6.1 C
Canberra
Friday, October 24, 2025

Nanomedicine in cardiovascular and cerebrovascular ailments: focused nanozyme therapies and their medical potential and present challenges | Journal of Nanobiotechnology


  • Singh S, Singh S. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory ailments: A complete assessment. Int J Biol Macromol. 2024;260(Pt 1):129374. https://doi.org/10.1016/j.ijbiomac.2024.129374.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical functions. Chem Soc Rev. 2019;48(14):3683–704. https://doi.org/10.1039/c8cs00718g.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao W, Wang Y, Zheng Y, Cai X. Prussian blue nanoparticle: from a photothermal conversion agent and a drug supply system, to a bioactive drug. Acc Mater Res. 2024;5(6):687–98. https://doi.org/10.1021/accountsmr.3c00260.

    Article 
    CAS 

    Google Scholar
     

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based mostly drug supply programs: current developments and future prospects. J Nanobiotechnol. 2018;16(1):71. https://doi.org/10.1186/s12951-018-0392-8.

    Article 
    CAS 

    Google Scholar
     

  • Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, et al. Nanozymes-recent growth and biomedical functions. J Nanobiotechnol. 2022;20(1):92. https://doi.org/10.1186/s12951-022-01295-y.

    Article 
    CAS 

    Google Scholar
     

  • Vernekar AA, Sinha D, Srivastava S, Paramasivam PU, D’Silva P, Mugesh G. An antioxidant nanozyme that uncovers the cytoprotective potential of Vanadia nanowires. Nat Commun. 2014;5(1). https://doi.org/10.1038/ncomms6301.

  • Jiang P, Zhang L, Liu X, Ye C, Zhu P, Tan T, et al. Tuning oxidant and antioxidant actions of ceria by anchoring copper single-site for antibacterial utility. Nat Commun. 2024;15(1):1010. https://doi.org/10.1038/s41467-024-45255-6.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang Z, Wu J, Zheng J-J, Shen X, Yan L, Wei H, et al. Accelerated discovery of superoxide-dismutase nanozymes through high-throughput computational screening. Nat Commun. 2021;12(1):6866. https://doi.org/10.1038/s41467-021-27194-8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dong S, Li X, Pan Q, Wang Ok, Liu N, Yutao W, Zhang Y. Nanotechnology-based approaches for antibacterial remedy. Eur J Med Chem. 2024;279: 116798. https://doi.org/10.1016/j.ejmech.2024.116798. Epub 2024 Aug 27. PMID: 39270451.

  • Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of irritation associated ailments. Nat Commun. 2020;11(1):2788. https://doi.org/10.1038/s41467-020-16544-7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bardi G, Boselli L, Pompa PP. Anti-inflammatory potential of platinum nanozymes: mechanisms and views. Nanoscale. 2023;15(35):14284–300. https://doi.org/10.1039/d3nr03016d.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu H, Yang J, Zhong Y, Wang J, Cai J, Luo C, et al. Polydopamine-Pd nanozymes as potent ROS scavengers together with near-infrared irradiation for osteoarthritis remedy. iScience. 2023;26(5):106605. https://doi.org/10.1016/j.isci.2023.106605.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Aldrich JL, Panicker A, Ovalle R Jr, Sharma B. Drug supply methods and nanozyme applied sciences to beat limitations for concentrating on oxidative stress in osteoarthritis. Prescription drugs (Basel). 2023;16(7). https://doi.org/10.3390/ph16071044.

  • Zhang R, Yan X, Fan Ok. Nanozymes impressed by pure enzymes. Acc Mater Res. 2021;2(7):534–47. https://doi.org/10.1021/accountsmr.1c00074.

    Article 
    CAS 

    Google Scholar
     

  • Keum C, Hirschbiegel C-M, Chakraborty S, Jin S, Jeong Y, Rotello VM. Biomimetic and bioorthogonal nanozymes for biomedical functions. Nano Converg. 2023;10(1):42. https://doi.org/10.1186/s40580-023-00390-6.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Verrando P, Hsi BL, Yeh CJ, Pisani A, Serieys N, Ortonne JP. Monoclonal antibody GB3, a brand new probe for the research of human basement membranes and hemidesmosomes. Exp Cell Res. 1987;170(1):116–28. https://doi.org/10.1016/0014-4827(87)90121-2.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Niu X, Cheng N, Ruan X, Du D, Lin Y. Evaluation—nanozyme-based immunosensors and immunoassays: current developments and future developments. J Electrochem Soc. 2020;167(3):037508. https://doi.org/10.1149/2.0082003jes.

    Article 
    CAS 

    Google Scholar
     

  • Wang D, Jana D, Zhao Y. Metallic-organic framework derived nanozymes in biomedicine. Acc Chem Res. 2020;53(7):1389–400. https://doi.org/10.1021/acs.accounts.0c00268.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fan Y, Liu S, Yi Y, Rong H, Zhang J. Catalytic nanomaterials towards atomic ranges for biomedical functions: from metallic clusters to single-atom catalysts. ACS Nano. 2021;15(2):2005–37. https://doi.org/10.1021/acsnano.0c06962.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang L, Zhang L, Deng H, Li H, Tang W, Guan L, et al. In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori. Nat Commun. 2021;12(1):2002. https://doi.org/10.1038/s41467-021-22286-x.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao L, Yan X, Nanozymes. Biomedical functions of enzymatic Fe3O4 nanoparticles from in vitro to in vivo. Adv Exp Med Biol. 2019;1174:291–312. https://doi.org/10.1007/978-981-13-9791-2_9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin LS, Tune J, Tune L. Simultaneous fenton-like ion supply and glutathione depletion by MnO2-based nanoagent to boost chemodynamic remedy. Angew Chem Int Ed. 2018;57:4902–6.

    CAS 

    Google Scholar
     

  • Cao S, Fan J, Solar W, Li F, Li Ok, Tai X, et al. A novel Mn-Cu bimetallic complicated for enhanced chemodynamic remedy with simultaneous glutathione depletion. Chem Commun (Camb). 2019;55(86):12956–9. https://doi.org/10.1039/c9cc06040e.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fu L-H, Wan Y, Qi C, He J, Li C, Yang C, et al. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species technology for environment friendly most cancers remedy. Adv Mater. 2021;33(7):e2006892. https://doi.org/10.1002/adma.202006892.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang C, Wang H, Xu B, Liu H. Photograph-responsive nanozymes: mechanism, exercise regulation, and biomedical functions. View (Beijing). 2021;2(1):20200045. https://doi.org/10.1002/viw.20200045.

    Article 
    CAS 

    Google Scholar
     

  • Dong H, Fan Y, Zhang W, Gu N, Zhang Y. Catalytic mechanisms of nanozymes and their functions in biomedicine. Bioconjug Chem. 2019;30(5):1273–96. https://doi.org/10.1021/acs.bioconjchem.9b00171.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cardiovascular ailments (CVDs). WHO [cited 2025 Mar 6, 2025]. http://www.who.int/news-room/fact-sheets/element/cardiovascular-diseases-(cvds).

  • Zamani P, Fereydouni N, Butler AE, Navashenaq JG, Sahebkar A. The therapeutic and diagnostic function of exosomes in cardiovascular ailments. Developments Cardiovasc Med. 2019;29(6):313–23. https://doi.org/10.1016/j.tcm.2018.10.010.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ciarambino T, Menna G, Sansone G, Giordano M, Cardiomyopathies. An summary. Int J Mol Sci. 2021;22(14):7722. https://doi.org/10.3390/ijms22147722.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Flora GD, Nayak MK. A quick assessment of cardiovascular ailments, related threat components and present remedy regimes. Curr Pharm Des. 2019;25(38):4063–84. https://doi.org/10.2174/1381612825666190925163827.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Portegies MLP, Koudstaal PJ, Ikram MA. Cerebrovascular illness. Handb Clin Neurol. 2016;138:239–61. https://doi.org/10.1016/B978-0-12-802973-2.00014-8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salmela MB, Mortazavi S, Jagadeesan BD, Broderick DF, Burns J. ACR appropriateness Standards(®) cerebrovascular illness. J Am Coll Radiol. 2017;14:S34–61.

    PubMed 

    Google Scholar
     

  • Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5(1):70. https://doi.org/10.1038/s41572-019-0118-8.

    Article 
    PubMed 

    Google Scholar
     

  • Mazzacane F, Mazzoleni V, Scola E, Mancini S, Lombardo I, Busto G, et al. Vessel wall magnetic resonance imaging in cerebrovascular ailments. Diagnostics (Basel). 2022;12(2):258. https://doi.org/10.3390/diagnostics12020258.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Grosset L, Jouvent E. Cerebral small-vessel ailments: A glance again from 1991 to immediately. Cerebrovasc Dis. 2022;51(2):131–7. https://doi.org/10.1159/000522213.

    Article 
    PubMed 

    Google Scholar
     

  • Tune W, Zhao B, Wang C, Ozaki Y, Lu X. Practical nanomaterials with distinctive enzyme-like traits for sensing functions. J Mater Chem B Mater Biol Med. 2019;7(6):850–75. https://doi.org/10.1039/c8tb02878h.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Niu X, Shi Q, Zhu W, Liu D, Tian H, Fu S, et al. Unprecedented peroxidase-mimicking exercise of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens Bioelectron. 2019;142(111495):111495. https://doi.org/10.1016/j.bios.2019.111495.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang X, Tu Q, Zhao B, An Y, Wang J-C, Liu W, et al. Results of poly(L-lysine)-modified Fe3O4 nanoparticles on endogenous reactive oxygen species in most cancers stem cells. Biomaterials. 2013;34(4):1155–69. https://doi.org/10.1016/j.biomaterials.2012.10.063.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fan S, Zhao M, Ding L, Li H, Chen S. Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens Bioelectron. 2017;89(Pt 2):846–52. https://doi.org/10.1016/j.bios.2016.09.108.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen Q, Li S, Liu Y, Zhang X, Tang Y, Chai H, et al. Measurement-controllable Fe-N/C single-atom nanozyme with distinctive oxidase-like exercise for delicate detection of alkaline phosphatase. Sens Actuators B Chem. 2020;305(127511):127511. https://doi.org/10.1016/j.snb.2019.127511.

    Article 
    CAS 

    Google Scholar
     

  • Zhang A, Pan S, Zhang Y, Chang J, Cheng J, Huang Z, et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative remedy. Theranostics. 2019;9(12):3443–58. https://doi.org/10.7150/thno.33266.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang A, Zhang Q, Alfranca G, Pan S, Huang Z, Cheng J, et al. GSH-triggered sequential catalysis for tumor imaging and eradication based mostly on star-like au/pt enzyme service system. Nano Res. 2020;13(1):160–72. https://doi.org/10.1007/s12274-019-2591-5.

    Article 
    CAS 

    Google Scholar
     

  • Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Tune L, Tune M, et al. Twin enzyme-like actions of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano. 2012;6(5):4001–12. https://doi.org/10.1021/nn300291r.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim MS, Lee J, Kim HS, Cho A, Shim KH. Heme cofactor-resembling Fe-N single website embedded graphene as nanozymes to selectively detect H2O2 with excessive sensitivity. Adv Funct Mater. 2020;30(1).

  • Xiong X, Huang Y, Lin C, Liu XY, Lin Y. Latest advances in nanoparticulate biomimetic catalysts for combating micro organism and biofilms. Nanoscale. 2019;11(46):22206–15. https://doi.org/10.1039/c9nr05054j.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chong Y, Liu Q, Ge C. Advances in Oxidase-MimickingNanozymes: classification, exercise regulation and biomedical functions. Nano At this time. 2021;37.

  • Zhao J, Cai X, Gao W, Zhang L, Zou D, Zheng Y, et al. Prussian blue nanozyme with multienzyme exercise reduces colitis in mice. ACS Appl Mater Interfaces. 2018;10(31):26108–17. https://doi.org/10.1021/acsami.8b10345.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang Y, Ren J, Qu X, Nanozymes. Classification, catalytic mechanisms, exercise regulation, and functions. Chem Rev. 2019;119(6):4357–412. https://doi.org/10.1021/acs.chemrev.8b00672.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen W, Li S, Wang J, Solar Ok, Si Y. Metallic and metal-oxide nanozymes: bioenzymatic traits, catalytic mechanism, and eco-environmental functions. Nanoscale. 2019;11(34):15783–93. https://doi.org/10.1039/c9nr04771a.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Golchin J, Golchin Ok, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, et al. Nanozyme functions in biology and medication: an summary. Artif Cells Nanomed Biotechnol. 2017;45(6):1069–76. https://doi.org/10.1080/21691401.2017.1313268.

    Article 
    CAS 

    Google Scholar
     

  • Cai S, Yang R. In: Nanozymology, editor. Noble Metallic-Based mostly nanozymes. Singapore: Springer Singapore; 2020. pp. 331–65.

  • Zhang A, Guo W, Ke H, Zhang X, Zhang H, Huang C, et al. Sandwich-format ECL immunosensor based mostly on Au star@BSA-Luminol nanocomposites for willpower of human chorionic gonadotropin. Biosens Bioelectron. 2018;101:219–26. https://doi.org/10.1016/j.bios.2017.10.040.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tan F, Zhang Y, Wang J, Wei J, Cai Y, Qian X. An environment friendly technique for dephosphorylation of phosphopeptides by cerium oxide. J Mass Spectrom. 2008;43(5):628–32. https://doi.org/10.1002/jms.1362.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Knott AB, Bossy-Wetzel E. Nitric oxide in well being and illness of the nervous system. Antioxid Redox Sign. 2009;11(3):541–54. https://doi.org/10.1089/ars.2008.2234.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dowding JM, Dosani T, Kumar A, Seal S, Self WT. Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO). Chem Commun (Camb). 2012;48(40):4896–8. https://doi.org/10.1039/c2cc30485f.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cling C, Moawad MS, Lin Z, Guo H, Xiong H, Zhang M, et al. Biosafe cerium oxide nanozymes defend human pluripotent stem cells and cardiomyocytes from oxidative stress. J Nanobiotechnol. 2024;22(1):132. https://doi.org/10.1186/s12951-024-02383-x.

    Article 
    CAS 

    Google Scholar
     

  • Yan BC, Cao J, Liu J, Gu Y, Xu Z, Li D. Dietary Fe(3)O(4) nanozymes stop the harm of neurons and Blood-Mind barrier integrity from cerebral ischemic stroke. ACS Biomater Sci Eng. 2021;7:299–310.

    PubMed 
    CAS 

    Google Scholar
     

  • Jiang S, Cai G, Yang Z, Shi H, Zeng H, Ye Q, Hu Z, Wang Z. Biomimetic nanovesicles as a twin gene supply system for the synergistic gene remedy of alzheimer’s illness. ACS Nano. 2024;18(18):11753–11768. https://doi.org/10.1186/s12987-019-0123-z. Epub 2024 Apr 22. PMID: 38649866.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren C, Li D, Zhou Q, Hu X. Mitochondria-targeted TPP-MoS2 with twin enzyme exercise offers environment friendly neuroprotection via M1/M2 microglial polarization in an alzheimer’s illness mannequin. Biomaterials. 2020;232(119752):119752. https://doi.org/10.1016/j.biomaterials.2019.119752.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Q, Yao H, Liu W, Ya B, Cheng H, Xing Z, et al. Microglia polarization in alzheimer’s illness: mechanisms and a possible therapeutic goal. Entrance Growing older Neurosci. 2021;13:772717. https://doi.org/10.3389/fnagi.2021.772717.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang S, Liu Y, Solar S, Wang J, Li Q, Yan R, et al. Catalytic patch with redox Cr/CeO2 nanozyme of noninvasive intervention for mind trauma. Theranostics. 2021;11(6):2806–21. https://doi.org/10.7150/thno.51912.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mu X, Wang J, He H, Li Q, Yang B, Wang J, et al. An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute mind harm. Sci Adv. 2021;7(46):eabk1210. https://doi.org/10.1126/sciadv.abk1210.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kaya D, Küçükada Ok, Alemdar N. Modeling the drug launch from decreased graphene oxide-reinforced hyaluronic acid/gelatin/poly(ethylene oxide) polymeric movies. Carbohydr Polym. 2019;215:189–97. https://doi.org/10.1016/j.carbpol.2019.03.041.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang L, Zhu Q, Zhu J, Luo L, Pu S, Zhang W, et al. Moveable colorimetric detection of mercury(II) based mostly on a non-noble metallic nanozyme with tunable exercise. Inorg Chem. 2019;58(2):1638–46. https://doi.org/10.1021/acs.inorgchem.8b03193.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fu Q, Wei C, Wang M. Transition-metal-based nanozymes: synthesis, mechanisms of therapeutic motion, and functions in most cancers remedy. ACS Nano. 2024;18(19):12049–95. https://doi.org/10.1021/acsnano.4c02265.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zare Y. Estimation of fabric and interfacial/interphase properties in clay/polymer nanocomposites by yield power knowledge. Appl Clay Sci. 2015;115:61–6. https://doi.org/10.1016/j.clay.2015.07.021.

    Article 
    CAS 

    Google Scholar
     

  • Shamsabadi A, Haghighi T, Carvalho S, Frenette LC, Stevens MM. The nanozyme revolution: enhancing the efficiency of medical biosensing platforms. Adv Mater. 2024;36(10):e2300184. https://doi.org/10.1002/adma.202300184.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fan L, Solar P, Huang Y, Xu Z, Lu X, Xi J, et al. One-pot synthesis of Fe/N-doped Hole carbon nanospheres with multienzyme mimic actions in opposition to irritation. ACS Appl Bio Mater. 2020;3(2):1147–57. https://doi.org/10.1021/acsabm.9b01079.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Peng Y, He D, Ge X, Lu Y, Chai Y, Zhang Y, et al. Building of heparin-based hydrogel integrated with Cu5. 4O ultrasmall nanozymes for wound therapeutic and irritation Inhibition. Bioactive Mater. 2021;6(10):3109–24.

    CAS 

    Google Scholar
     

  • Garg B, Bisht T. Carbon nanodots as peroxidase nanozymes for biosensing. Molecules. 2016;21(12):1653. https://doi.org/10.3390/molecules21121653.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cui R, Han Z, Zhu J-J. Helical carbon nanotubes: intrinsic peroxidase catalytic exercise and its utility for biocatalysis and biosensing. Chemistry. 2011;17(34):9377–84. https://doi.org/10.1002/chem.201100478.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou Y, Wei Y, Ren J, Qu X. A chiral covalent natural framework (COF) nanozyme with ultrahigh enzymatic exercise. Mater Horiz. 2020;7(12):3291–7. https://doi.org/10.1039/d0mh01535k.

    Article 
    CAS 

    Google Scholar
     

  • Li S, Liu X, Chai H, Huang Y. Latest advances within the development and analytical functions of metal-organic frameworks-based nanozymes. Developments Analyt Chem. 2018;105:391–403. https://doi.org/10.1016/j.trac.2018.06.001.

    Article 
    CAS 

    Google Scholar
     

  • Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK. Metallic–natural frameworks: purposeful luminescent and photonic supplies for sensing functions. Chem Soc Rev. 2017;46(11):3242–85. https://doi.org/10.1039/c6cs00930a.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Q, Jiang J, Gao L. Nanozyme-based medication for enzymatic remedy: progress and challenges. Biomed Mater. 2021;16(4):042002. https://doi.org/10.1088/1748-605X/abe7b4.

    Article 
    CAS 

    Google Scholar
     

  • Liang M, Yan X, Nanozymes. From new ideas, mechanisms, and requirements to functions. Acc Chem Res. 2019;52(8):2190–200. https://doi.org/10.1021/acs.accounts.9b00140.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mishra S, Abdal-hay A, Somewhat SU, Tripathi RM, Shekh FA. Latest advances in silver nanozymes: idea, mechanism, and functions in detection. Adv Mater Interfaces. 2022;9(30):2200928. https://doi.org/10.1002/admi.202200928.

    Article 
    CAS 

    Google Scholar
     

  • Moradi Hasan-Abad A, Shabankare A, Atapour A, Hamidi GA, Salami Zavareh M, Sobhani-Nasab A. The applying of peroxidase mimetic nanozymes in most cancers analysis and remedy. Entrance Pharmacol. 2024;15:1339580. https://doi.org/10.3389/fphar.2024.1339580.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile uncommon Earth nanomaterial for organic functions. NPG Asia Mater. 2014;6(3):e90–90. https://doi.org/10.1038/am.2013.88.

    Article 
    CAS 

    Google Scholar
     

  • Liang Y-J, Xie J, Yu J, Zheng Z, Liu F, Yang A. Latest advances of excessive efficiency magnetic iron oxide nanoparticles: managed synthesis, properties tuning and most cancers theranostics. Nano Sel. 2021;2(2):216–50. https://doi.org/10.1002/nano.202000169.

    Article 
    CAS 

    Google Scholar
     

  • Wang H, Jiang H, Wang S, Shi W, He J, Liu H, et al. Fe3O4–MWCNT magnetic nanocomposites as environment friendly peroxidase mimic catalysts in a Fenton-like response for water purification with out pH limitation. RSC Adv. 2014;4(86):45809–15. https://doi.org/10.1039/c4ra07327d.

    Article 
    CAS 

    Google Scholar
     

  • Ren X, Hu Q. Zhou graphene oxide quantum Dots scale back oxidative stress and inhibit neurotoxicity in vitro and in vivo via catalase-like exercise and metabolic regulation. Adv Sci. 2018;5(5).

  • Shi W, Wang Q, Lengthy Y, Cheng Z, Chen S, Zheng H. Huang carbon nanodots as peroxidase mimetics and their functions to glucose detection. Chem Commun. 2011;47(23):6695–7.

    CAS 

    Google Scholar
     

  • Ali SS, Hardt JI, Fast KL, Kim Han JS, Erlanger BF, Huang TT, et al. A biologically efficient fullerene (C60) by-product with superoxide dismutase mimetic properties. Free Radic Biol Med. 2004;37(8):1191–202.

    PubMed 
    CAS 

    Google Scholar
     

  • Boutorine AS, Takasugi M, Hélène C, Tokuyama H, Isobe H, Nakamura E. Fullerene–oligonucleotide conjugates: photoinduced sequence-specific DNA cleavage. Angew Chem Int Ed Engl. 1995;33(23–24):2462–5. https://doi.org/10.1002/anie.199424621.

    Article 

    Google Scholar
     

  • Purich DL. Enzyme catalysis: a brand new definition accounting for noncovalent substrate- and product-like States. Developments Biochem Sci. 2001;26(7):417–21. https://doi.org/10.1016/s0968-0004(01)01880-1.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bilal M, Khaliq N, Ashraf M, Hussain N, Baqar Z, Zdarta J, et al. Enzyme mimic nanomaterials as nanozymes with catalytic attributes. Colloids Surf B Biointerfaces. 2023;221(112950):112950. https://doi.org/10.1016/j.colsurfb.2022.112950.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Demirsoy Z, Gulseren G. Self-assembled fullerene nanostructures for mimicking and Understanding of pure enzymes. ACS Appl Nano Mater. 2022;5(10):14285–95. https://doi.org/10.1021/acsanm.2c02194.

    Article 
    CAS 

    Google Scholar
     

  • Lewandowska H, Wójciuk Ok, Karczmarczyk U. Metallic nanozymes: new horizons in mobile homeostasis regulation. Appl Sci (Basel). 2021;11(19):9019. https://doi.org/10.3390/app11199019.

    Article 
    CAS 

    Google Scholar
     

  • Zeng G, Duan M, Xu Y, Ge F, Wang W. Platinum (II)-doped graphitic carbon nitride with enhanced peroxidase-like exercise for detection of glucose and H2O2. Spectrochim Acta Mol Biomol Spectrosc. 2020;241(118649):118649. https://doi.org/10.1016/j.saa.2020.118649.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, He X, Huang Ok, Cheng N. Nanozyme as a rising star for metabolic illness administration. J Nanobiotechnol. 2024;22(1):226. https://doi.org/10.1186/s12951-024-02478-5.

    Article 

    Google Scholar
     

  • Sisakhtnezhad S, Rahimi M, Mohammadi S. Biomedical functions of MnO2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother. 2023;163(114833):114833. https://doi.org/10.1016/j.biopha.2023.114833.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gao X, Zhang J, Gong Y, Yan L. The biomedical functions of nanozymes in orthopaedics based mostly on regulating reactive oxygen species. J Nanobiotechnol. 2024;22(1):569. https://doi.org/10.1186/s12951-024-02844-3.

    Article 

    Google Scholar
     

  • Manoharan D, Wang L-C, Chen Y-C, Li W-P, Yeh C-S. Catalytic nanoparticles in biomedical functions: exploiting superior nanozymes for therapeutics and diagnostics. Adv Healthc Mater. 2024;13(22):e2400746. https://doi.org/10.1002/adhm.202400746.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, et al. Nanoenzymes: A radiant hope for the early analysis and efficient remedy of breast and ovarian cancers. Int J Nanomed. 2024;19:5813–35. https://doi.org/10.2147/IJN.S460712.

    Article 

    Google Scholar
     

  • Liu J, Han X, Zhang T, Tian Ok, Li Z, Luo F. ROS scavenging biomaterials for anti-inflammatory ailments: from mechanism to remedy. J Hematol Oncol. 2023;16(1):116. https://doi.org/10.1186/s13045-023-01512-7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang S, Chen J, Lian M-L, Yang W-S, Chen X. An engineered, self-propelled nanozyme as reactive oxygen species scavenger. Chem Eng J. 2022;446(136794):136794. https://doi.org/10.1016/j.cej.2022.136794.

    Article 
    CAS 

    Google Scholar
     

  • Maddheshiya S, Nara S. Latest developments in composite nanozymes and their pro-oxidative function in therapeutics. Entrance Bioeng Biotechnol. 2022;10:880214. https://doi.org/10.3389/fbioe.2022.880214.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nashat N, Haider Z. Therapeutic functions of nanozymes and their function in heart problems. Int J Nanomater Nanotechnol Nanomed. 2021;7(1):9–18.


    Google Scholar
     

  • Li S, Wang L, Zhang X, Chai H, Huang Y. N co-doped hierarchically porous carbon hybrid as a extremely environment friendly oxidase mimetic for glutathione detection Sens. Sens Actuators B: Chem. 2018;264:312–9.

    CAS 

    Google Scholar
     

  • Li Y, Li Y, Wang H, Liu R, Yb3+. Er3 + codoped cerium oxide upconversion nanoparticles enhanced the enzymelike catalytic exercise and antioxidative exercise for parkinson’s illness remedy. ACS Appl Mater Interfaces. 2021;13(12):13968–77. https://doi.org/10.1021/acsami.1c00157.

  • Li Z, Zhao Y, Huang H, Zhang C, Liu H, Wang Z et al. A Nanozyme-Immobilized hydrogel with endogenous ROS-Scavenging and oxygen technology talents for considerably selling oxidative diabetic wound therapeutic. Adv Healthc Mater. 2022;11.

  • Model MD. The websites and topology of mitochondrial superoxide manufacturing. Exp Gerontol. 2010;45(7–8):466–72. https://doi.org/10.1016/j.exger.2010.01.003.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hu D, Li R, Li Y, Wang M, Wang L, Wang S, et al. Irritation-targeted nanomedicines alleviate oxidative stress and reprogram macrophages polarization for myocardial infarction remedy. Adv Sci (Weinh). 2024;11(21):e2308910. https://doi.org/10.1002/advs.202308910.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to enhance concentrating on methods in nanomedicine. Chem Soc Rev. 2021;50(9):5397–434. https://doi.org/10.1039/d0cs01127d.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abdel-Mageed HM, Abd El Aziz AE, Abdel Raouf BM, Mohamed SA, Nada D. Antioxidant-biocompatible and secure catalase-based gelatin-alginate hydrogel scaffold with thermal wound therapeutic functionality: immobilization and supply method. 3 Biotech. 2022;12(3):73. https://doi.org/10.1007/s13205-022-03131-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Zhu B, Deng Y, Li T, Tian Q, Yuan Z, et al. Biocatalytic and antioxidant nanostructures for ROS scavenging and biotherapeutics. Adv Funct Mater. 2021;31(31):2101804. https://doi.org/10.1002/adfm.202101804.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Wang X, Li X, Qiao S, Huang G, Hermann DM, et al. Correction to A co-doped Fe3O4 nanozyme reveals enhanced reactive oxygen and nitrogen species scavenging exercise and ameliorates the deleterious results of ischemic stroke. ACS Appl Mater Interfaces. 2022;14(38):44015. https://doi.org/10.1021/acsami.2c12150.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Y, Liu W, Wang X, Liu Y, Wei H. Nanozyme-enabled remedy of cardio- and cerebrovascular ailments. Small. 2023;19(13):e2204809. https://doi.org/10.1002/smll.202204809.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Singh N, Mugesh G. CeVO4 nanozymes catalyze the discount of dioxygen to water with out releasing partially decreased oxygen species. Angew Chem Int Ed Engl. 2019;58(23):7797–801. https://doi.org/10.1002/anie.201903427.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guan Y, Li M, Dong Ok, Gao N, Ren J, Zheng Y, et al. Ceria/POMs hybrid nanoparticles as a mimicking metallopeptidase for remedy of neurotoxicity of amyloid-β peptide. Biomaterials. 2016;98:92–102. https://doi.org/10.1016/j.biomaterials.2016.05.005.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu Y-Q, Mao Y, Xu E, Jia H, Zhang S, Dawson VL, et al. Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in parkinson’s illness. Nano At this time. 2021;36(101027):101027. https://doi.org/10.1016/j.nantod.2020.101027.

    Article 
    CAS 

    Google Scholar
     

  • Tian R, Ma H, Ye W, Li Y, Wang S, Zhang Z, et al. Se-containing MOF coated twin‐Fe‐atom nanozymes with multi‐enzyme cascade actions defend in opposition to cerebral ischemic reperfusion harm. Adv Funct Mater. 2022;32(36):2204025. https://doi.org/10.1002/adfm.202204025.

    Article 
    CAS 

    Google Scholar
     

  • Medzhitov R. Origin and physiological roles of irritation. Nature. 2008;454(7203):428–35. https://doi.org/10.1038/nature07201.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Singh S. Cerium oxide based mostly nanozymes: redox phenomenon at biointerfaces. Biointerphases. 2016;11(4):04B202. https://doi.org/10.1116/1.4966535.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jin J, Li L, Zhang L, Luan Z, Xin S, Tune Ok. Progress within the utility of carbon dots-based nanozymes. Entrance Chem. 2021;9:748044. https://doi.org/10.3389/fchem.2021.748044.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abed A, Derakhshan M, Karimi M, Shirazinia M, Mahjoubin-Tehran M, Homayonfal M, et al. Platinum nanoparticles in biomedicine: preparation, anti-cancer exercise, and drug supply automobiles. Entrance Pharmacol. 2022;13:797804. https://doi.org/10.3389/fphar.2022.797804.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li DY, Hu XX, Tian ZR, Ning QW, Liu JQ, Yue Y, Yuan W, Meng B, Li JL, Zhang Y, PanZW, Zhuang YT, Lu YJ. eIF4A1 exacerbates myocardial ischemia-reperfusion harm in mice bypromoting nuclear translocation of transgelin/p53. Acta Pharmacol Sin. 2025;46(5):1236-1249. Epub 2025 Jan 24. PMID: 39856433; PMCID:PMC12032080. https://doi.org/10.1038/s41401-024-01467-6

  • Li X, Zhang Y, Ren X, Wang Y, Chen D, Li Q, et al. Ischemic microenvironment-responsive therapeutics for cardiovascular ailments. Adv Mater. 2021;33(52). https://doi.org/10.1002/adma.202105348.

  • Lengthy M, Wang L, Kang L, Liu D, Lengthy T, Ding H, et al. Prussian blue nanozyme that includes enhanced superoxide dismutase-like exercise for myocardial ischemia reperfusion harm remedy. ACS Nano. 2025;19(4):4561–81. https://doi.org/10.1021/acsnano.4c14445.

  • Liu X, Chen B, Chen J, Wang X, Dai X, Li Y, et al. A cardiac-targeted nanozyme interrupts the inflammation-free radical cycle in myocardial infarction. Adv Mater. 2024;36(2):e2308477. https://doi.org/10.1002/adma.202308477.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li Q, Liu Y, Dai X, Jiang W, Zhao H. Nanozymes regulate redox homeostasis in ROS-related irritation. Entrance Chem. 2021;9:740607. https://doi.org/10.3389/fchem.2021.740607.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing J, Ma X, Yu Y, Xiao Y, Chen L, Yuan W, et al. A cardiac-targeting and anchoring bimetallic cluster nanozyme alleviates chemotherapy-induced cardiac ferroptosis and PANoptosis. Adv Sci (Weinh). 2025;12(1):e2405597. https://doi.org/10.1002/advs.202405597.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nakai M, Iwanaga Y, Sumita Y, Wada S, Hiramatsu H, Iihara Ok, et al. Associations amongst cardiovascular and cerebrovascular ailments: evaluation of the nationwide claims-based JROAD-DPC dataset. PLoS ONE. 2022;17(3):e0264390. https://doi.org/10.1371/journal.pone.0264390.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu J, Wei Z, Wang X, Li X, Wang W. The chance of cardiovascular and cerebrovascular illness in overlap syndrome: a meta-analysis. J Clin Sleep Med. 2020;16(7):1199–207. https://doi.org/10.5664/jcsm.8466.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • GBD 2017 Causes of Demise Collaborators. World, regional, and Nationwide age-sex-specific mortality for 282 causes of demise in 195 international locations and territories, 1980–2017: a scientific evaluation for the worldwide burden of illness research 2017. Lancet. 2018;392(10159):1736–88. https://doi.org/10.1016/S0140-6736(18)32203-7.

    Article 

    Google Scholar
     

  • Wu Y, Xiong Y, Wang P, Liu R, Jia X, Kong Y, et al. Threat components of cardiovascular and cerebrovascular ailments in younger and middle-aged adults: A meta-analysis. Med (Baltim). 2022;101(48):e32082. https://doi.org/10.1097/MD.0000000000032082.

    Article 
    CAS 

    Google Scholar
     

  • Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The worldwide burden of cardiovascular ailments and threat: A compass for future well being. J Am Coll Cardiol. 2022;80(25):2361–71. https://doi.org/10.1016/j.jacc.2022.11.005.

    Article 
    PubMed 

    Google Scholar
     

  • Achim A, Péter OÁ, Cocoi M, Serban A, Mot S, Dadarlat-Pop A, et al. Correlation between coronary artery illness with different arterial programs: related, albeit separate, underlying pathophysiologic mechanisms. J Cardiovasc Dev Dis. 2023;10(5). https://doi.org/10.3390/jcdd10050210.

  • Patial S, Sharma A, Raj Ok, Shukla G, Atherosclerosis. Development, Threat Elements, Prognosis, Therapy, Probiotics and Synbiotics as a New Prophylactic Hope. The Microbe. 2024.

  • Gutierrez J, Bos D, Turan TN, Hoh B, Hilal S, Arenillas JF, et al. Pathology-based mind arterial illness phenotypes and their radiographic correlates. J Stroke Cerebrovasc Dis. 2024;33(6):107642. https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.107642.

    Article 
    PubMed 

    Google Scholar
     

  • Silver FL, Norris JW, Lewis AJ, Hachinski VC. Early mortality following stroke: a potential assessment. Stroke. 1984;15(3):492–6. https://doi.org/10.1161/01.str.15.3.492.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Adams RJ, Chimowitz MI, Alpert JS, Awad IA, Cerqueria MD, Fayad P, American Coronary heart Affiliation/American Stroke Affiliation. Coronary threat analysis in sufferers with transient ischemic assault and ischemic stroke: a scientific assertion for healthcare professionals from the Stroke Council and the Council on Scientific Cardiology of the American Coronary heart Affiliation/American Stroke Affiliation. Scientific Cardiology of the American Coronary heart Affiliation/American Stroke Affiliation Stroke. 2003;34:2310–22.

  • Kajermo U, Ulvenstam A, Modica A, Jernberg T, Mooe T. Incidence, developments, and predictors of ischemic stroke 30 days after an acute myocardial infarction. Stroke. 2014;45(5):1324–30. https://doi.org/10.1161/STROKEAHA.113.001963.

    Article 
    PubMed 

    Google Scholar
     

  • Finsterer J, Stöllberger C. Neurological problems of cardiac illness (coronary heart mind problems). Minerva Med. 2016;107(1):14–25.

    PubMed 

    Google Scholar
     

  • He H, Han Q, Wang S, Lengthy M, Zhang M, Li Y, et al. Design of a multifunctional nanozyme for resolving the Proinflammatory plaque microenvironment and attenuating atherosclerosis. ACS Nano. 2023;17(15):14555–71. https://doi.org/10.1021/acsnano.3c01420.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pham LM, Kim E-C, Ou W, Phung CD, Nguyen TT, Pham TT, et al. Focusing on and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for assuaging aorta atherosclerosis. Biomaterials. 2021;269(120677):120677. https://doi.org/10.1016/j.biomaterials.2021.120677.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiong H, Zhao Y, Xu Q, Xie X, Wu J, Hu B, et al. Biodegradable hollow-structured nanozymes modulate phenotypic polarization of macrophages and relieve hypoxia for remedy of osteoarthritis. Small. 2022;18(32):e2203240. https://doi.org/10.1002/smll.202203240.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gao Y, Liu S, Zeng X, Guo Z, Chen D, Li S, et al. Discount of reactive oxygen species accumulation utilizing gadolinium-doped ceria for the alleviation of atherosclerosis. ACS Appl Mater Interfaces. 2023;15(8):10414–25. https://doi.org/10.1021/acsami.2c20492.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao G, Wang Y, Fan Z, Xiong J, Ertas YN, Ashammakhi N, Wang J, Ma T.Nanomaterials in crossroad of autophagy management in human cancers: Amplification of cell deathmechanisms. Most cancers Lett. 2024;591:216860. https://doi.org/10.1016/j.canlet.2024.216860. Epub 2024 Apr 6. PMID: 38583650.

  • Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in heart problems. Circ Res. 2017;120(11):1812–24. https://doi.org/10.1161/CIRCRESAHA.117.311082.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu S, Zhao Ok, Wang J, Liu N, Nie Ok, Qi L, et al. Latest advances of Tanshinone in regulating autophagy for medicinal analysis. Entrance Pharmacol. 2022;13:1059360. https://doi.org/10.3389/fphar.2022.1059360.

  • Hu R, Dai C, Dong C, Ding L, Huang H, Chen Y, et al. Residing macrophage-delivered tetrapod PdH nanoenzyme for focused atherosclerosis administration by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano. 2022;16(10):15959–76. https://doi.org/10.1021/acsnano.2c03422.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Murphy A, Goldberg S. Mechanical problems of myocardial infarction. Am J Med. 2022;135(12):1401–9. https://doi.org/10.1016/j.amjmed.2022.08.017.

    Article 
    PubMed 

    Google Scholar
     

  • Heusch G. Myocardial ischemia/reperfusion: translational pathophysiology of ischemic coronary heart illness. Med (N Y). 2024;5(1):10–31. https://doi.org/10.1016/j.medj.2023.12.007.

    Article 
    CAS 

    Google Scholar
     

  • GBD 2019 Ailments and Accidents Collaborators. World burden of 369 ailments and accidents in 204 international locations and territories, 1990–2019: a scientific evaluation for the worldwide burden of illness research 2019. Lancet. 2020;396(10258):1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9.

    Article 

    Google Scholar
     

  • Peters SAE, Muntner P, Woodward M. Intercourse variations within the prevalence of, and developments in, cardiovascular threat components, remedy, and management in the usa, 2001 to 2016. Circulation. 2019;139(8):1025–35. https://doi.org/10.1161/CIRCULATIONAHA.118.035550.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimum medical remedy with or with out PCI for secure coronary illness. N Engl J Med. 2007;356(15):1503–16. https://doi.org/10.1056/NEJMoa070829.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, et al. Coronary microvascular dysfunction throughout the spectrum of cardiovascular ailments: JACC State-of-the-Artwork assessment. J Am Coll Cardiol. 2021;78:1352–71.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosen SD, Camici PG. The brain-heart axis within the notion of cardiac ache: the elusive hyperlink between ischaemia and ache. Ann Med. 2000;32(5):350–64. https://doi.org/10.3109/07853890008995938.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Z, Zhao Y, Hou Y, Tang G, Zhang R, Yang Y, et al. A thrombin-activated peptide‐templated nanozyme for remedying ischemic stroke through thrombolytic and neuroprotective actions (adv. Mater. 10/2024). Adv Mater. 2024;36(10). https://doi.org/10.1002/adma.202470077.

  • Santa D, Vitiello F, Torcinaro L, Ferraro A. The function of metabolic reworking in macrophage polarization and its impact on skeletal muscle regeneration. Antioxid Redox Sign. 2019;30(12):1553–98.

    PubMed 

    Google Scholar
     

  • Hou G, Chen S, Ngai T, Miao S, Pang J, Zhang L et al. The nanozymes of protein nanotubes-constructed microspheres with twin peroxidase-and catalase-like properties for M1-to-M2 macrophages repolarization and the synergistic anti-rheumatoid arthritis impact with loaded capsaicin. Nano At this time. 2024;56.

  • Li B, Zhang Q, Du W, Wu J, Cheng J, Zhang Y, et al. Reshaping cardiac microenvironments by macrophage-derived extracellular vesicles-coated pd@ CeO2 heterostructures for myocardial ischemia/reperfusion harm remedy. Mater At this time. 2023;65:47–61.

    CAS 

    Google Scholar
     

  • Feng L, Dou C, Xia Y, Li B, Zhao M, El-Toni AM, et al. Enhancement of nanozyme permeation by endovascular interventional remedy to stop vascular restenosis through macrophage polarization modulation. Adv Funct Mater. 2020;30(52):2006581. https://doi.org/10.1002/adfm.202006581.

    Article 
    CAS 

    Google Scholar
     

  • Chen S, Luo X, Solar Y, Jin W, He R. A novel metabolic reprogramming technique for the remedy of concentrating on to coronary heart injury-mediated macrophages. Int Immunopharmacol. 2023;122:110377. https://doi.org/10.1016/j.intimp.2023.110377.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fu X, Yu X, Jiang J, Yang J, Chen L, Yang Z, et al. Small molecule-assisted meeting of multifunctional ceria nanozymes for synergistic remedy of atherosclerosis. Nat Commun. 2022;13(1):6528. https://doi.org/10.1038/s41467-022-34248-y.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang Q, Jiang H, Wang Y, Leng X, Wang Y, Tong J. Plaque Macrophage-Focusing on nanosystems with cooperative Co-Regulation of ROS and TRAF6 for stabilization of atherosclerotic plaques. Adv Funct Mater 2023. 33.

  • Wang L, Qiu S, Li X, Zhang Y, Huo M, Shi J. Myocardial-targeting Tannic cerium nanocatalyst attenuates ischemia/reperfusion harm. Angew Chem Int Ed Engl. 2023;62(39):e202305576. https://doi.org/10.1002/anie.202305576.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ji P, Xu Q, Li J, Wang Z, Mao W, Yan P. Advances in nanoparticle-based therapeutics for ischemic stroke: enhancing drug supply and efficacy. Biomed Pharmacother. 2024;180(117564):117564. https://doi.org/10.1016/j.biopha.2024.117564.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Karthika V, Badrinathan Sridharan, Nam JW, Kim D, Gyun Lim H. Neuromodulation by nanozymes and ultrasound throughout alzheimer’s illness administration. J Nanobiotechnol. 2024;22(1):139. https://doi.org/10.1186/s12951-024-02406-7.

    Article 

    Google Scholar
     

  • Jiang Nanozymes. A brand new method for leukemiA remedy. J Mater Chem B. 2024.

  • Feng L, Dou C, Xia Y, Li B, Zhao M, Yu P, et al. Neutrophil-like cell-membrane-coated nanozyme remedy for ischemic mind injury and long-term neurological purposeful restoration. ACS Nano. 2021;15(2):2263–80. https://doi.org/10.1021/acsnano.0c07973.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Raskob GE, Angchaisuksiri P, Blanco AN, Büller H, Gallus A, Hunt BJ, et al. Thrombosis: a significant contributor to international illness burden. Semin Thromb Hemost. 2014;40(7):724–35. https://doi.org/10.1055/s-0034-1390325.

    Article 
    PubMed 

    Google Scholar
     

  • Anderson FA Jr, Spencer FA. Threat components for venous thromboembolism. Circulation. 2003;107(23 Suppl 1):I9–16. https://doi.org/10.1161/01.CIR.0000078469.07362.E6.

    Article 
    PubMed 

    Google Scholar
     

  • Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thromboembolism. Lancet. 2021;398(10294):64–77. https://doi.org/10.1016/s0140-6736(20)32658-1.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Oleksiuk-Bójko M, Lisowska A. Venous thromboembolism: why is it nonetheless a major well being downside? Adv Med Sci. 2023;68(1):10–20. https://doi.org/10.1016/j.advms.2022.10.002.

    Article 
    PubMed 

    Google Scholar
     

  • Lowe GDO. Frequent threat components for each arterial and venous thrombosis. Br J Haematol. 2008;140(5):488–95. https://doi.org/10.1111/j.1365-2141.2007.06973.x.

    Article 
    PubMed 

    Google Scholar
     

  • Delluc A, Lacut Ok, Rodger MA. Arterial and venous thrombosis: what’s the hyperlink? A story assessment. Thromb Res. 2020;191:97–102. https://doi.org/10.1016/j.thromres.2020.04.035.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Angchaisuksiri P. Arterial and venous thrombosis: shared threat components and pathophysiology. J Hematol Transfus Med. 2019;29:355–62.


    Google Scholar
     

  • Yamashita A, Asada Y. Underlying mechanisms of thrombus formation/development in atherothrombosis and deep vein thrombosis. Pathol Int. 2023;73(2):65–80. https://doi.org/10.1111/pin.13305.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang M, Zhu Y, Xin G, Wang Y, Li F, Li S, et al. Multi-enzyme mimetic iridium nanozymes-based thrombus microenvironment-modulated nanoplatform for enhanced thrombolytic remedy. Chem Eng J. 2023;470(144156):144156. https://doi.org/10.1016/j.cej.2023.144156.

    Article 
    CAS 

    Google Scholar
     

  • Qiao Y, Wang J, Nguyen T, Liu L, Ji X, Zhao W. Intravenous thrombolysis with urokinase for acute ischemic stroke. Mind Sci. 2024;14(10):989. https://doi.org/10.3390/brainsci14100989.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Murray V, Norrving B, Sandercock PAG, Terént A, Wardlaw JM, Wester P. The molecular foundation of thrombolysis and its medical utility in stroke. J Intern Med. 2010;267(2):191–208. https://doi.org/10.1111/j.1365-2796.2009.02205.x.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guan Q, Dou H. Thrombus-targeting polymeric nanocarriers and their biomedical functions in thrombolytic remedy. Entrance Physiol. 2021;12:763085. https://doi.org/10.3389/fphys.2021.763085.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Liu Y, Tao C, Cao Z, Guo S, Wei Z, et al. Bionic nanovesicles sequentially deal with flaps with totally different durations of ischemia by thrombolysis and prevention of ischemia-reperfusion harm. Mater At this time Bio. 2025;31(101529):101529. https://doi.org/10.1016/j.mtbio.2025.101529.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ren T, Mi Y, Wei J, Han X, Zhang X, Zhu Q, et al. Advances in nano-functional supplies in focused thrombolytic drug supply. Molecules. 2024;29(10):2325. https://doi.org/10.3390/molecules29102325.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zheng J, Qi R, Dai C, Li G, Sang M. Enzyme catalysis biomotor engineering of neutrophils for nanodrug supply and cell-based thrombolytic remedy. ACS Nano. 2022;16(2):2330–44. https://doi.org/10.1021/acsnano.1c08538.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma H, Jiang Z, Xu J, Liu J, Guo Z-N. Focused nano-delivery methods for facilitating thrombolysis remedy in ischemic stroke. Drug Deliv. 2021;28(1):357–71. https://doi.org/10.1080/10717544.2021.1879315.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu J, Wang X, Yin H, Cao X, Hu Q, Lv W, et al. Sequentially site-specific supply of thrombolytics and neuroprotectant for enhanced remedy of ischemic stroke. ACS Nano. 2019;13(8):8577–88. https://doi.org/10.1021/acsnano.9b01798.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang S, Wang R, Meng N, Guo H, Wu S, Wang X, et al. Platelet membrane-functionalized nanoparticles with improved concentrating on capability and decrease hemorrhagic threat for thrombolysis remedy. J Management Launch. 2020;328:78–86. https://doi.org/10.1016/j.jconrel.2020.08.030.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pawlowski CL, Li W, Solar M, Ravichandran Ok, Hickman D, Kos C, et al. Platelet microparticle-inspired clot-responsive nanomedicine for focused fibrinolysis. Biomaterials. 2017;128:94–108. https://doi.org/10.1016/j.biomaterials.2017.03.012.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xiang Ok, Wu H, Liu Y, Wang S, Li X, Yang B, et al. MOF-derived bimetallic nanozyme to catalyze ROS scavenging for defense of myocardial harm. Theranostics. 2023;13(8):2721–33. https://doi.org/10.7150/thno.83543.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao D, Li Q, Huang Q, Li X, Yin M, Wang Z, et al. Cardioprotective impact of Propofol in opposition to oxygen glucose deprivation and reperfusion harm in H9c2 cells. Oxid Med Cell Longev. 2015;2015:184938. https://doi.org/10.1155/2015/184938.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Solar M, Liu Y, Zhang Y, Xu L, Luo Y, et al. Platelet membrane-functionalized Hole mesoporous Prussian blue nanomedicine for complete thrombolytic administration by focused enhanced fibrinolysis and ROS scavenging. Chem Eng J. 2023;474(145515):145515. https://doi.org/10.1016/j.cej.2023.145515.

    Article 
    CAS 

    Google Scholar
     

  • Jheng P-R, Chiang C-C, Kang J-H, Fan Y-J, Wu KC-W, Chen Y-T, et al. Chilly atmospheric plasma-enabled platelet vesicle integrated iron oxide nano-propellers for thrombolysis. Mater At this time Bio. 2023;23(100876):100876. https://doi.org/10.1016/j.mtbio.2023.100876.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Salaudeen MA, Bello N, Danraka RN, Ammani ML. Understanding the pathophysiology of ischemic stroke: the idea of present therapies and alternative for brand spanking new ones. Biomolecules. 2024;14(3):305. https://doi.org/10.3390/biom14030305.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Palmer SJ. Identification, care and prevention of stroke is feasible. Br J Well being Help. 2023;17(6):236–9. https://doi.org/10.12968/bjha.2023.17.6.236.

    Article 

    Google Scholar
     

  • Fan J-L, Brassard P, Rickards CA, Nogueira RC, Nasr N, McBryde FD, et al. Integrative cerebral blood movement regulation in ischemic stroke. J Cereb Blood Stream Metab. 2022;42(3):387–403. https://doi.org/10.1177/0271678X211032029.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qin C, Yang S, Chu Y-H, Zhang H, Pang X-W, Chen L, et al. Correction To: Signaling pathways concerned in ischemic stroke: molecular mechanisms and therapeutic interventions. Sign Transduct Goal Ther. 2022;7(1):278. https://doi.org/10.1038/s41392-022-01129-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong MJ, Gronseth G, Anderson DC, Biller J, Cucchiara B, Dafer R, et al. Abstract of evidence-based guideline: periprocedural administration of antithrombotic drugs in sufferers with ischemic cerebrovascular illness: report of the rule growth subcommittee of the American academy of neurology: report of the rule growth subcommittee of the American academy of neurology. Neurology. 2013;80(22):2065–9. https://doi.org/10.1212/WNL.0b013e318294b32d.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Carolei A, Pistoia F, Sacco S, Mohr JP. Non permanent just isn’t at all times benign: similarities and variations between transient ischemic assault and angina. Mayo Clin Proc. 2013;88(7):708–19. https://doi.org/10.1016/j.mayocp.2013.04.014

  • Lioutas V-A, Ivan CS, Himali JJ, Aparicio HJ, Leveille T, Romero JR, et al. Incidence of transient ischemic assault and affiliation with long-term threat of stroke. JAMA. 2021;325(4):373–81. https://doi.org/10.1001/jama.2020.25071.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki J, Miyata T, Hoshina Ok, Okamoto H, Kimura H, Shigematsu Ok. Surgical remedy of sufferers with congenital vascular malformation-associated aneurysms. Eur J Vasc Endovasc Surg. 2011;42(4):517–22. https://doi.org/10.1016/j.ejvs.2011.04.016.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fekete M, Lehoczki A, Szappanos Á, Toth A, Mahdi M, Sótonyi P, et al. Cerebromicrovascular mechanisms contributing to lengthy COVID: implications for neurocognitive well being. GeroScience. 2025;47(1):745–79. https://doi.org/10.1007/s11357-024-01487-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burtscher J, Millet GP, Fresa M, Lanzi S, Mazzolai L, Pellegrin M. The hyperlink between impaired oxygen provide and cognitive decline in peripheral artery illness. Prog Cardiovasc Dis. 2024;85:63–73. https://doi.org/10.1016/j.pcad.2023.12.002.

    Article 
    PubMed 

    Google Scholar
     

  • Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood movement in people: physiology and medical implications of autoregulation. Physiol Rev. 2021;101(4):1487–559. https://doi.org/10.1152/physrev.00022.2020.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rink C, Khanna S. Significance of mind tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid Redox Sign. 2011;14(10):1889–903. https://doi.org/10.1089/ars.2010.3474.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Clarke DD, Sokoloff L. Regulation of cerebral metabolic price. Primary neurochemistry: molecular, mobile and medical elements. Windermere, FL, USA: American Society for Neurochemistry; 1999.


    Google Scholar
     

  • Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Coronary heart illness and stroke statistics-2020 replace: A report from the American coronary heart affiliation: A report from the American coronary heart affiliation. Circulation. 2020;141(9):e139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article 
    PubMed 

    Google Scholar
     

  • Lattanzi S, Silvestrini M. Blood stress in acute intra-cerebral hemorrhage. Ann Transl Med. 2016;4(16):320. https://doi.org/10.21037/atm.2016.08.04.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlberg B, Asplund E. Feedback, opinions, and opinions components influencing admission blood stress ranges in sufferers with acute stroke. Stroke. 1991;22(4):527–30.

    PubMed 
    CAS 

    Google Scholar
     

  • Gujjar AR, Deibert E, Manno EM, Duff S, Diringer MN. Mechanical air flow for ischemic stroke and intracerebral hemorrhage: indications, timing, and final result: indications, timing, and final result. Neurology. 1998;51(2):447–51. https://doi.org/10.1212/wnl.51.2.447.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salvadori E, Papi G, Insalata G, Rinnoci V, Donnini I, Martini M, et al. Comparability between ischemic and hemorrhagic strokes in purposeful final result at discharge from an intensive rehabilitation hospital. Diagnostics (Basel). 2020;11(1):38. https://doi.org/10.3390/diagnostics11010038.

    Article 
    PubMed 

    Google Scholar
     

  • Yang Y, Li Z, Fan X, Jiang C, Wang J, Rastegar-Kashkooli Y, et al. Nanozymes: potential therapies for reactive oxygen species overproduction and irritation in ischemic stroke and traumatic mind harm. ACS Nano. 2024;18(26):16450–67. https://doi.org/10.1021/acsnano.4c03425.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and advantages for human well being. Oxid Med Cell Longev. 2017;2017(1):8416763. https://doi.org/10.1155/2017/8416763.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Feng S, Yang M, Liu S, He Y, Deng S, Gong Y. Oxidative stress as a Bridge between age and stroke: A story assessment. J Intensive Med. 2023;3(4):313–9. https://doi.org/10.1016/j.jointm.2023.02.002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, et al. Nanozyme-enhanced electrochemical biosensors: mechanisms and functions. Small. 2024;20(14):e2307815. https://doi.org/10.1002/smll.202307815.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hamed EM, Rai V, Li SFY. Single-atom nanozymes with peroxidase-like exercise: A assessment. Chemosphere. 2024;346(140557):140557. https://doi.org/10.1016/j.chemosphere.2023.140557.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hwang DW, Son S, Jang J, Youn H, Lee S, Lee D, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for supply of neurogenic MicroRNA. Biomaterials. 2011;32(21):4968–75. https://doi.org/10.1016/j.biomaterials.2011.03.047.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kong J, Zhou F. Preparation and utility of carbon Dots nanozymes. Antioxid (Basel). 2024;13(5):535. https://doi.org/10.3390/antiox13050535.

    Article 
    CAS 

    Google Scholar
     

  • He L, Huang G, Liu H, Sang C, Liu X, Chen T. Extremely bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for environment friendly reversal of reperfusion-induced harm in ischemic stroke. Sci Adv. 2020;6(12):eaay9751. https://doi.org/10.1126/sciadv.aay9751.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Ok, Tu M, Gao W, Cai X, Tune F, Chen Z, et al. Hole Prussian blue nanozymes drive neuroprotection in opposition to ischemic stroke through attenuating oxidative stress, counteracting irritation, and suppressing cell apoptosis. Nano Lett. 2019;19(5):2812–23. https://doi.org/10.1021/acs.nanolett.8b04729.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao Q, Du W, Zhou L, Wu J, Zhang X, Wei X, et al. Transferrin-enabled blood-brain barrier crossing manganese-based nanozyme for rebalancing the reactive oxygen species degree in ischemic stroke. Pharmaceutics. 2022;14(6):1122. https://doi.org/10.3390/pharmaceutics14061122.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang Y, Deng G, Wang P, Lv G, Mao R, Solar Y, et al. A selenium nanocomposite protects the mouse mind from oxidative harm following intracerebral hemorrhage. Int J Nanomed. 2021;16:775–88. https://doi.org/10.2147/ijn.s293681.

    Article 

    Google Scholar
     

  • Kang MK, Kim TJ, Kim Y-J, Kang L, Kim J, Lee N, et al. Focused supply of iron oxide nanoparticle-loaded human embryonic stem cell-derived spherical neural plenty for treating intracerebral hemorrhage. Int J Mol Sci. 2020;21(10):3658. https://doi.org/10.3390/ijms21103658.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Allen CL, Bayraktutan U. Oxidative stress and its function within the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4(6):461–70. https://doi.org/10.1111/j.1747-4949.2009.00387.x.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJB, Culebras A, et al. An up to date definition of stroke for the twenty first century: a press release for healthcare professionals from the American coronary heart affiliation/american stroke affiliation: An announcement for healthcare professionals from the American coronary heart affiliation/american stroke affiliation. Stroke. 2013;44(7):2064–89. https://doi.org/10.1161/STR.0b013e318296aeca.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tapeinos C, Larrañaga A, Tomatis F, Bizeau J, Marino A, Battaglini M, et al. Superior purposeful supplies and cell-based therapies for the remedy of ischemic stroke and postischemic stroke results. Adv Funct Mater. 2020;30(1):1906283. https://doi.org/10.1002/adfm.201906283.

    Article 
    CAS 

    Google Scholar
     

  • Gaudin A, Yemisci M, Eroglu H, Lepetre-Mouelhi S, Turkoglu OF, Dönmez-Demir B, et al. Squalenoyl adenosine nanoparticles present neuroprotection after stroke and spinal wire harm. Nat Nanotechnol. 2014;9(12):1054–62. https://doi.org/10.1038/nnano.2014.274.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Y, Yin Y, Zhang W, Li H, Wang T, Yin H, et al. Reactive oxygen species scavenging and irritation mitigation enabled by biomimetic Prussian blue analogues boycott atherosclerosis. J Nanobiotechnol. 2021;19(1):161. https://doi.org/10.1186/s12951-021-00897-2.

    Article 
    CAS 

    Google Scholar
     

  • Lopez-Cantu DO, González-González RB, Sharma A, Bilal M, Parra-Saldívar R, Iqbal HMN. Bioactive material-based nanozymes with multifunctional attributes for biomedicine: increasing antioxidant therapeutics for neuroprotection, most cancers, and anti inflammatory pathologies. Coord Chem Rev. 2022;469(214685):214685. https://doi.org/10.1016/j.ccr.2022.214685.

    Article 
    CAS 

    Google Scholar
     

  • Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, et al. The blood mind barrier in cerebral ischemic injury-Disruption and restore. Mind Hemorrhages. 2020;1:34–53.


    Google Scholar
     

  • Moon S, Chang M-S, Koh S-H, Choi YK. Restore mechanisms of the neurovascular unit after ischemic stroke with a give attention to VEGF. Int J Mol Sci. 2021;22(16):8543. https://doi.org/10.3390/ijms22168543.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang L, Xiong X, Zhang L, Shen J, Neurovascular Unit. A essential function in ischemic stroke. CNS Neurosci Ther. 2021;27(1):7–16. https://doi.org/10.1111/cns.13561.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jithoo A, Penny TR, Pham Y, Sutherland AE, Smith MJ, Petraki M, et al. The Temporal relationship between blood-brain barrier integrity and microglial response following neonatal hypoxia ischemia. Cells. 2024;13(8). https://doi.org/10.3390/cells13080660.

  • Carmeliet P, Jain RK. Molecular mechanisms and medical functions of angiogenesis. Nature. 2011;473(7347):298–307. https://doi.org/10.1038/nature10144.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Most cancers. 2011;2(12):1117–33. https://doi.org/10.1177/1947601911423654.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yan BC, Cao J, Liu J, Gu Y, Xu Z, Li D, et al. Dietary Fe3O4 nanozymes stop the harm of neurons and blood-brain barrier integrity from cerebral ischemic stroke. ACS Biomater Sci Eng. 2021;7(1):299–310. https://doi.org/10.1021/acsbiomaterials.0c01312.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tang Z, Meng S, Tune Z, Yang X, Li X, Guo H, et al. Neutrophil membrane fusogenic nanoliposomal leonurine for focused ischemic stroke remedy through reworking cerebral area of interest and restoring blood-brain barrier integrity. Mater At this time Bio. 2023;20(100674):100674. https://doi.org/10.1016/j.mtbio.2023.100674.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Partoazar A, Nasoohi S, Rezayat SM, Gilani Ok, Mehr SE, Amani A, et al. Nanoliposome containing cyclosporine A decreased neuroinflammation responses and improved neurological actions in cerebral ischemia/reperfusion in rat. Fundam Clin Pharmacol. 2017;31(2):185–93. https://doi.org/10.1111/fcp.12244.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen Q, Wang J, Xiong X, Chen J, Wang B, Yang H, et al. Blood-brain barrier-penetrating metal-organic framework antioxidant nanozymes for focused ischemic stroke remedy. Adv Healthc Mater. 2024;e2402376. https://doi.org/10.1002/adhm.202402376.

  • Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative illness. Nat Rev Immunol. 2014;14(7):463–77. https://doi.org/10.1038/nri3705.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21(10):1359–69. https://doi.org/10.1038/s41593-018-0242-x.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang W, Li Q, Zhang R, Li J, Lin Q, Li J, et al. Chiral metal-organic frameworks incorporating nanozymes as neuroinflammation inhibitors for managing parkinson’s illness. Nat Commun. 2023;14(1):8137. https://doi.org/10.1038/s41467-023-43870-3.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gong Y, Huang A, Guo X, Jia Z, Chen X, Zhu X, et al. Selenium-core nanozymes dynamically regulates Aβ & neuroinflammation circulation: augmenting restore of nervous injury. Chem Eng J. 2021;418(129345):129345. https://doi.org/10.1016/j.cej.2021.129345.

    Article 
    CAS 

    Google Scholar
     

  • Fredman G, Kamaly N, Spolitu S, Milton J, Ghorpade D, Chiasson R, et al. Focused nanoparticles containing the proresolving peptide Ac2-26 defend in opposition to superior atherosclerosis in hypercholesterolemic mice. Sci Transl Med. 2015;7(275):275ra20. https://doi.org/10.1126/scitranslmed.aaa1065.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Beldman TJ, Senders ML, Alaarg A, Pérez-Medina C, Tang J, Zhao Y, et al. Hyaluronan nanoparticles selectively goal plaque-associated macrophages and enhance plaque stability in atherosclerosis. ACS Nano. 2017;11(6):5785–99. https://doi.org/10.1021/acsnano.7b01385.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin A, Liu S, Wei H. Nanozymes for biomedical functions in orthopaedics. Particuology. 2023;76:32–45. https://doi.org/10.1016/j.partic.2022.08.009.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Hou Y, Tang G, Li Y, Zhao Y, Yu Y, et al. Clever nanozymes: biomimetic design, mechanisms and biomedical functions. Basic Res. 2024. https://doi.org/10.1016/j.fmre.2024.11.013.

    Article 

    Google Scholar
     

  • Jeyachandran S, Srinivasan R, Ramesh T, Parivallal A, Lee J, Sathiyamoorthi E. Latest growth and utility of nanozyme synthetic enzymes-A assessment. Biomimetics (Basel). 2023;8(5). https://doi.org/10.3390/biomimetics8050446.

  • Kurian AG, Singh RK, Sagar V, Lee J-H, Kim H-W. Nanozyme-engineered hydrogels for anti-inflammation and pores and skin regeneration. Nanomicro Lett. 2024;16(1):110. https://doi.org/10.1007/s40820-024-01323-6.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, et al. Multifunctional nanoparticle-mediated combining remedy for human ailments. Sign Transduct Goal Ther. 2024;9(1):1. https://doi.org/10.1038/s41392-023-01668-1.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Petrovic S, Bita B, Barbinta-Patrascu M-E. Nanoformulations in pharmaceutical and biomedical functions: inexperienced views. Int J Mol Sci. 2024;25(11):5842. https://doi.org/10.3390/ijms25115842.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lewis DR, Kamisoglu Ok, York AW, Moghe PV. Polymer-based therapeutics: nanoassemblies and nanoparticles for administration of atherosclerosis: polymer based mostly therapeutics for atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(4):400–20. https://doi.org/10.1002/wnan.145.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shi J, Yu W, Xu L, Yin N, Liu W, Zhang Ok, et al. Bioinspired nanosponge for salvaging ischemic stroke through free radical scavenging and self-adapted oxygen regulating. Nano Lett. 2020;20(1):780–9. https://doi.org/10.1021/acs.nanolett.9b04974.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salehi B, Del Prado-Audelo ML, Cortés H, Leyva-Gómez G, Stojanović-Radić Z, Singh YD, et al. Therapeutic functions of Curcumin nanomedicine formulations in cardiovascular ailments. J Clin Med. 2020;9(3):746. https://doi.org/10.3390/jcm9030746.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Present growth of nano-drug supply to focus on macrophages. Biomedicines. 2022;10(5):1203. https://doi.org/10.3390/biomedicines10051203.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu C, Mao J, Wang X, Yang R, Wang C, Li C, et al. Advances in remedy methods based mostly on scavenging reactive oxygen species of nanoparticles for atherosclerosis. J Nanobiotechnol. 2023;21(1):271. https://doi.org/10.1186/s12951-023-02058-z.

    Article 

    Google Scholar
     

  • Singh AP, Biswas A, Shukla A, Maiti P. Focused remedy in continual ailments utilizing nanomaterial-based drug supply automobiles. Sign Transduct Goal Ther. 2019;4(1):33. https://doi.org/10.1038/s41392-019-0068-3.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li S, Li F, Wang Y, Li W, Wu J, Hu X, et al. A number of supply methods of nanocarriers for myocardial ischemia-reperfusion harm: present methods and future potential. Drug Deliv. 2024;31(1):2298514. https://doi.org/10.1080/10717544.2023.2298514.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Egwu CO, Aloke C, Onwe KT, Umoke CI, Nwafor J, Eyo RA, et al. Nanomaterials in drug supply: strengths and alternatives in medication. Molecules. 2024;29(11):2584. https://doi.org/10.3390/molecules29112584.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chan Edgar Y, Wang J. Introduction for design of nanoparticle based mostly drug supply programs. Curr Pharm Design. 2017;23(14):2108–12.

    CAS 

    Google Scholar
     

  • Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug supply programs: characterization, limitations, future views and implementation of synthetic intelligence. Pharmaceutics. 2022;14(4):883. https://doi.org/10.3390/pharmaceutics14040883.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Z, Li Y, Yuan Z, Wu L, Ma J, Tan W, et al. MOF nanozymes: lively websites and sensing functions. Inorg Chem Entrance. 2025. https://doi.org/10.1039/d4qi02555e.

    Article 

    Google Scholar
     

  • Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, et al. Nanomaterials with enzyme-like traits (nanozymes): next-generation synthetic enzymes (II). Chem Soc Rev. 2019;48(4):1004–76. https://doi.org/10.1039/c8cs00457a.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Latest progress and prospect of metal-organic framework-based nanozymes in biomedical utility. Nanomaterials (Basel). 2024;14(3):244. https://doi.org/10.3390/nano14030244.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qiao R, Cong Y, Ovais M, Cai R, Chen C, Wang L. Efficiency modulation and evaluation for catalytic biomedical nanomaterials in organic programs. Cell Rep Phys Sci. 2023;4(6):101453. https://doi.org/10.1016/j.xcrp.2023.101453.

    Article 
    CAS 

    Google Scholar
     

  • Zandieh M, Liu J. Floor science of nanozymes and defining a nanozyme unit. Langmuir. 2022;38(12):3617–22. https://doi.org/10.1021/acs.langmuir.2c00070.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, et al. Designing clever bioorthogonal nanozymes: current advances of stimuli-responsive catalytic programs for biomedical functions. J Management Launch. 2024;373:929–51. https://doi.org/10.1016/j.jconrel.2024.07.073.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lyu S, Dong Z, Xu X, Bei H-P, Yuen H-Y, James Cheung C-W, et al. Going under and past the floor: microneedle construction, supplies, medicine, fabrication, and functions for wound therapeutic and tissue regeneration. Bioact Mater. 2023;27:303–26. https://doi.org/10.1016/j.bioactmat.2023.04.003.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qian X-L, Li J, Wei R, Lin H, Xiong L-X. Inner and exterior triggering mechanism of good nanoparticle-based DDSs in focused tumor remedy. Curr Pharm Des. 2018;24(15):1639–51. https://doi.org/10.2174/1381612824666180510094607.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ju Y, Liu X, Ye X, Dai M, Fang B, Shen X, et al. Nanozyme-based reworking of illness microenvironments for illness prevention and remedy: A assessment. ACS Appl Nano Mater. 2023;6(15):13792–823. https://doi.org/10.1021/acsanm.3c02097.

    Article 
    CAS 

    Google Scholar
     

  • Wang S, Zhou Y, Liang X, Xu M, Li N, Zhao Ok. Platinum-cerium bimetallic nano-raspberry for atherosclerosis remedy through synergistic foam cell Inhibition and P2Y12 focused antiplatelet aggregation. Chem Eng J. 2022;430(132859):132859. https://doi.org/10.1016/j.cej.2021.132859.

    Article 
    CAS 

    Google Scholar
     

  • Rascol E, Devoisselle J-M, Chopineau J. The relevance of membrane fashions to know nanoparticles-cell membrane interactions. Nanoscale. 2016;8(9):4780–98. https://doi.org/10.1039/c5nr07954c.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin J, Miao L, Zhong G, Lin C-H, Dargazangy R, Alexander-Katz A. Understanding the synergistic impact of physicochemical properties of nanoparticles and their mobile entry pathways. Commun Biol. 2020;3(1):205. https://doi.org/10.1038/s42003-020-0917-1.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin S, Cheng Y, Zhang H, Wang X, Zhang Y, Zhang Y, et al. Copper Tannic acid coordination nanosheet: A potent nanozyme for scavenging ROS from cigarette smoke. Small. 2020;16(27):e1902123. https://doi.org/10.1002/smll.201902123.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu X, Solar T, Solar Y, Manshina A, Wang L. Polyoxometalate-based peroxidase-like nanozymes. Nano Mater Sci. 2024. https://doi.org/10.1016/j.nanoms.2024.03.002.

    Article 

    Google Scholar
     

  • Feng Z, Guo Y, Zhang Y, Zhang A, Jia M, Yin J, et al. Nanozymes: a bibliometrics assessment. J Nanobiotechnol. 2024;22(1):704. https://doi.org/10.1186/s12951-024-02907-5.

    Article 

    Google Scholar
     

  • Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY. Nanomaterial form affect on cell conduct. Int J Mol Sci. 2021;22(10):5266. https://doi.org/10.3390/ijms22105266.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro AI, Dias AM, Zille A. Synergistic results between metallic nanoparticles and industrial antimicrobial brokers: A assessment. ACS Appl Nano Mater. 2022;5(3):3030–64. https://doi.org/10.1021/acsanm.1c03891.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. World burden of cardiovascular ailments and threat components, 1990–2019: replace from the GBD 2019 research. J Am Coll Cardiol. 2020;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marino P, Mininni M, Deiana G, Marino G, Divella R, Bochicchio I, et al. Wholesome way of life and most cancers threat: modifiable threat components to stop most cancers. Vitamins. 2024;16(6):800. https://doi.org/10.3390/nu16060800.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Katic L, Choi J, Diaz Saravia S, Silverman A, Nagourney A, Torelli V, et al. The interaction between heart problems and lung most cancers. Cureus. 2024;16(6):e62953. https://doi.org/10.7759/cureus.62953.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Facciolà A, Visalli G, D’Andrea G, Varvarà M, Santoro G, Cuffari R, et al. Prevention of cardiovascular ailments and diabetes: significance of a screening program for the early detection of threat circumstances in a goal inhabitants. J Prev Med Hyg. 2021;62(4):E934–42. https://doi.org/10.15167/2421-4248/jpmh2021.62.4.2360.

    Article 
    PubMed 

    Google Scholar
     

  • Koene RJ, Prizment AE, Blaes A, Konety SH. Shared threat components in heart problems and most cancers. Circulation. 2016;133(11):1104–14. https://doi.org/10.1161/CIRCULATIONAHA.115.020406.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mensah GA, Fuster V, Murray CJ, Roth GA. World burden of cardiovascular ailments and dangers collaborators. World burden of cardiovascular ailments and dangers, 1990–2022. J Am Coll Cardiol. 1990;82(25):2350–473.


    Google Scholar
     

  • Zmaili M, Alzubi J, Alkhayyat M, Albakri A, Alkhalaileh F, Longinow J, et al. Most cancers and heart problems: the conjoined twins. Cancers (Basel). 2024;16(8). https://doi.org/10.3390/cancers16081450.

  • Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruz-Flores S, et al. Heart problems and breast most cancers: the place these entities intersect: A scientific assertion from the American coronary heart affiliation. Circulation. 2018;137(8):e30–66. https://doi.org/10.1161/CIR.0000000000000556.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Lenarda F, Balestrucci A, Terzi R, Lopes P, Ciliberti G, Marchetti D, et al. Coronary artery illness, household historical past, and screening views: an up-to-date assessment. J Clin Med. 2024;13(19). https://doi.org/10.3390/jcm13195833.

  • Lopez-Jimenez F, Almahmeed W, Bays H, Cuevas A, Di Angelantonio E, le Roux CW, et al. Weight problems and heart problems: mechanistic insights and administration methods. A joint place paper by the world coronary heart federation and world weight problems federation. Eur J Prev Cardiol. 2022;29(17):2218–37. https://doi.org/10.1093/eurjpc/zwac187.

    Article 
    PubMed 

    Google Scholar
     

  • Liu S, Xu J, Xing Y, Yan T, Yu S, Solar H, et al. Nanozymes as environment friendly instruments for catalytic therapeutics. View (Beijing). 2022;3(2):20200147. https://doi.org/10.1002/viw.20200147.

    Article 
    CAS 

    Google Scholar
     

  • Xu D, Wu L, Yao H, Zhao L. Catalase-like nanozymes: classification, catalytic mechanisms, and their functions. Small. 2022;18(37):e2203400. https://doi.org/10.1002/smll.202203400.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kott KA, Bishop M, Yang CHJ, Plasto TM, Cheng DC, Kaplan AI, et al. Biomarker growth in cardiology: reviewing the previous to tell the long run. Cells. 2022;11(3):588. https://doi.org/10.3390/cells11030588.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Y, Wei G, Liu W, Li T, Wang Y, Zhou M, et al. Nanozymes for nanohealthcare. Nat Rev Strategies Primers. 2024;4(1). https://doi.org/10.1038/s43586-024-00315-5.

  • Ai Y, Hu Z-N, Liang X, Solar H-B, Xin H, Liang Q. Latest advances in nanozymes: from issues to bioapplications. Adv Funct Mater. 2022;32(14):2110432. https://doi.org/10.1002/adfm.202110432.

    Article 
    CAS 

    Google Scholar
     

  • Park Y-S, Park BU, Jeon H-J. Advances in machine learning-enhanced nanozymes. Entrance Chem. 2024;12:1483986. https://doi.org/10.3389/fchem.2024.1483986.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xing Y, Yasinjan F, Solar S, Yang J, Du Y, Zhang H, et al. Nanozyme-based most cancers theranostics: A scientometric evaluation and complete assessment. Nano At this time. 2024;57(102386):102386. https://doi.org/10.1016/j.nantod.2024.102386.

    Article 
    CAS 

    Google Scholar
     

  • You Y, Tang Z, Lin H, Shi J. Rising two-dimensional materials nanozymes for theranostic nanomedicine. Biophys Rep. 2021;7(3):159–72. https://doi.org/10.52601/bpr.2021.210011.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, et al. Nanotechnology in healthcare, and its security and environmental dangers. J Nanobiotechnol. 2024;22(1):715. https://doi.org/10.1186/s12951-024-02901-x.

    Article 

    Google Scholar
     

  • Du P, Gao L, Jiao J, Fan Ok, Yan X, Nanozyme. Combining energy of pure enzymes and synthetic catalysis. Bull Chin Acad Sci. 2024;(5):809–20.

  • Goya GF, Mayoral A, Winkler E, Zysler RD, Bagnato C, Raineri M, et al. Subsequent technology of nanozymes: A perspective of the challenges to match organic efficiency. J Appl Phys. 2021;130(19):190903. https://doi.org/10.1063/5.0061499.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Zhang R, Yan X, Fan Ok. Construction and exercise of nanozymes: inspirations for de Novo design of nanozymes. Mater At this time (Kidlington). 2020;41:81–119. https://doi.org/10.1016/j.mattod.2020.08.020.

    Article 
    CAS 

    Google Scholar
     

  • Subin TS, Vijayan V, Kumar KJR. Up to date regulatory issues for nanomedicines. Pharm Nanotechnol. 2017;5(3):180–91. https://doi.org/10.2174/2211738505666170615095542.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bleeker E, Swart E, Braakhuis H, Cruz F, Friedrichs ML, Gosens S. In the direction of harmonisation of testing of nanomaterials for EU regulatory necessities on chemical safety-a proposal for additional actions. Regul Toxicol Pharmacol. 2023;139.

  • Sheng J, Wu Y, Ding H, Feng Ok, Shen Y, Zhang Y, et al. Multienzyme-like nanozymes: regulation, rational design, and utility. Adv Mater. 2024;36(10):e2211210. https://doi.org/10.1002/adma.202211210.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu H, Li S, Liu Y-S. Nanoparticles within the analysis and remedy of vascular getting old and associated ailments. Sign Transduct Goal Ther. 2022;7(1):231. https://doi.org/10.1038/s41392-022-01082-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular ailments. Innov (Camb). 2022;3(2):100214. https://doi.org/10.1016/j.xinn.2022.100214.

    Article 
    CAS 

    Google Scholar
     

  • Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, et al. Position of nanoparticle-conjugates and nanotheranostics in abrogating oxidative stress and ameliorating neuroinflammation. Antioxid (Basel). 2023;12(10). https://doi.org/10.3390/antiox12101877.

  • Lemos FA, Silva KB, Campos C, de Silva C, Santos NOS, dos Barauna UG. Key nanotechnology breakthroughs in heart problems remedy. Int J Cardiovasc Sci. 2024;37. https://doi.org/10.36660/ijcs.20230050.

  • Solar Y, Xu T, Qian Y, Chen Q, Xiong F, Du W, et al. NOS-like exercise of CeO2 nanozymes contributes to diminishing the vascular plaques. J Nanobiotechnol. 2024;22(1):12. https://doi.org/10.1186/s12951-023-02276-5.

    Article 
    CAS 

    Google Scholar
     

  • Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in stimuli-responsive biomaterials for treating cardiovascular and cerebrovascular ailments. Small. 2022;18(36):e2200291. https://doi.org/10.1002/smll.202200291.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Soumya RS, Raghu KG. Latest advances on nanoparticle-based therapies for cardiovascular ailments. J Cardiol. 2023;81(1):10–8. https://doi.org/10.1016/j.jjcc.2022.02.009.

    Article 
    PubMed 

    Google Scholar
     

  • Khan S, Hasan A, Attar F, Sharifi M, Siddique R, Mraiche F, et al. Gold nanoparticle-based platforms for analysis and remedy of myocardial infarction. ACS Biomater Sci Eng. 2020;6(12):6460–77. https://doi.org/10.1021/acsbiomaterials.0c00955.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tabish TA, Crabtree MJ, Townley HE, Winyard PG, Lygate CA. Nitric oxide releasing nanomaterials for cardiovascular functions. JACC Primary Transl Sci. 2024;9(5):691–709. https://doi.org/10.1016/j.jacbts.2023.07.017.

    Article 
    PubMed 

    Google Scholar
     

  • Liang S, Tian X, Wang C. Nanozymes within the remedy of ailments brought on by extreme reactive oxygen specie. J Inflamm Res. 2022;15:6307–28. https://doi.org/10.2147/JIR.S383239.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang DK, Rahimi M, Filgueira CS. Nanotechnology functions for heart problems remedy: present and future views. Nanomedicine. 2021;34(102387):102387. https://doi.org/10.1016/j.nano.2021.102387.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shan J, Liu X, Li X, Yu Y, Kong B, Ren L. Advances in antioxidative nanozymes for treating ischemic stroke. Eng Regeneration. 2023;4(1):95–102. https://doi.org/10.1016/j.engreg.2023.01.001.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, Lv J, Wang X, Huang XT, Zhang C, Pan Q, et al. Focused nanozyme-enabled remedy of cardiovascular ailments. Acta Materia Med. 2025;4(1):70–81.

    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles