6):107642. https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.107642.
Silver FL, Norris JW, Lewis AJ, Hachinski VC. Early mortality following stroke: a potential assessment. Stroke. 1984;15(3):492–6. https://doi.org/10.1161/01.str.15.3.492.
Adams RJ, Chimowitz MI, Alpert JS, Awad IA, Cerqueria MD, Fayad P, American Coronary heart Affiliation/American Stroke Affiliation. Coronary threat analysis in sufferers with transient ischemic assault and ischemic stroke: a scientific assertion for healthcare professionals from the Stroke Council and the Council on Scientific Cardiology of the American Coronary heart Affiliation/American Stroke Affiliation. Scientific Cardiology of the American Coronary heart Affiliation/American Stroke Affiliation Stroke. 2003;34:2310–22.
Kajermo U, Ulvenstam A, Modica A, Jernberg T, Mooe T. Incidence, developments, and predictors of ischemic stroke 30 days after an acute myocardial infarction. Stroke. 2014;45(5):1324–30. https://doi.org/10.1161/STROKEAHA.113.001963.
Finsterer J, Stöllberger C. Neurological problems of cardiac illness (coronary heart mind problems). Minerva Med. 2016;107(1):14–25.
He H, Han Q, Wang S, Lengthy M, Zhang M, Li Y, et al. Design of a multifunctional nanozyme for resolving the Proinflammatory plaque microenvironment and attenuating atherosclerosis. ACS Nano. 2023;17(15):14555–71. https://doi.org/10.1021/acsnano.3c01420.
Pham LM, Kim E-C, Ou W, Phung CD, Nguyen TT, Pham TT, et al. Focusing on and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for assuaging aorta atherosclerosis. Biomaterials. 2021;269(120677):120677. https://doi.org/10.1016/j.biomaterials.2021.120677.
Xiong H, Zhao Y, Xu Q, Xie X, Wu J, Hu B, et al. Biodegradable hollow-structured nanozymes modulate phenotypic polarization of macrophages and relieve hypoxia for remedy of osteoarthritis. Small. 2022;18(32):e2203240. https://doi.org/10.1002/smll.202203240.
Gao Y, Liu S, Zeng X, Guo Z, Chen D, Li S, et al. Discount of reactive oxygen species accumulation utilizing gadolinium-doped ceria for the alleviation of atherosclerosis. ACS Appl Mater Interfaces. 2023;15(8):10414–25. https://doi.org/10.1021/acsami.2c20492.
Zhao G, Wang Y, Fan Z, Xiong J, Ertas YN, Ashammakhi N, Wang J, Ma T.Nanomaterials in crossroad of autophagy management in human cancers: Amplification of cell deathmechanisms. Most cancers Lett. 2024;591:216860. https://doi.org/10.1016/j.canlet.2024.216860. Epub 2024 Apr 6. PMID: 38583650.
Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in heart problems. Circ Res. 2017;120(11):1812–24. https://doi.org/10.1161/CIRCRESAHA.117.311082.
Wu S, Zhao Ok, Wang J, Liu N, Nie Ok, Qi L, et al. Latest advances of Tanshinone in regulating autophagy for medicinal analysis. Entrance Pharmacol. 2022;13:1059360. https://doi.org/10.3389/fphar.2022.1059360.
Hu R, Dai C, Dong C, Ding L, Huang H, Chen Y, et al. Residing macrophage-delivered tetrapod PdH nanoenzyme for focused atherosclerosis administration by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano. 2022;16(10):15959–76. https://doi.org/10.1021/acsnano.2c03422.
Murphy A, Goldberg S. Mechanical problems of myocardial infarction. Am J Med. 2022;135(12):1401–9. https://doi.org/10.1016/j.amjmed.2022.08.017.
Heusch G. Myocardial ischemia/reperfusion: translational pathophysiology of ischemic coronary heart illness. Med (N Y). 2024;5(1):10–31. https://doi.org/10.1016/j.medj.2023.12.007.
GBD 2019 Ailments and Accidents Collaborators. World burden of 369 ailments and accidents in 204 international locations and territories, 1990–2019: a scientific evaluation for the worldwide burden of illness research 2019. Lancet. 2020;396(10258):1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9.
Peters SAE, Muntner P, Woodward M. Intercourse variations within the prevalence of, and developments in, cardiovascular threat components, remedy, and management in the usa, 2001 to 2016. Circulation. 2019;139(8):1025–35. https://doi.org/10.1161/CIRCULATIONAHA.118.035550.
Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimum medical remedy with or with out PCI for secure coronary illness. N Engl J Med. 2007;356(15):1503–16. https://doi.org/10.1056/NEJMoa070829.
Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, et al. Coronary microvascular dysfunction throughout the spectrum of cardiovascular ailments: JACC State-of-the-Artwork assessment. J Am Coll Cardiol. 2021;78:1352–71.
Rosen SD, Camici PG. The brain-heart axis within the notion of cardiac ache: the elusive hyperlink between ischaemia and ache. Ann Med. 2000;32(5):350–64. https://doi.org/10.3109/07853890008995938.
Wang Z, Zhao Y, Hou Y, Tang G, Zhang R, Yang Y, et al. A thrombin-activated peptide‐templated nanozyme for remedying ischemic stroke through thrombolytic and neuroprotective actions (adv. Mater. 10/2024). Adv Mater. 2024;36(10). https://doi.org/10.1002/adma.202470077.
Santa D, Vitiello F, Torcinaro L, Ferraro A. The function of metabolic reworking in macrophage polarization and its impact on skeletal muscle regeneration. Antioxid Redox Sign. 2019;30(12):1553–98.
Hou G, Chen S, Ngai T, Miao S, Pang J, Zhang L et al. The nanozymes of protein nanotubes-constructed microspheres with twin peroxidase-and catalase-like properties for M1-to-M2 macrophages repolarization and the synergistic anti-rheumatoid arthritis impact with loaded capsaicin. Nano At this time. 2024;56.
Li B, Zhang Q, Du W, Wu J, Cheng J, Zhang Y, et al. Reshaping cardiac microenvironments by macrophage-derived extracellular vesicles-coated pd@ CeO2 heterostructures for myocardial ischemia/reperfusion harm remedy. Mater At this time. 2023;65:47–61.
Feng L, Dou C, Xia Y, Li B, Zhao M, El-Toni AM, et al. Enhancement of nanozyme permeation by endovascular interventional remedy to stop vascular restenosis through macrophage polarization modulation. Adv Funct Mater. 2020;30(52):2006581. https://doi.org/10.1002/adfm.202006581.
Chen S, Luo X, Solar Y, Jin W, He R. A novel metabolic reprogramming technique for the remedy of concentrating on to coronary heart injury-mediated macrophages. Int Immunopharmacol. 2023;122:110377. https://doi.org/10.1016/j.intimp.2023.110377.
Fu X, Yu X, Jiang J, Yang J, Chen L, Yang Z, et al. Small molecule-assisted meeting of multifunctional ceria nanozymes for synergistic remedy of atherosclerosis. Nat Commun. 2022;13(1):6528. https://doi.org/10.1038/s41467-022-34248-y.
Yang Q, Jiang H, Wang Y, Leng X, Wang Y, Tong J. Plaque Macrophage-Focusing on nanosystems with cooperative Co-Regulation of ROS and TRAF6 for stabilization of atherosclerotic plaques. Adv Funct Mater 2023. 33.
Wang L, Qiu S, Li X, Zhang Y, Huo M, Shi J. Myocardial-targeting Tannic cerium nanocatalyst attenuates ischemia/reperfusion harm. Angew Chem Int Ed Engl. 2023;62(39):e202305576. https://doi.org/10.1002/anie.202305576.
Ji P, Xu Q, Li J, Wang Z, Mao W, Yan P. Advances in nanoparticle-based therapeutics for ischemic stroke: enhancing drug supply and efficacy. Biomed Pharmacother. 2024;180(117564):117564. https://doi.org/10.1016/j.biopha.2024.117564.
Karthika V, Badrinathan Sridharan, Nam JW, Kim D, Gyun Lim H. Neuromodulation by nanozymes and ultrasound throughout alzheimer’s illness administration. J Nanobiotechnol. 2024;22(1):139. https://doi.org/10.1186/s12951-024-02406-7.
Jiang Nanozymes. A brand new method for leukemiA remedy. J Mater Chem B. 2024.
Feng L, Dou C, Xia Y, Li B, Zhao M, Yu P, et al. Neutrophil-like cell-membrane-coated nanozyme remedy for ischemic mind injury and long-term neurological purposeful restoration. ACS Nano. 2021;15(2):2263–80. https://doi.org/10.1021/acsnano.0c07973.
Raskob GE, Angchaisuksiri P, Blanco AN, Büller H, Gallus A, Hunt BJ, et al. Thrombosis: a significant contributor to international illness burden. Semin Thromb Hemost. 2014;40(7):724–35. https://doi.org/10.1055/s-0034-1390325.
Anderson FA Jr, Spencer FA. Threat components for venous thromboembolism. Circulation. 2003;107(23 Suppl 1):I9–16. https://doi.org/10.1161/01.CIR.0000078469.07362.E6.
Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thromboembolism. Lancet. 2021;398(10294):64–77. https://doi.org/10.1016/s0140-6736(20)32658-1.
Oleksiuk-Bójko M, Lisowska A. Venous thromboembolism: why is it nonetheless a major well being downside? Adv Med Sci. 2023;68(1):10–20. https://doi.org/10.1016/j.advms.2022.10.002.
Lowe GDO. Frequent threat components for each arterial and venous thrombosis. Br J Haematol. 2008;140(5):488–95. https://doi.org/10.1111/j.1365-2141.2007.06973.x.
Delluc A, Lacut Ok, Rodger MA. Arterial and venous thrombosis: what’s the hyperlink? A story assessment. Thromb Res. 2020;191:97–102. https://doi.org/10.1016/j.thromres.2020.04.035.
Angchaisuksiri P. Arterial and venous thrombosis: shared threat components and pathophysiology. J Hematol Transfus Med. 2019;29:355–62.
Yamashita A, Asada Y. Underlying mechanisms of thrombus formation/development in atherothrombosis and deep vein thrombosis. Pathol Int. 2023;73(2):65–80. https://doi.org/10.1111/pin.13305.
Huang M, Zhu Y, Xin G, Wang Y, Li F, Li S, et al. Multi-enzyme mimetic iridium nanozymes-based thrombus microenvironment-modulated nanoplatform for enhanced thrombolytic remedy. Chem Eng J. 2023;470(144156):144156. https://doi.org/10.1016/j.cej.2023.144156.
Qiao Y, Wang J, Nguyen T, Liu L, Ji X, Zhao W. Intravenous thrombolysis with urokinase for acute ischemic stroke. Mind Sci. 2024;14(10):989. https://doi.org/10.3390/brainsci14100989.
Murray V, Norrving B, Sandercock PAG, Terént A, Wardlaw JM, Wester P. The molecular foundation of thrombolysis and its medical utility in stroke. J Intern Med. 2010;267(2):191–208. https://doi.org/10.1111/j.1365-2796.2009.02205.x.
Guan Q, Dou H. Thrombus-targeting polymeric nanocarriers and their biomedical functions in thrombolytic remedy. Entrance Physiol. 2021;12:763085. https://doi.org/10.3389/fphys.2021.763085.
Yang L, Liu Y, Tao C, Cao Z, Guo S, Wei Z, et al. Bionic nanovesicles sequentially deal with flaps with totally different durations of ischemia by thrombolysis and prevention of ischemia-reperfusion harm. Mater At this time Bio. 2025;31(101529):101529. https://doi.org/10.1016/j.mtbio.2025.101529.
Ren T, Mi Y, Wei J, Han X, Zhang X, Zhu Q, et al. Advances in nano-functional supplies in focused thrombolytic drug supply. Molecules. 2024;29(10):2325. https://doi.org/10.3390/molecules29102325.
Zheng J, Qi R, Dai C, Li G, Sang M. Enzyme catalysis biomotor engineering of neutrophils for nanodrug supply and cell-based thrombolytic remedy. ACS Nano. 2022;16(2):2330–44. https://doi.org/10.1021/acsnano.1c08538.
Ma H, Jiang Z, Xu J, Liu J, Guo Z-N. Focused nano-delivery methods for facilitating thrombolysis remedy in ischemic stroke. Drug Deliv. 2021;28(1):357–71. https://doi.org/10.1080/10717544.2021.1879315.
Xu J, Wang X, Yin H, Cao X, Hu Q, Lv W, et al. Sequentially site-specific supply of thrombolytics and neuroprotectant for enhanced remedy of ischemic stroke. ACS Nano. 2019;13(8):8577–88. https://doi.org/10.1021/acsnano.9b01798.
Wang S, Wang R, Meng N, Guo H, Wu S, Wang X, et al. Platelet membrane-functionalized nanoparticles with improved concentrating on capability and decrease hemorrhagic threat for thrombolysis remedy. J Management Launch. 2020;328:78–86. https://doi.org/10.1016/j.jconrel.2020.08.030.
Pawlowski CL, Li W, Solar M, Ravichandran Ok, Hickman D, Kos C, et al. Platelet microparticle-inspired clot-responsive nanomedicine for focused fibrinolysis. Biomaterials. 2017;128:94–108. https://doi.org/10.1016/j.biomaterials.2017.03.012.
Xiang Ok, Wu H, Liu Y, Wang S, Li X, Yang B, et al. MOF-derived bimetallic nanozyme to catalyze ROS scavenging for defense of myocardial harm. Theranostics. 2023;13(8):2721–33. https://doi.org/10.7150/thno.83543.
Zhao D, Li Q, Huang Q, Li X, Yin M, Wang Z, et al. Cardioprotective impact of Propofol in opposition to oxygen glucose deprivation and reperfusion harm in H9c2 cells. Oxid Med Cell Longev. 2015;2015:184938. https://doi.org/10.1155/2015/184938.
Zhang W, Solar M, Liu Y, Zhang Y, Xu L, Luo Y, et al. Platelet membrane-functionalized Hole mesoporous Prussian blue nanomedicine for complete thrombolytic administration by focused enhanced fibrinolysis and ROS scavenging. Chem Eng J. 2023;474(145515):145515. https://doi.org/10.1016/j.cej.2023.145515.
Jheng P-R, Chiang C-C, Kang J-H, Fan Y-J, Wu KC-W, Chen Y-T, et al. Chilly atmospheric plasma-enabled platelet vesicle integrated iron oxide nano-propellers for thrombolysis. Mater At this time Bio. 2023;23(100876):100876. https://doi.org/10.1016/j.mtbio.2023.100876.
Salaudeen MA, Bello N, Danraka RN, Ammani ML. Understanding the pathophysiology of ischemic stroke: the idea of present therapies and alternative for brand spanking new ones. Biomolecules. 2024;14(3):305. https://doi.org/10.3390/biom14030305.
Palmer SJ. Identification, care and prevention of stroke is feasible. Br J Well being Help. 2023;17(6):236–9. https://doi.org/10.12968/bjha.2023.17.6.236.
Fan J-L, Brassard P, Rickards CA, Nogueira RC, Nasr N, McBryde FD, et al. Integrative cerebral blood movement regulation in ischemic stroke. J Cereb Blood Stream Metab. 2022;42(3):387–403. https://doi.org/10.1177/0271678X211032029.
Qin C, Yang S, Chu Y-H, Zhang H, Pang X-W, Chen L, et al. Correction To: Signaling pathways concerned in ischemic stroke: molecular mechanisms and therapeutic interventions. Sign Transduct Goal Ther. 2022;7(1):278. https://doi.org/10.1038/s41392-022-01129-1.
Armstrong MJ, Gronseth G, Anderson DC, Biller J, Cucchiara B, Dafer R, et al. Abstract of evidence-based guideline: periprocedural administration of antithrombotic drugs in sufferers with ischemic cerebrovascular illness: report of the rule growth subcommittee of the American academy of neurology: report of the rule growth subcommittee of the American academy of neurology. Neurology. 2013;80(22):2065–9. https://doi.org/10.1212/WNL.0b013e318294b32d.
Carolei A, Pistoia F, Sacco S, Mohr JP. Non permanent just isn’t at all times benign: similarities and variations between transient ischemic assault and angina. Mayo Clin Proc. 2013;88(7):708–19. https://doi.org/10.1016/j.mayocp.2013.04.014
Lioutas V-A, Ivan CS, Himali JJ, Aparicio HJ, Leveille T, Romero JR, et al. Incidence of transient ischemic assault and affiliation with long-term threat of stroke. JAMA. 2021;325(4):373–81. https://doi.org/10.1001/jama.2020.25071.
Suzuki J, Miyata T, Hoshina Ok, Okamoto H, Kimura H, Shigematsu Ok. Surgical remedy of sufferers with congenital vascular malformation-associated aneurysms. Eur J Vasc Endovasc Surg. 2011;42(4):517–22. https://doi.org/10.1016/j.ejvs.2011.04.016.
Fekete M, Lehoczki A, Szappanos Á, Toth A, Mahdi M, Sótonyi P, et al. Cerebromicrovascular mechanisms contributing to lengthy COVID: implications for neurocognitive well being. GeroScience. 2025;47(1):745–79. https://doi.org/10.1007/s11357-024-01487-4.
Burtscher J, Millet GP, Fresa M, Lanzi S, Mazzolai L, Pellegrin M. The hyperlink between impaired oxygen provide and cognitive decline in peripheral artery illness. Prog Cardiovasc Dis. 2024;85:63–73. https://doi.org/10.1016/j.pcad.2023.12.002.
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood movement in people: physiology and medical implications of autoregulation. Physiol Rev. 2021;101(4):1487–559. https://doi.org/10.1152/physrev.00022.2020.
Rink C, Khanna S. Significance of mind tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid Redox Sign. 2011;14(10):1889–903. https://doi.org/10.1089/ars.2010.3474.
Clarke DD, Sokoloff L. Regulation of cerebral metabolic price. Primary neurochemistry: molecular, mobile and medical elements. Windermere, FL, USA: American Society for Neurochemistry; 1999.
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Coronary heart illness and stroke statistics-2020 replace: A report from the American coronary heart affiliation: A report from the American coronary heart affiliation. Circulation. 2020;141(9):e139–596. https://doi.org/10.1161/CIR.0000000000000757.
Lattanzi S, Silvestrini M. Blood stress in acute intra-cerebral hemorrhage. Ann Transl Med. 2016;4(16):320. https://doi.org/10.21037/atm.2016.08.04.
Carlberg B, Asplund E. Feedback, opinions, and opinions components influencing admission blood stress ranges in sufferers with acute stroke. Stroke. 1991;22(4):527–30.
Gujjar AR, Deibert E, Manno EM, Duff S, Diringer MN. Mechanical air flow for ischemic stroke and intracerebral hemorrhage: indications, timing, and final result: indications, timing, and final result. Neurology. 1998;51(2):447–51. https://doi.org/10.1212/wnl.51.2.447.
Salvadori E, Papi G, Insalata G, Rinnoci V, Donnini I, Martini M, et al. Comparability between ischemic and hemorrhagic strokes in purposeful final result at discharge from an intensive rehabilitation hospital. Diagnostics (Basel). 2020;11(1):38. https://doi.org/10.3390/diagnostics11010038.
Yang Y, Li Z, Fan X, Jiang C, Wang J, Rastegar-Kashkooli Y, et al. Nanozymes: potential therapies for reactive oxygen species overproduction and irritation in ischemic stroke and traumatic mind harm. ACS Nano. 2024;18(26):16450–67. https://doi.org/10.1021/acsnano.4c03425.
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and advantages for human well being. Oxid Med Cell Longev. 2017;2017(1):8416763. https://doi.org/10.1155/2017/8416763.
Feng S, Yang M, Liu S, He Y, Deng S, Gong Y. Oxidative stress as a Bridge between age and stroke: A story assessment. J Intensive Med. 2023;3(4):313–9. https://doi.org/10.1016/j.jointm.2023.02.002.
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, et al. Nanozyme-enhanced electrochemical biosensors: mechanisms and functions. Small. 2024;20(14):e2307815. https://doi.org/10.1002/smll.202307815.
Hamed EM, Rai V, Li SFY. Single-atom nanozymes with peroxidase-like exercise: A assessment. Chemosphere. 2024;346(140557):140557. https://doi.org/10.1016/j.chemosphere.2023.140557.
Hwang DW, Son S, Jang J, Youn H, Lee S, Lee D, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for supply of neurogenic MicroRNA. Biomaterials. 2011;32(21):4968–75. https://doi.org/10.1016/j.biomaterials.2011.03.047.
Kong J, Zhou F. Preparation and utility of carbon Dots nanozymes. Antioxid (Basel). 2024;13(5):535. https://doi.org/10.3390/antiox13050535.
He L, Huang G, Liu H, Sang C, Liu X, Chen T. Extremely bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for environment friendly reversal of reperfusion-induced harm in ischemic stroke. Sci Adv. 2020;6(12):eaay9751. https://doi.org/10.1126/sciadv.aay9751.
Zhang Ok, Tu M, Gao W, Cai X, Tune F, Chen Z, et al. Hole Prussian blue nanozymes drive neuroprotection in opposition to ischemic stroke through attenuating oxidative stress, counteracting irritation, and suppressing cell apoptosis. Nano Lett. 2019;19(5):2812–23. https://doi.org/10.1021/acs.nanolett.8b04729.
Zhao Q, Du W, Zhou L, Wu J, Zhang X, Wei X, et al. Transferrin-enabled blood-brain barrier crossing manganese-based nanozyme for rebalancing the reactive oxygen species degree in ischemic stroke. Pharmaceutics. 2022;14(6):1122. https://doi.org/10.3390/pharmaceutics14061122.
Yang Y, Deng G, Wang P, Lv G, Mao R, Solar Y, et al. A selenium nanocomposite protects the mouse mind from oxidative harm following intracerebral hemorrhage. Int J Nanomed. 2021;16:775–88. https://doi.org/10.2147/ijn.s293681.
Kang MK, Kim TJ, Kim Y-J, Kang L, Kim J, Lee N, et al. Focused supply of iron oxide nanoparticle-loaded human embryonic stem cell-derived spherical neural plenty for treating intracerebral hemorrhage. Int J Mol Sci. 2020;21(10):3658. https://doi.org/10.3390/ijms21103658.
Allen CL, Bayraktutan U. Oxidative stress and its function within the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4(6):461–70. https://doi.org/10.1111/j.1747-4949.2009.00387.x.
Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJB, Culebras A, et al. An up to date definition of stroke for the twenty first century: a press release for healthcare professionals from the American coronary heart affiliation/american stroke affiliation: An announcement for healthcare professionals from the American coronary heart affiliation/american stroke affiliation. Stroke. 2013;44(7):2064–89. https://doi.org/10.1161/STR.0b013e318296aeca.
Tapeinos C, Larrañaga A, Tomatis F, Bizeau J, Marino A, Battaglini M, et al. Superior purposeful supplies and cell-based therapies for the remedy of ischemic stroke and postischemic stroke results. Adv Funct Mater. 2020;30(1):1906283. https://doi.org/10.1002/adfm.201906283.
Gaudin A, Yemisci M, Eroglu H, Lepetre-Mouelhi S, Turkoglu OF, Dönmez-Demir B, et al. Squalenoyl adenosine nanoparticles present neuroprotection after stroke and spinal wire harm. Nat Nanotechnol. 2014;9(12):1054–62. https://doi.org/10.1038/nnano.2014.274.
Zhang Y, Yin Y, Zhang W, Li H, Wang T, Yin H, et al. Reactive oxygen species scavenging and irritation mitigation enabled by biomimetic Prussian blue analogues boycott atherosclerosis. J Nanobiotechnol. 2021;19(1):161. https://doi.org/10.1186/s12951-021-00897-2.
Lopez-Cantu DO, González-González RB, Sharma A, Bilal M, Parra-Saldívar R, Iqbal HMN. Bioactive material-based nanozymes with multifunctional attributes for biomedicine: increasing antioxidant therapeutics for neuroprotection, most cancers, and anti inflammatory pathologies. Coord Chem Rev. 2022;469(214685):214685. https://doi.org/10.1016/j.ccr.2022.214685.
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, et al. The blood mind barrier in cerebral ischemic injury-Disruption and restore. Mind Hemorrhages. 2020;1:34–53.
Moon S, Chang M-S, Koh S-H, Choi YK. Restore mechanisms of the neurovascular unit after ischemic stroke with a give attention to VEGF. Int J Mol Sci. 2021;22(16):8543. https://doi.org/10.3390/ijms22168543.
Wang L, Xiong X, Zhang L, Shen J, Neurovascular Unit. A essential function in ischemic stroke. CNS Neurosci Ther. 2021;27(1):7–16. https://doi.org/10.1111/cns.13561.
Jithoo A, Penny TR, Pham Y, Sutherland AE, Smith MJ, Petraki M, et al. The Temporal relationship between blood-brain barrier integrity and microglial response following neonatal hypoxia ischemia. Cells. 2024;13(8). https://doi.org/10.3390/cells13080660.
Carmeliet P, Jain RK. Molecular mechanisms and medical functions of angiogenesis. Nature. 2011;473(7347):298–307. https://doi.org/10.1038/nature10144.
Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Most cancers. 2011;2(12):1117–33. https://doi.org/10.1177/1947601911423654.
Yan BC, Cao J, Liu J, Gu Y, Xu Z, Li D, et al. Dietary Fe3O4 nanozymes stop the harm of neurons and blood-brain barrier integrity from cerebral ischemic stroke. ACS Biomater Sci Eng. 2021;7(1):299–310. https://doi.org/10.1021/acsbiomaterials.0c01312.
Tang Z, Meng S, Tune Z, Yang X, Li X, Guo H, et al. Neutrophil membrane fusogenic nanoliposomal leonurine for focused ischemic stroke remedy through reworking cerebral area of interest and restoring blood-brain barrier integrity. Mater At this time Bio. 2023;20(100674):100674. https://doi.org/10.1016/j.mtbio.2023.100674.
Partoazar A, Nasoohi S, Rezayat SM, Gilani Ok, Mehr SE, Amani A, et al. Nanoliposome containing cyclosporine A decreased neuroinflammation responses and improved neurological actions in cerebral ischemia/reperfusion in rat. Fundam Clin Pharmacol. 2017;31(2):185–93. https://doi.org/10.1111/fcp.12244.
Chen Q, Wang J, Xiong X, Chen J, Wang B, Yang H, et al. Blood-brain barrier-penetrating metal-organic framework antioxidant nanozymes for focused ischemic stroke remedy. Adv Healthc Mater. 2024;e2402376. https://doi.org/10.1002/adhm.202402376.
Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative illness. Nat Rev Immunol. 2014;14(7):463–77. https://doi.org/10.1038/nri3705.
Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21(10):1359–69. https://doi.org/10.1038/s41593-018-0242-x.
Jiang W, Li Q, Zhang R, Li J, Lin Q, Li J, et al. Chiral metal-organic frameworks incorporating nanozymes as neuroinflammation inhibitors for managing parkinson’s illness. Nat Commun. 2023;14(1):8137. https://doi.org/10.1038/s41467-023-43870-3.
Gong Y, Huang A, Guo X, Jia Z, Chen X, Zhu X, et al. Selenium-core nanozymes dynamically regulates Aβ & neuroinflammation circulation: augmenting restore of nervous injury. Chem Eng J. 2021;418(129345):129345. https://doi.org/10.1016/j.cej.2021.129345.
Fredman G, Kamaly N, Spolitu S, Milton J, Ghorpade D, Chiasson R, et al. Focused nanoparticles containing the proresolving peptide Ac2-26 defend in opposition to superior atherosclerosis in hypercholesterolemic mice. Sci Transl Med. 2015;7(275):275ra20. https://doi.org/10.1126/scitranslmed.aaa1065.
Beldman TJ, Senders ML, Alaarg A, Pérez-Medina C, Tang J, Zhao Y, et al. Hyaluronan nanoparticles selectively goal plaque-associated macrophages and enhance plaque stability in atherosclerosis. ACS Nano. 2017;11(6):5785–99. https://doi.org/10.1021/acsnano.7b01385.
Lin A, Liu S, Wei H. Nanozymes for biomedical functions in orthopaedics. Particuology. 2023;76:32–45. https://doi.org/10.1016/j.partic.2022.08.009.
Wang Z, Hou Y, Tang G, Li Y, Zhao Y, Yu Y, et al. Clever nanozymes: biomimetic design, mechanisms and biomedical functions. Basic Res. 2024. https://doi.org/10.1016/j.fmre.2024.11.013.
Jeyachandran S, Srinivasan R, Ramesh T, Parivallal A, Lee J, Sathiyamoorthi E. Latest growth and utility of nanozyme synthetic enzymes-A assessment. Biomimetics (Basel). 2023;8(5). https://doi.org/10.3390/biomimetics8050446.
Kurian AG, Singh RK, Sagar V, Lee J-H, Kim H-W. Nanozyme-engineered hydrogels for anti-inflammation and pores and skin regeneration. Nanomicro Lett. 2024;16(1):110. https://doi.org/10.1007/s40820-024-01323-6.
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, et al. Multifunctional nanoparticle-mediated combining remedy for human ailments. Sign Transduct Goal Ther. 2024;9(1):1. https://doi.org/10.1038/s41392-023-01668-1.
Petrovic S, Bita B, Barbinta-Patrascu M-E. Nanoformulations in pharmaceutical and biomedical functions: inexperienced views. Int J Mol Sci. 2024;25(11):5842. https://doi.org/10.3390/ijms25115842.
Lewis DR, Kamisoglu Ok, York AW, Moghe PV. Polymer-based therapeutics: nanoassemblies and nanoparticles for administration of atherosclerosis: polymer based mostly therapeutics for atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(4):400–20. https://doi.org/10.1002/wnan.145.
Shi J, Yu W, Xu L, Yin N, Liu W, Zhang Ok, et al. Bioinspired nanosponge for salvaging ischemic stroke through free radical scavenging and self-adapted oxygen regulating. Nano Lett. 2020;20(1):780–9. https://doi.org/10.1021/acs.nanolett.9b04974.
Salehi B, Del Prado-Audelo ML, Cortés H, Leyva-Gómez G, Stojanović-Radić Z, Singh YD, et al. Therapeutic functions of Curcumin nanomedicine formulations in cardiovascular ailments. J Clin Med. 2020;9(3):746. https://doi.org/10.3390/jcm9030746.
Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Present growth of nano-drug supply to focus on macrophages. Biomedicines. 2022;10(5):1203. https://doi.org/10.3390/biomedicines10051203.
Wu C, Mao J, Wang X, Yang R, Wang C, Li C, et al. Advances in remedy methods based mostly on scavenging reactive oxygen species of nanoparticles for atherosclerosis. J Nanobiotechnol. 2023;21(1):271. https://doi.org/10.1186/s12951-023-02058-z.
Singh AP, Biswas A, Shukla A, Maiti P. Focused remedy in continual ailments utilizing nanomaterial-based drug supply automobiles. Sign Transduct Goal Ther. 2019;4(1):33. https://doi.org/10.1038/s41392-019-0068-3.
Li S, Li F, Wang Y, Li W, Wu J, Hu X, et al. A number of supply methods of nanocarriers for myocardial ischemia-reperfusion harm: present methods and future potential. Drug Deliv. 2024;31(1):2298514. https://doi.org/10.1080/10717544.2023.2298514.
Egwu CO, Aloke C, Onwe KT, Umoke CI, Nwafor J, Eyo RA, et al. Nanomaterials in drug supply: strengths and alternatives in medication. Molecules. 2024;29(11):2584. https://doi.org/10.3390/molecules29112584.
Chan Edgar Y, Wang J. Introduction for design of nanoparticle based mostly drug supply programs. Curr Pharm Design. 2017;23(14):2108–12.
Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug supply programs: characterization, limitations, future views and implementation of synthetic intelligence. Pharmaceutics. 2022;14(4):883. https://doi.org/10.3390/pharmaceutics14040883.
Zhang Z, Li Y, Yuan Z, Wu L, Ma J, Tan W, et al. MOF nanozymes: lively websites and sensing functions. Inorg Chem Entrance. 2025. https://doi.org/10.1039/d4qi02555e.
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, et al. Nanomaterials with enzyme-like traits (nanozymes): next-generation synthetic enzymes (II). Chem Soc Rev. 2019;48(4):1004–76. https://doi.org/10.1039/c8cs00457a.
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Latest progress and prospect of metal-organic framework-based nanozymes in biomedical utility. Nanomaterials (Basel). 2024;14(3):244. https://doi.org/10.3390/nano14030244.
Qiao R, Cong Y, Ovais M, Cai R, Chen C, Wang L. Efficiency modulation and evaluation for catalytic biomedical nanomaterials in organic programs. Cell Rep Phys Sci. 2023;4(6):101453. https://doi.org/10.1016/j.xcrp.2023.101453.
Zandieh M, Liu J. Floor science of nanozymes and defining a nanozyme unit. Langmuir. 2022;38(12):3617–22. https://doi.org/10.1021/acs.langmuir.2c00070.
Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, et al. Designing clever bioorthogonal nanozymes: current advances of stimuli-responsive catalytic programs for biomedical functions. J Management Launch. 2024;373:929–51. https://doi.org/10.1016/j.jconrel.2024.07.073.
Lyu S, Dong Z, Xu X, Bei H-P, Yuen H-Y, James Cheung C-W, et al. Going under and past the floor: microneedle construction, supplies, medicine, fabrication, and functions for wound therapeutic and tissue regeneration. Bioact Mater. 2023;27:303–26. https://doi.org/10.1016/j.bioactmat.2023.04.003.
Qian X-L, Li J, Wei R, Lin H, Xiong L-X. Inner and exterior triggering mechanism of good nanoparticle-based DDSs in focused tumor remedy. Curr Pharm Des. 2018;24(15):1639–51. https://doi.org/10.2174/1381612824666180510094607.
Ju Y, Liu X, Ye X, Dai M, Fang B, Shen X, et al. Nanozyme-based reworking of illness microenvironments for illness prevention and remedy: A assessment. ACS Appl Nano Mater. 2023;6(15):13792–823. https://doi.org/10.1021/acsanm.3c02097.
Wang S, Zhou Y, Liang X, Xu M, Li N, Zhao Ok. Platinum-cerium bimetallic nano-raspberry for atherosclerosis remedy through synergistic foam cell Inhibition and P2Y12 focused antiplatelet aggregation. Chem Eng J. 2022;430(132859):132859. https://doi.org/10.1016/j.cej.2021.132859.
Rascol E, Devoisselle J-M, Chopineau J. The relevance of membrane fashions to know nanoparticles-cell membrane interactions. Nanoscale. 2016;8(9):4780–98. https://doi.org/10.1039/c5nr07954c.
Lin J, Miao L, Zhong G, Lin C-H, Dargazangy R, Alexander-Katz A. Understanding the synergistic impact of physicochemical properties of nanoparticles and their mobile entry pathways. Commun Biol. 2020;3(1):205. https://doi.org/10.1038/s42003-020-0917-1.
Lin S, Cheng Y, Zhang H, Wang X, Zhang Y, Zhang Y, et al. Copper Tannic acid coordination nanosheet: A potent nanozyme for scavenging ROS from cigarette smoke. Small. 2020;16(27):e1902123. https://doi.org/10.1002/smll.201902123.
Liu X, Solar T, Solar Y, Manshina A, Wang L. Polyoxometalate-based peroxidase-like nanozymes. Nano Mater Sci. 2024. https://doi.org/10.1016/j.nanoms.2024.03.002.
Feng Z, Guo Y, Zhang Y, Zhang A, Jia M, Yin J, et al. Nanozymes: a bibliometrics assessment. J Nanobiotechnol. 2024;22(1):704. https://doi.org/10.1186/s12951-024-02907-5.
Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY. Nanomaterial form affect on cell conduct. Int J Mol Sci. 2021;22(10):5266. https://doi.org/10.3390/ijms22105266.
Ribeiro AI, Dias AM, Zille A. Synergistic results between metallic nanoparticles and industrial antimicrobial brokers: A assessment. ACS Appl Nano Mater. 2022;5(3):3030–64. https://doi.org/10.1021/acsanm.1c03891.
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. World burden of cardiovascular ailments and threat components, 1990–2019: replace from the GBD 2019 research. J Am Coll Cardiol. 2020;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010.
Marino P, Mininni M, Deiana G, Marino G, Divella R, Bochicchio I, et al. Wholesome way of life and most cancers threat: modifiable threat components to stop most cancers. Vitamins. 2024;16(6):800. https://doi.org/10.3390/nu16060800.
Katic L, Choi J, Diaz Saravia S, Silverman A, Nagourney A, Torelli V, et al. The interaction between heart problems and lung most cancers. Cureus. 2024;16(6):e62953. https://doi.org/10.7759/cureus.62953.
Facciolà A, Visalli G, D’Andrea G, Varvarà M, Santoro G, Cuffari R, et al. Prevention of cardiovascular ailments and diabetes: significance of a screening program for the early detection of threat circumstances in a goal inhabitants. J Prev Med Hyg. 2021;62(4):E934–42. https://doi.org/10.15167/2421-4248/jpmh2021.62.4.2360.
Koene RJ, Prizment AE, Blaes A, Konety SH. Shared threat components in heart problems and most cancers. Circulation. 2016;133(11):1104–14. https://doi.org/10.1161/CIRCULATIONAHA.115.020406.
Mensah GA, Fuster V, Murray CJ, Roth GA. World burden of cardiovascular ailments and dangers collaborators. World burden of cardiovascular ailments and dangers, 1990–2022. J Am Coll Cardiol. 1990;82(25):2350–473.
Zmaili M, Alzubi J, Alkhayyat M, Albakri A, Alkhalaileh F, Longinow J, et al. Most cancers and heart problems: the conjoined twins. Cancers (Basel). 2024;16(8). https://doi.org/10.3390/cancers16081450.
Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruz-Flores S, et al. Heart problems and breast most cancers: the place these entities intersect: A scientific assertion from the American coronary heart affiliation. Circulation. 2018;137(8):e30–66. https://doi.org/10.1161/CIR.0000000000000556.
Di Lenarda F, Balestrucci A, Terzi R, Lopes P, Ciliberti G, Marchetti D, et al. Coronary artery illness, household historical past, and screening views: an up-to-date assessment. J Clin Med. 2024;13(19). https://doi.org/10.3390/jcm13195833.
Lopez-Jimenez F, Almahmeed W, Bays H, Cuevas A, Di Angelantonio E, le Roux CW, et al. Weight problems and heart problems: mechanistic insights and administration methods. A joint place paper by the world coronary heart federation and world weight problems federation. Eur J Prev Cardiol. 2022;29(17):2218–37. https://doi.org/10.1093/eurjpc/zwac187.
Liu S, Xu J, Xing Y, Yan T, Yu S, Solar H, et al. Nanozymes as environment friendly instruments for catalytic therapeutics. View (Beijing). 2022;3(2):20200147. https://doi.org/10.1002/viw.20200147.
Xu D, Wu L, Yao H, Zhao L. Catalase-like nanozymes: classification, catalytic mechanisms, and their functions. Small. 2022;18(37):e2203400. https://doi.org/10.1002/smll.202203400.
Kott KA, Bishop M, Yang CHJ, Plasto TM, Cheng DC, Kaplan AI, et al. Biomarker growth in cardiology: reviewing the previous to tell the long run. Cells. 2022;11(3):588. https://doi.org/10.3390/cells11030588.
Zhang Y, Wei G, Liu W, Li T, Wang Y, Zhou M, et al. Nanozymes for nanohealthcare. Nat Rev Strategies Primers. 2024;4(1). https://doi.org/10.1038/s43586-024-00315-5.
Ai Y, Hu Z-N, Liang X, Solar H-B, Xin H, Liang Q. Latest advances in nanozymes: from issues to bioapplications. Adv Funct Mater. 2022;32(14):2110432. https://doi.org/10.1002/adfm.202110432.
Park Y-S, Park BU, Jeon H-J. Advances in machine learning-enhanced nanozymes. Entrance Chem. 2024;12:1483986. https://doi.org/10.3389/fchem.2024.1483986.
Xing Y, Yasinjan F, Solar S, Yang J, Du Y, Zhang H, et al. Nanozyme-based most cancers theranostics: A scientometric evaluation and complete assessment. Nano At this time. 2024;57(102386):102386. https://doi.org/10.1016/j.nantod.2024.102386.
You Y, Tang Z, Lin H, Shi J. Rising two-dimensional materials nanozymes for theranostic nanomedicine. Biophys Rep. 2021;7(3):159–72. https://doi.org/10.52601/bpr.2021.210011.
Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, et al. Nanotechnology in healthcare, and its security and environmental dangers. J Nanobiotechnol. 2024;22(1):715. https://doi.org/10.1186/s12951-024-02901-x.
Du P, Gao L, Jiao J, Fan Ok, Yan X, Nanozyme. Combining energy of pure enzymes and synthetic catalysis. Bull Chin Acad Sci. 2024;(5):809–20.
Goya GF, Mayoral A, Winkler E, Zysler RD, Bagnato C, Raineri M, et al. Subsequent technology of nanozymes: A perspective of the challenges to match organic efficiency. J Appl Phys. 2021;130(19):190903. https://doi.org/10.1063/5.0061499.
Wang Z, Zhang R, Yan X, Fan Ok. Construction and exercise of nanozymes: inspirations for de Novo design of nanozymes. Mater At this time (Kidlington). 2020;41:81–119. https://doi.org/10.1016/j.mattod.2020.08.020.
Subin TS, Vijayan V, Kumar KJR. Up to date regulatory issues for nanomedicines. Pharm Nanotechnol. 2017;5(3):180–91. https://doi.org/10.2174/2211738505666170615095542.
Bleeker E, Swart E, Braakhuis H, Cruz F, Friedrichs ML, Gosens S. In the direction of harmonisation of testing of nanomaterials for EU regulatory necessities on chemical safety-a proposal for additional actions. Regul Toxicol Pharmacol. 2023;139.
Sheng J, Wu Y, Ding H, Feng Ok, Shen Y, Zhang Y, et al. Multienzyme-like nanozymes: regulation, rational design, and utility. Adv Mater. 2024;36(10):e2211210. https://doi.org/10.1002/adma.202211210.
Xu H, Li S, Liu Y-S. Nanoparticles within the analysis and remedy of vascular getting old and associated ailments. Sign Transduct Goal Ther. 2022;7(1):231. https://doi.org/10.1038/s41392-022-01082-z.
Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular ailments. Innov (Camb). 2022;3(2):100214. https://doi.org/10.1016/j.xinn.2022.100214.
Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, et al. Position of nanoparticle-conjugates and nanotheranostics in abrogating oxidative stress and ameliorating neuroinflammation. Antioxid (Basel). 2023;12(10). https://doi.org/10.3390/antiox12101877.
Lemos FA, Silva KB, Campos C, de Silva C, Santos NOS, dos Barauna UG. Key nanotechnology breakthroughs in heart problems remedy. Int J Cardiovasc Sci. 2024;37. https://doi.org/10.36660/ijcs.20230050.
Solar Y, Xu T, Qian Y, Chen Q, Xiong F, Du W, et al. NOS-like exercise of CeO2 nanozymes contributes to diminishing the vascular plaques. J Nanobiotechnol. 2024;22(1):12. https://doi.org/10.1186/s12951-023-02276-5.
Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in stimuli-responsive biomaterials for treating cardiovascular and cerebrovascular ailments. Small. 2022;18(36):e2200291. https://doi.org/10.1002/smll.202200291.
Soumya RS, Raghu KG. Latest advances on nanoparticle-based therapies for cardiovascular ailments. J Cardiol. 2023;81(1):10–8. https://doi.org/10.1016/j.jjcc.2022.02.009.
Khan S, Hasan A, Attar F, Sharifi M, Siddique R, Mraiche F, et al. Gold nanoparticle-based platforms for analysis and remedy of myocardial infarction. ACS Biomater Sci Eng. 2020;6(12):6460–77. https://doi.org/10.1021/acsbiomaterials.0c00955.
Tabish TA, Crabtree MJ, Townley HE, Winyard PG, Lygate CA. Nitric oxide releasing nanomaterials for cardiovascular functions. JACC Primary Transl Sci. 2024;9(5):691–709. https://doi.org/10.1016/j.jacbts.2023.07.017.
Liang S, Tian X, Wang C. Nanozymes within the remedy of ailments brought on by extreme reactive oxygen specie. J Inflamm Res. 2022;15:6307–28. https://doi.org/10.2147/JIR.S383239.
Wang DK, Rahimi M, Filgueira CS. Nanotechnology functions for heart problems remedy: present and future views. Nanomedicine. 2021;34(102387):102387. https://doi.org/10.1016/j.nano.2021.102387.
Shan J, Liu X, Li X, Yu Y, Kong B, Ren L. Advances in antioxidative nanozymes for treating ischemic stroke. Eng Regeneration. 2023;4(1):95–102. https://doi.org/10.1016/j.engreg.2023.01.001.
Liu L, Lv J, Wang X, Huang XT, Zhang C, Pan Q, et al. Focused nanozyme-enabled remedy of cardiovascular ailments. Acta Materia Med. 2025;4(1):70–81.
