16.8 C
Canberra
Friday, February 20, 2026

Nanoengineering of non-aqueous liquid electrolyte options for future lithium metallic batteries


  • Hobold, G. M. et al. Shifting past 99.9% Coulombic effectivity for lithium anodes in liquid electrolytes. Nat. Power 6, 951–960 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Horstmann, B. et al. Methods in the direction of enabling lithium metallic in batteries: interphases and electrodes. Power Environ. Sci. 14, 5289–5314 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brandt, Ok. & Laman, F. C. Reproducibility and reliability of rechargeable lithium/molybdenum disulfide batteries. J. Energy Sources 25, 265–276 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C., Wang, X. & Meng, Y. S. Key points hindering a sensible lithium-metal anode. Traits Chem. 1, 152–158 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Pathways for sensible high-energy long-cycling lithium metallic batteries. Nat. Power 4, 180–186 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jagger, B. & Pasta, M. Stable electrolyte interphases in lithium metallic batteries. Joule 7, 2228–2244 (2023).

    Article 
    CAS 

    Google Scholar
     

  • He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lu, D. et al. Failure mechanism for fast-charged lithium metallic batteries with liquid electrolytes. Adv. Power Mater. 5, 1400993 (2015).

    Article 

    Google Scholar
     

  • Wang, H. et al. Liquid electrolyte: the nexus of sensible lithium metallic batteries. Joule 6, 588–616 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Boyle, D. T. et al. Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes. J. Am. Chem. Soc. 144, 20717–20725 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giffin, G. A. The function of focus in electrolyte options for non-aqueous lithium-based batteries. Nat. Commun. 13, 5250 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metallic battery electrolytes. Nat. Power 7, 94–106 (2022). Systematic design of bi-ethers to optimize the thermodynamic and kinetic properties of liquid electrolytes.

    Article 
    CAS 

    Google Scholar
     

  • Qian, J. et al. Excessive price and steady biking of lithium metallic anode. Nat. Commun. 6, 6362 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, I. R. et al. Uneven ether solvents for high-rate lithium metallic batteries. Nat. Power 10, 365–379 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, G. et al. A monofluoride ether-based electrolyte answer for fast-charging and low-temperature non-aqueous lithium metallic batteries. Nat. Commun. 14, 1081 (2023). Single-solvent mono-ether-based electrolyte enabling environment friendly Li stripping/plating at excessive present densities.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W., Chen, A., He, P. & Zhou, H. Advancing lithium metallic electrode past 99.9% coulombic effectivity through super-saturated electrolyte with compressed solvation construction. Nat. Commun. 16, 4229 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Ok. Electrolytes, Interfaces and Interphases (Royal Society of Chemistry, 2023).

  • Zhou, P., Xiang, Y. & Liu, Ok. Understanding and making use of the donor variety of electrolytes in lithium metallic batteries. Power Environ. Sci. 17, 8057–8077 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Peljo, P. & Girault, H. H. Electrochemical potential window of battery electrolytes: the HOMO–LUMO false impression. Power Environ. Mater. 11, 2306–2309 (2018).

    CAS 

    Google Scholar
     

  • Xu, Ok., Ding, S. P. & Jow, T. R. Towards dependable values of electrochemical stability limits for electrolytes. J. Electrochem. Soc. 146, 4172–4178 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Sethurajan, A. Ok., Krachkovskiy, S. A., Halalay, I. C., Goward, G. R. & Protas, B. Correct characterization of ion transport properties in binary symmetric electrolytes utilizing in situ NMR imaging and inverse modeling. J. Phys. Chem. B 119, 12238–12248 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, T. & Monroe, C. W. Composition-dependent thermodynamic and mass-transport characterization of lithium hexafluorophosphate in propylene carbonate. Electrochim. Acta 332, 135085 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, A. A., Hou, T., Karanjavala, M. & Monroe, C. W. Shifting-reference focus cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes. Electrochim. Acta 358, 136688 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Diederichsen, Ok. M., McShane, E. J. & McCloskey, B. D. Promising routes to a excessive Li+ transference quantity electrolyte for lithium ion batteries. ACS Power Lett. 2, 2563–2575 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lorenz, M. et al. Native quantity conservation in concentrated electrolytes is governing cost transport in electrical fields. J. Phys. Chem. Lett. 13, 8761–8767 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schammer, M., Horstmann, B. & Latz, A. Principle of transport in extremely concentrated electrolytes. J. Electrochem. Soc. 168, 026511 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zugmann, S. et al. Measurement of transference numbers for lithium ion electrolytes through 4 completely different strategies, a comparative research. Electrochim. Acta 56, 3926–3933 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Petrowsky, M., Frech, R., Suarez, S. N., Jayakody, J. R. P. & Greenbaum, S. Investigation of basic transport properties and thermodynamics in diglyme−salt options. J. Phys. Chem. B 110, 23012–23021 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwabi, D. G. et al. Experimental and computational evaluation of the solvent-dependent O2/Li+–O2 redox couple: commonplace potentials, coupling energy, and implications for lithium–oxygen batteries. Angew. Chem. Int. Ed. 55, 3129–3134 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Leverick, G. & Shao-Horn, Y. Controlling electrolyte properties and redox reactions utilizing solvation and implications in battery features: a mini-review. Adv. Power Mater. 13, 2204094 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ko, S. et al. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Power 7, 1217–1224 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Q., McDowell, M. T. & Qi, Y. Impact of the electrical double layer (EDL) in multicomponent electrolyte discount and strong electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 145, 2473–2484 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angarita-Gomez, S. & Balbuena, P. B. Solvation vs. floor cost switch: an interfacial chemistry sport drives cation movement. Chem. Commun. 57, 6189–6192 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Ok. Electrolytes and interphases in Li-ion batteries and past. Chem. Rev. 114, 11503–11618 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Camacho-Forero, L. E., Smith, T. W. & Balbuena, P. B. Results of excessive and low salt focus in electrolytes at lithium-metal anode surfaces. J. Phys. Chem. C 121, 182–194 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sayah, S. et al. How do tremendous concentrated electrolytes push the Li-ion batteries and supercapacitors past their thermodynamic and electrochemical limits?. Nano Power 98, 107336 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dokko, Ok. et al. Direct proof for Li ion hopping conduction in extremely concentrated sulfolane-based liquid electrolytes. J. Phys. Chem. B 122, 10736–10745 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raccichini, R., Dibden, J. W., Brew, A., Owen, J. R. & García-Aráez, N. Ion speciation and transport properties of LiTFSI in 1,3-dioxolane options: a case research for Li–S battery functions. J. Phys. Chem. B 122, 267–274 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Steric impact tuned ion solvation enabling steady biking of high-voltage lithium metallic battery. J. Am. Chem. Soc. 143, 18703–18713 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y.-X. et al. Connecting the irreversible capability loss in Li-ion batteries with the digital insulating properties of strong electrolyte interphase (SEI) parts. J. Energy Sources 309, 221–230 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Atomic construction of delicate battery supplies and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Impact of LiFSI concentrations to kind thickness- and modulus-controlled SEI layers on lithium metallic anodes. J. Phys. Chem. C 122, 9825–9834 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metallic batteries. Science 375, 66–70 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. & Qi, Y. Transferable self-consistent cost density useful tight-binding parameters for Li-metal and Li-ions in inorganic compounds and natural solvents. J. Phys. Chem. C 122, 10755–10764 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Soto, F. A., Ma, Y., Martinez De La Hoz, J. M., Seminario, J. M. & Balbuena, P. B. Formation and progress mechanisms of strong–electrolyte interphase layers in rechargeable batteries. Chem. Mater. 27, 7990–8000 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Single, F., Latz, A. & Horstmann, B. Figuring out the mechanism of continued progress of the solid-electrolyte interphase. ChemSusChem 11, 1950–1955 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Von Kolzenberg, L., Latz, A. & Horstmann, B. Stable–electrolyte interphase throughout battery biking: concept of progress regimes. ChemSusChem 13, 3901–3910 (2020).

    Article 

    Google Scholar
     

  • Single, F., Horstmann, B. & Latz, A. Dynamics and morphology of strong electrolyte interphase (SEI). Phys. Chem. Chem. Phys. 18, 17810–17814 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Single, F., Horstmann, B. & Latz, A. Revealing SEI morphology: in-depth evaluation of a modeling strategy. J. Electrochem. Soc. 164, E3132–E3145 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Harris, O. C., Lin, Y., Qi, Y., Leung, Ok. & Tang, M. H. How transition metals allow electron switch by means of the SEI: half I. Experiments and Butler–Volmer modeling. J. Electrochem. Soc. 167, 013502 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Menkin, S. et al. Towards an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 125, 16719–16732 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. The impact of eradicating the native passivation movie on the electrochemical efficiency of lithium metallic electrodes. J. Energy Sources 520, 230817 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kühn, S. P. et al. Again to the fundamentals: superior understanding of the as-defined strong electrolyte interphase on lithium metallic electrodes. J. Energy Sources 549, 232118 (2022).

    Article 

    Google Scholar
     

  • Otto, S.-Ok. et al. Storage of lithium metallic: the function of the native passivation layer for the anode interface resistance in strong state batteries. ACS Appl. Power Mater. 4, 12798–12807 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yoon, J. S. et al. Thermodynamics, adhesion, and wetting at Li/Cu(-oxide) interfaces: relevance for anode-free lithium-metal batteries. ACS Appl. Mater. Interfaces 16, 18790–18799 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aravindan, V., Gnanaraj, J., Madhavi, S. & Liu, H. Lithium-ion conducting electrolyte salts for lithium batteries. Chem. Eur. J. 17, 14326–14346 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitz, R. W. et al. Investigations on novel electrolytes, solvents and SEI components to be used in lithium-ion batteries: systematic electrochemical characterization and detailed evaluation by spectroscopic strategies. Prog. Stable State Chem. 42, 65–84 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Yeddala, M., Rynearson, L. & Lucht, B. L. Modification of carbonate electrolytes for lithium metallic electrodes. ACS Power Lett. 8, 4782–4793 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium progress mechanisms in liquid electrolytes. Power Environ. Sci. 9, 3221–3229 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shin, W. & Manthiram, A. A facile potential maintain technique for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries. Angew. Chem. 134, e202115909 (2022).

    Article 

    Google Scholar
     

  • Kwon, Y. et al. Elucidating the function of cathode identification: voltage-dependent reversibility of anode-free batteries. Chem 10, 3159–3183 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C. et al. Stress-tailored lithium deposition and dissolution in lithium metallic batteries. Nat. Power 6, 987–994 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lei, Y. et al. Latest advances in separator design for lithium metallic batteries with out dendrite formation: implications for electrical automobiles. eTransportation 20, 100330 (2024).

    Article 

    Google Scholar
     

  • Ishikawa, M., Tasaka, Y., Yoshimoto, N. & Morita, M. Optimization of physicochemical traits of a lithium anode interface for high-efficiency biking: an impact of electrolyte temperature. J. Energy Sources 97/98, 262–264 (2001).

    Article 

    Google Scholar
     

  • Wang, J. et al. Enhancing cyclability of Li metallic batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Power 4, 664–670 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, S., Sheng, L., Wang, L., Piao, N. & He, X. Thickness variation of lithium metallic anode with biking. J. Energy Sources 476, 228749 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McBrayer, J. D., Apblett, C. A., Harrison, Ok. L., Fenton, Ok. R. & Minteer, S. D. Mechanical research of the strong electrolyte interphase on anodes in lithium and lithium ion batteries. Nanotechnology 32, 502005 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, S. et al. Revisiting the designing standards of superior strong electrolyte interphase on lithium metallic anode beneath sensible situation. Nano Power 83, 105847 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shen, X. et al. The failure of strong electrolyte interphase on Li metallic anode: structural uniformity or mechanical energy? Adv. Power Mater. 10, 1903645 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Werres, M. et al. Origin of heterogeneous stripping of lithium in liquid electrolytes. ACS Nano 17, 10218–10228 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Y. et al. Unraveling the mechanical origin of steady strong electrolyte interphase. Joule 5, 1860–1872 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gu, Y. et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metallic anodes. Nat. Commun. 9, 1339 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. In situ self-assembly of ordered natural/inorganic dual-layered interphase for reaching long-life dendrite-free Li metallic anodes in LiFSI-based electrolyte. Adv. Funct. Mater. 31, 2007434 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Theoretical calculation research on the electrochemical properties of lithium halide-based synthetic SEI movies for lithium metallic anodes. Surf. Interfaces 44, 103768 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shi, S. et al. Direct calculation of Li-ion transport within the strong electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, P. & Harris, S. J. Lithium transport throughout the strong electrolyte interphase. Electrochem. Commun. 13, 1035–1037 (2011). Investigation of Li+ transport within the SEI through isotope trade experiments.

    Article 
    CAS 

    Google Scholar
     

  • Yu, X. et al. Direct and in situ examination of Li+ transport kinetics in an isotope-labeled strong–electrolyte interphase. Proc. Natl Acad. Sci. USA 122, e2514652122 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das Goswami, B. R., Jabbari, V., Shahbazian-Yassar, R., Mashayek, F. & Yurkiv, V. Unraveling ion diffusion pathways and energetics in polycrystalline SEI of lithium-based batteries: mixed cryo-HRTEM and DFT research. J. Phys. Chem. C 127, 21971–21979 (2023).

    Article 

    Google Scholar
     

  • Soto, F. A., Marzouk, A., El-Mellouhi, F. & Balbuena, P. B. Understanding ionic diffusion by means of SEI parts for lithium-ion and sodium-ion batteries: insights from first-principles calculations. Chem. Mater. 30, 3315–3322 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Direct in situ measurements {of electrical} properties of solid-electrolyte interphase on lithium metallic anodes. Nat. Power 8, 1345–1354 (2023). Experimental proof of {the electrical} semiconducting properties of the SEI.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benitez, L. & Seminario, J. M. Electron transport and electrolyte discount within the solid-electrolyte interphase of rechargeable lithium ion batteries with silicon anodes. J. Phys. Chem. C 120, 17978–17988 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Derosa, P. A. & Seminario, J. M. Electron transport by means of single molecules: scattering therapy utilizing density useful and Inexperienced operate theories. J. Phys. Chem. B 105, 471–481 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Köbbing, L., Latz, A. & Horstmann, B. Progress of the solid-electrolyte interphase: electron diffusion versus solvent diffusion. J. Energy Sources 561, 232651 (2023).

    Article 

    Google Scholar
     

  • Feng, M., Pan, J. & Qi, Y. Influence of digital properties of grain boundaries on the strong electrolyte interphases (SEIs) in Li-ion batteries. J. Phys. Chem. C 125, 15821–15829 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C. et al. Quantifying inactive lithium in lithium metallic batteries. Nature 572, 511–515 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steiger, J., Kramer, D. & Mönig, R. Mechanisms of dendritic progress investigated by in situ gentle microscopy throughout electrodeposition and dissolution of lithium. J. Energy Sources 261, 112–119 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Present density regulated atomic to nanoscale course of on Li deposition and strong electrolyte interphase revealed by cryogenic transmission electron microscopy. ACS Nano 14, 8766–8775 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyle, D. T. et al. Resolving current-dependent regimes of electroplating mechanisms for quick charging lithium metallic anodes. Nano Lett. 22, 8224–8232 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, M., Guo, R., Hobold, G. M., Gao, H. & Gallant, B. M. The intrinsic conduct of lithium fluoride in strong electrolyte interphases on lithium. Proc. Natl Acad. Sci. USA 117, 73–79 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X.-Q., Cheng, X.-B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate components to render uniform Li deposits in lithium metallic batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Article 

    Google Scholar
     

  • Dhattarwal, H. S., Kuo, J.-L. & Kashyap, H. Ok. Mechanistic perception on the steadiness of ether and fluorinated ether solvent-based lithium bis(fluoromethanesulfonyl) electrolytes close to Li metallic floor. J. Phys. Chem. C 126, 8953–8963 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Perez-Beltran, S., Kuai, D. & Balbuena, P. B. SEI formation and lithium-ion electrodeposition dynamics in lithium metallic batteries through first-principles kinetic Monte Carlo modeling. ACS Power Lett. 9, 5268–5278 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, Y. et al. Lithium fluoride in electrolyte for steady and protected lithium-metal batteries. Adv. Mater. 33, 2102134 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, H. et al. Past LiF: tailoring Li2O-dominated strong electrolyte interphase for steady lithium metallic batteries. ACS Nano 18, 1969–1981 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hobold, G. M., Wang, C., Steinberg, Ok., Li, Y. & Gallant, B. M. Excessive lithium oxide prevalence within the lithium strong–electrolyte interphase for prime Coulombic effectivity. Nat. Power 9, 580–591 (2024). Correlation of Li2O prevalence within the SEI and the CE in lithium metallic batteries.

    Article 
    CAS 

    Google Scholar
     

  • Gao, Ok., Solar, L., Wang, Ok. & Zhang, Y. Non-aqueous liquid electrolytes in lithium metallic battery: parts and modification. Mater. Right this moment Power 37, 101413 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Borodin, O., Self, J., Persson, Ok. A., Wang, C. & Xu, Ok. Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, G. et al. Perspective on high-concentration electrolytes for lithium metallic batteries. Small Struct. 2, 2000122 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ren, X. et al. Enabling high-voltage lithium-metal batteries beneath sensible circumstances. Joule 3, 1662–1676 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ren, X. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4, 1877–1892 (2018). Introduction of LHCEs as promising electrolyte idea for lithium metallic batteries.

    Article 
    CAS 

    Google Scholar
     

  • Zheng, J. et al. Extraordinarily steady sodium metallic batteries enabled by localized high-concentration electrolytes. ACS Power Lett. 3, 315–321 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Efaw, C. M. et al. Localized high-concentration electrolytes get extra localized by means of micelle-like buildings. Nat. Mater. 22, 1531–1539 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma, A., Schulze, M. C. & Colclasure, A. Micelle-like bulk construction of localized high-concentration electrolytes. Joule 8, 10–12 (2024).

    Article 

    Google Scholar
     

  • Cao, X., Jia, H., Xu, W. & Zhang, J.-G. Evaluate—Localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168, 010522 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Design of localized high-concentration electrolytes through donor quantity. ACS Power Lett. 8, 1723–1734 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ren, F. et al. Solvent–diluent interaction-mediated solvation construction of localized high-concentration electrolytes. ACS Appl. Mater. Interfaces 14, 4211–4219 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. Excessive-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

    Article 

    Google Scholar
     

  • Zhang, X. et al. Superior electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature vary. Adv. Power Mater. 10, 2000368 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jia, H. et al. Excessive-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv. Power Mater. 9, 1900784 (2019).

    Article 

    Google Scholar
     

  • Ahmed, R. A. et al. Enhanced electrochemical efficiency of disordered rocksalt cathodes in a localized high-concentration electrolyte. Adv. Power Mater. 14, 2400722 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Cao, X. et al. Optimization of fluorinated orthoformate based mostly electrolytes for sensible high-voltage lithium metallic batteries. Power Storage Mater. 34, 76–84 (2021).

    Article 

    Google Scholar
     

  • Cao, X. Results of fluorinated solvents on electrolyte solvation buildings and electrode/electrolyte interphases for lithium metallic batteries. Proc. Natl Acad. Sci. USA 118, e2020357118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu, C. et al. Balancing interfacial reactions to attain lengthy cycle life in high-energy lithium metallic batteries. Nat. Power 6, 723–732 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Perez Beltran, S., Cao, X., Zhang, J.-G., El-Khoury, P. Z. & Balbuena, P. B. Affect of diluent focus in localized excessive focus electrolytes: elucidation of hidden diluent–Li + interactions and Li + transport mechanism. J. Mater. Chem. A 9, 17459–17473 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Regulating electrolyte solvation buildings through diluent–solvent interactions for protected high-voltage lithium metallic batteries. Small 20, 2311812 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Electrolyte engineering for extremely inorganic strong electrolyte interphase in high-performance lithium metallic batteries. Chem 9, 682–697 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shi, J. et al. An amphiphilic molecule-regulated core–shell-solvation electrolyte for Li-metal batteries at ultra-low temperature. Angew. Chem. Int. Ed. 62, e202218151 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. et al. Vast-temperature-range operation of lithium-metal batteries utilizing partially and weakly solvating liquid electrolytes. Power Environ. Sci. 16, 5108–5122 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tran, T. et al. Enhancing biking stability of lithium metallic batteries by a bifunctional fluorinated ether. Adv. Funct. Mater. 34, 2407012 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. Excessive-efficiency lithium metallic batteries with fire-retardant electrolytes. Joule 2, 1548–1558 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cao, N. et al. Designing ionic liquid electrolytes for a inflexible and Li+-conductive strong electrolyte interface in excessive efficiency lithium metallic batteries. Chem. Phys. Lett. 866, 141959 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Hai, F. et al. A low-cost, fluorine-free localized extremely concentrated electrolyte towards ultra-high loading lithium metallic batteries. Adv. Power Mater. 14, 2304253 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, Z., Chen, A., Liao, J., Music, L. & Zhou, X. Latest advances in multifunctional generalized native high-concentration electrolytes for high-efficiency alkali metallic batteries. Nano Power 119, 109088 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Acetonitrile-based native high-concentration electrolytes for superior lithium metallic batteries. Adv. Mater. 36, 2404271 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jie, Y. et al. In direction of long-life 500 Wh kg−1 lithium metallic pouch cells through compact ion-pair mixture electrolytes. Nat. Power 9, 987–998 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. C. et al. Excessive-entropy electrolytes for sensible lithium metallic batteries. Nat. Power 8, 814–826 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Vital assessment of fluorinated electrolytes for high-performance lithium metallic batteries. Adv. Funct. Mater. 33, 2300502 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wichmann, L. et al. Design of fluorine-free weakly coordinating electrolyte solvents with enhanced oxidative stability. Angew. Chem. Int. Ed. 64, e202506826 (2025).

  • Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metallic batteries. Nat. Power 5, 526–533 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Li+(ionophore) nanoclusters engineered aqueous/non-aqueous biphasic electrolyte options for high-potential lithium-based batteries. Nat. Nanotechnol. 20, 798–806 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vu, M. C. et al. Low melting alkali-based molten salt electrolytes for solvent-free lithium-metal batteries. Matter 6, 4357–4375 (2023). Report of low melting FSI-based molten salt electrolyte with excessive oxidative stability, enabling excessive Coulombic efficiencies at excessive charges.

    Article 
    CAS 

    Google Scholar
     

  • Xue, W. et al. FSI-inspired solvent and ‘full fluorosulfonyl’ electrolyte for 4 V class lithium-metal batteries. Power Environ. Sci. 13, 212–220 (2020). Introduction of full fluorosulfonyl electrolytes for lithium metallic batteries.

    Article 
    CAS 

    Google Scholar
     

  • Xue, W. et al. Extremely-high-voltage Ni-rich layered cathodes in sensible Li metallic batteries enabled by a sulfonamide-based electrolyte. Nat. Power 6, 495–505 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rustomji, C. S. et al. Liquefied fuel electrolytes for electrochemical power storage gadgets. Science 356, eaal4263 (2017). Report of liquefied fuel electrolytes enabling environment friendly Li plating/stripping.

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Excessive-efficiency lithium-metal anode enabled by liquefied fuel electrolytes. Joule 3, 1986–2000 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Louli, A. J. et al. Diagnosing and correcting anode-free cell failure through electrolyte and morphological evaluation. Nat. Power 5, 693–702 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Weber, R. et al. Lengthy cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Power 4, 683–689 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, F. et al. A concentrated ternary-salts electrolyte for prime reversible Li metallic battery with slight extra Li. Adv. Power Mater. 9, 1803372 (2019).

    Article 

    Google Scholar
     

  • Kang, D. W., Moon, J., Choi, H.-Y., Shin, H.-C. & Kim, B. G. Secure biking and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with excessive LiNO3 content material. J. Energy Sources 490, 229504 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stuckenberg, S. et al. Affect of LiNO3 on the lithium metallic deposition conduct in carbonate-based liquid electrolytes and on the electrochemical efficiency in zero-excess lithium metallic batteries. Small 20, 2305203 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Agostini, M., Scrosati, B. & Hassoun, J. A sophisticated lithium-ion sulfur battery for prime power storage. Adv. Power Mater. 5, 1500481 (2015).

    Article 

    Google Scholar
     

  • Ma, Q. et al. Improved biking stability of lithium-metal anode with concentrated electrolytes based mostly on lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem 3, 531–536 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Weintz, D., Kühn, S. P., Winter, M. & Cekic-Laskovic, I. Tailoring the preformed strong electrolyte interphase in lithium metallic batteries: influence of fluoroethylene carbonate. ACS Appl. Mater. Interfaces 15, 53526–53532 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, T. et al. Tailoring fluorine-rich strong electrolyte interphase to spice up excessive effectivity and lengthy biking stability of lithium metallic batteries. Sci. China Chem. 66, 2121–2129 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ding, F. et al. Results of cesium cations in lithium deposition through self-healing electrostatic protect mechanism. J. Phys. Chem. C 118, 4043–4049 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ding, F. et al. Dendrite-free lithium deposition through self-healing electrostatic protect mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the way forward for lithium-based batteries. Nat. Commun. 14, 420 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. Correct dedication of Coulombic effectivity for lithium metallic anodes and lithium metallic batteries. Adv. Power Mater. 8, 1702097 (2018).

    Article 

    Google Scholar
     

  • Single, F., Horstmann, B. & Latz, A. Principle of impedance spectroscopy for lithium batteries. J. Phys. Chem. C 123, 27327–27343 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Stolz, L., Winter, M. & Kasnatscheew, J. Sensible relevance of cost switch resistance on the Li metallic electrode|electrolyte interface in batteries?. J. Stable State Electrochem. 29, 4181–4186 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Meddings, N. et al. Software of electrochemical impedance spectroscopy to industrial Li-ion cells: a assessment. J. Energy Sources 480, 228742 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meunier, V., Leal De Souza, M., Morcrette, M. & Grimaud, A. Design of workflows for crosstalk detection and lifelong deviation onset in Li-ion batteries. Joule 7, 42–56 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Meng, W. et al. The progress of in situ expertise for lithium metallic batteries. Mater. Chem. Entrance. 8, 700–714 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Scurtu, R.-G. et al. From small batteries to huge claims. Nat. Nanotechnol. 20, 970–976 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. Atomic to nanoscale origin of vinylene carbonate enhanced biking stability of lithium metallic anode revealed by cryo-transmission electron microscopy. Nano Lett. 20, 418–425 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, X. et al. Monolithic strong–electrolyte interphases shaped in fluorinated orthoformate-based electrolytes decrease Li depletion and pulverization. Nat. Power 4, 796–805 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Formation and influence of nanoscopic oriented section domains in electrochemical crystalline electrodes. Nat. Mater. 22, 92–99 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ji, P., Lei, X. & Su, D. In situ transmission electron microscopy strategies for lithium-ion batteries. Small Strategies 8, 2301539 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Characterizing batteries by in situ electrochemical atomic pressure microscopy: a important assessment. Adv. Power Mater. 11, 2101518 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wolff, B. & Hausen, F. Mechanical evolution of strong electrolyte interphase on metallic lithium studied by in situ atomic pressure microscopy. J. Electrochem. Soc. 170, 010534 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tan, S. et al. Evolution and interaction of lithium metallic interphase parts revealed by experimental and theoretical research. J. Am. Chem. Soc. 146, 11711–11718 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, C., Xu, F. & Music, T. Twin-layered interfacial evolution of lithium metallic anode: SEI evaluation through TOF-SIMS expertise. ACS Appl. Mater. Interfaces 14, 20197–20207 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markevich, E., Salitra, G., Chesneau, F., Schmidt, M. & Aurbach, D. Very steady lithium metallic stripping–plating at a excessive price and excessive areal capability in fluoroethylene carbonate-based natural electrolyte answer. ACS Power Lett. 2, 1321–1326 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schmitz, R. et al. SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry. J. Energy Sources 233, 110–114 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hope, M. A. et al. Selective NMR commentary of the SEI–metallic interface by dynamic nuclear polarisation from lithium metallic. Nat. Commun. 11, 2224 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, Y.-C. et al. Quantification of useless lithium through in situ nuclear magnetic resonance spectroscopy. Cell Rep. Phys. Sci. 1, 100139 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Golozar, M. et al. In situ commentary of strong electrolyte interphase evolution in a lithium metallic battery. Commun. Chem. 2, 131 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of strong–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, X., Larson, J. M., Bechtel, H. A. & Kostecki, R. In situ infrared nanospectroscopy of the native processes on the Li/polymer electrolyte interface. Nat. Commun. 13, 1398 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H., Shen, C., Huang, Y. & Liu, Z. Spontaneously formation of SEI layers on lithium metallic from LiFSI/DME and LiTFSI/DME electrolytes. Appl. Surf. Sci. 537, 147983 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Perez Beltran, S. & Balbuena, P. B. SEI formation mechanisms and Li+ dissolution in lithium metallic anodes: influence of the electrolyte composition and the electrolyte-to-anode ratio. J. Energy Sources 551, 232203 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wagner-Henke, J. et al. Data-driven design of solid-electrolyte interphases on lithium metallic through multiscale modelling. Nat. Commun. 14, 6823 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pohlmann, S. Metrics and strategies for shifting from analysis to innovation in power storage. Nat. Commun. 13, 1538 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benayad, A. et al. Excessive-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface improvement analysis. Adv. Power Mater. 12, 2102678 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ward, L. et al. Ideas of the Battery Information Genome. Joule 6, 2253–2271 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Qu, X. et al. The Electrolyte Genome challenge: a giant knowledge strategy in battery supplies discovery. Comput. Mater. Sci. 103, 56–67 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tagade, P. M. et al. Attribute pushed inverse supplies design utilizing deep studying Bayesian framework. npj Comput. Mater. 5, 127 (2019).

    Article 

    Google Scholar
     

  • Barter, D. et al. Predictive stochastic evaluation of huge filter-based electrochemical response networks. Digit. Discov. 2, 123–137 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y.-C. et al. Information-driven perception into the reductive stability of ion–solvent complexes in lithium battery electrolytes. J. Am. Chem. Soc. 145, 23764–23770 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, P. et al. Non-aqueous battery electrolytes: high-throughput experimentation and machine learning-aided optimization of ionic conductivity. J. Mater. Chem. A 12, 19123–19136 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dave, A. et al. Autonomous optimization of non-aqueous Li-ion battery electrolytes through robotic experimentation and machine studying coupling. Nat. Commun. 13, 5454 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flores, E. et al. Studying the legal guidelines of lithium-ion transport in electrolytes utilizing symbolic regression. Digit. Discov. 1, 440–447 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, G. N. & Keyes, F. G. The potential of the lithium electrode. J. Am. Chem. Soc. 35, 340–344 (1913).

    Article 
    CAS 

    Google Scholar
     

  • Harris, W. S. Electrochemical Research in Cyclic Esters. PhD thesis, Univ. California, Berkeley (1958). Demonstration of reversible electrochemical Li deposition and dissolution.

  • Greatbatch, W. et al. The solid-state lithium battery: a brand new improved chemical energy supply for implantable cardiac pacemakers. IEEE Trans. Biomed. Eng BME-18, 317–324 (1971).

    Article 

    Google Scholar
     

  • Peled, E. The electrochemical conduct of alkali and alkaline earth metals in nonaqueous battery techniques—the strong electrolyte interphase mannequin. J. Electrochem. Soc. 126, 2047–2051 (1979). Proposal of the SEI mannequin.

    Article 
    CAS 

    Google Scholar
     

  • Scarr, R. F. Kinetics of the strong lithium electrode in propylene carbonate. J. Electrochem. Soc. 117, 295–298 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Winter, M., Barnett, B. & Xu, Ok. Earlier than Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selim, R. & Bro, P. Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J. Electrochem. Soc. 121, 1457–1459 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Rauh, R. D. & Brummer, S. B. The impact of components on lithium biking in propylene carbonate. Electrochim. Acta 22, 75–83 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Koch, V. R. & Younger, J. H. The steadiness of the secondary lithium electrode in tetrahydrofuran-based electrolytes. J. Electrochem. Soc. 125, 1371–1377 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Koch, V. R. & Younger, J. H. 2-Methyltetrahydrofuran–lithium hexafluoroarsenate: a superior electrolyte for the secondary lithium electrode. Science 204, 499–501 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koch, V. R., Goldman, J. L., Mattos, C. J. & Mulvaney, M. Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. J. Electrochem. Soc. 129, 1–4 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Ding, F. et al. Results of carbonate solvents and lithium salts on morphology and Coulombic effectivity of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Miao, R. et al. Novel dual-salts electrolyte answer for dendrite-free lithium-metal based mostly rechargeable batteries with excessive cycle reversibility. J. Energy Sources 271, 291–297 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Fan, X. et al. Extremely fluorinated interphases allow high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fan, X. et al. Non-flammable electrolyte permits Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y., Zhou, T., Mensi, M., Choi, J. W. & Coskun, A. Electrolyte engineering through ether solvent fluorination for creating steady non-aqueous lithium metallic batteries. Nat. Commun. 14, 299 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Creating diluted low-concentration electrolyte with a excessive anion-to-solvent ratio for high-voltage lithium metallic batteries. J. Mater. Chem. A 12, 8236–8243 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Morita, M., Asai, Y., Yoshimoto, N. & Ishikawa, M. A Raman spectroscopic research of natural electrolyte options based mostly on binary solvent techniques of ethylene carbonate with low viscosity solvents which dissolve completely different lithium salts. J. Chem. Soc. Faraday Trans. 94, 3451–3456 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Qian, Ok., Winans, R. E. & Li, T. Insights into the nanostructure, solvation, and dynamics of liquid electrolytes by means of small-angle X-ray scattering. Adv. Power Mater. 11, 2002821 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Leifer, N., Aurbach, D. & Greenbaum, S. G. NMR research of lithium and sodium battery electrolytes. Prog. Nucl. Magn. Reson. Spectrosc. 142/143, 1–54 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, T. et al. Purposes of voltammetry in lithium ion battery analysis. J. Electrochem. Sci. Technol. 11, 14–25 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hess, S., Wohlfahrt-Mehrens, M. & Wachtler, M. Flammability of Li-ion battery electrolytes: flash level and self-extinguishing time measurements. J. Electrochem. Soc. 162, A3084–A3097 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hellweg, L., Beuse, T., Winter, M. & Börner, M. Affect of lithium metallic deposition on thermal stability: mixed DSC and morphology evaluation of cyclic aged lithium metallic batteries. J. Electrochem. Soc. 170, 040530 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Arbizzani, C., Gabrielli, G. & Mastragostino, M. Thermal stability and flammability of electrolytes for lithium-ion batteries. J. Energy Sources 196, 4801–4805 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles