Mathlouthi, M. Water content material, water exercise, water construction and the steadiness of foodstuffs. Meals Management 12, 409–417 (2001).
Sheng, D. et al. Hydrogen bond community regulation in electrolyte construction for Zn-based aqueous batteries. Adv. Funct. Mater. 34, 2402014 (2024).
Wang, Y. et al. Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes. Matter 5, 162–179 (2022).
Roy, Ok., Rana, A., Heil, J. N., Tackett, B. M. & Dick, J. E. For zinc steel batteries, what number of electrons go to hydrogen evolution? An electrochemical mass spectrometry examine. Angew. Chem. Int. Ed. 63, e202319010 (2024).
Emamian, S., Lu, T., Kruse, H. & Emamian, H. Exploring nature and predicting energy of hydrogen bonds: a correlation evaluation between atoms-in-molecules descriptors, binding energies, and vitality elements of symmetry-adapted perturbation idea. J. Comput. Chem. 40, 2868–2881 (2019).
Li, M. et al. Complete understandings of hydrogen bond chemistry in aqueous batteries. Adv. Mater. 36, 2308628 (2024).
Wang, F. et al. Extremely reversible zinc steel anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).
Lim, J. et al. Nanometric water channels in water-in-salt lithium ion battery electrolyte. J. Am. Chem. Soc. 140, 15661–15667 (2018).
Zhang, M. et al. Understanding the microscopic construction of a “water-in-salt” lithium ion battery electrolyte probed with ultrafast IR spectroscopy. J. Phys. Chem. C 124, 8594–8604 (2020).
Hao, J. et al. Boosting zinc electrode reversibility in aqueous electrolytes through the use of low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021).
Wang, W. et al. Regulating interfacial response via electrolyte chemistry allows gradient interphase for low-temperature zinc steel batteries. Nat. Commun. 14, 5443 (2023).
Ming, F. et al. Co-solvent electrolyte engineering for steady anode-free zinc steel batteries. J. Am. Chem. Soc. 144, 7160–7170 (2022).
Robertson, A. E. et al. Mesoscale solubilization and demanding phenomena in binary and quasi-binary options of hydrotropes. Fluid Section Equilib. 407, 243–254 (2016).
Kunz, W., Holmberg, Ok. & Zemb, T. Hydrotropes. Curr. Opin. Colloid Interface Sci. 22, 99–107 (2016).
Dukhin, A. & Pavlenishvilli, D. “Water-in-salt” tremendous concentrated electrolyte clusters are “micelles”. Colloids Surf. A 678, 132466 (2023).
Miao, L. et al. Aqueous electrolytes with hydrophobic natural cosolvents for stabilizing zinc steel anodes. ACS Nano 16, 9667–9678 (2022).
Dong, Y. et al. Non-concentrated aqueous electrolytes with natural solvent components for steady zinc batteries. Chem. Sci. 12, 5843–5852 (2021).
Bauduin, P., Renoncourt, A., Kopf, A., Touraud, D. & Kunz, W. Unified idea of solubilization in water by hydrotropes and cosolvents. Langmuir 21, 6769–6775 (2005).
Dong, D., Wang, T., Solar, Y., Fan, J. & Lu, Y.-C. Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Maintain. 6, 1474–1484 (2023).
Zhao, Z. et al. A novel “water-in-ionic liquid” electrolyte for Zn steel batteries. ACS Power Lett. 8, 608–618 (2023).
Amann-Winkel, Ok. et al. X-ray and neutron scattering of water. Chem. Rev. 116, 7570–7589 (2016).
Zheng, J. et al. Understanding thermodynamic and kinetic contributions in increasing the steadiness window of aqueous electrolytes. Chem 4, 2872–2882 (2018).
Zhang, C. et al. The electrolyte comprising extra sturdy water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Power 3, 339–348 (2021).
Yang, W., Yang, Y., Yang, H. & Zhou, H. Regulating water exercise for rechargeable zinc-ion batteries: progress and perspective. ACS Power Lett. 7, 2515–2530 (2022).
Miyazaki, Ok. et al. First-principles examine on the peculiar water atmosphere in a hydrate-melt electrolyte. J. Phys. Chem. Lett. 10, 6301–6305 (2019).
Subramanian, D., Boughter, C. T., Klauda, J. B., Hammouda, B. & Anisimov, M. A. Mesoscale inhomogeneities in aqueous options of small amphiphilic molecules. Faraday Focus on. 167, 217–238 (2013).
Huang, Z. et al. Anion chemistry in vitality storage gadgets. Nat. Rev. Chem. 7, 616–631 (2023).
Zhang, Y. et al. Suppressed dissolution of fluorine-rich SEI allows extremely reversible zinc steel anodes for steady aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 136, e202407067 (2024).
Shi, H.-Y. et al. Inhibiting VOPO4⋅xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to advertise voltage and capability stabilities. Angew. Chem. Int. Ed. 58, 16057–16061 (2019).
Liu, S. et al. From room temperature to harsh temperature purposes: fundamentals and views on electrolytes in zinc steel batteries. Sci. Adv. 8, eabn5097 (2022).
Borodin, O. et al. Liquid construction with nano-heterogeneity promotes cationic transport in concentrated electrolytes. ACS Nano 11, 10462–10471 (2017).
Cao, L. et al. Fluorinated interphase allows reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021).
Yang, C. et al. All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Maintain. 6, 325–335 (2023).
Cong, J. et al. Kinetics compensation mechanism in cosolvent electrolyte technique for aqueous zinc batteries. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.4c16880 (2025).
Wang, Y. et al. Sulfolane-containing aqueous electrolyte options for producing environment friendly ampere-hour-level zinc steel battery pouch cells. Nat. Commun. 14, 1828 (2023).
Liang, G. et al. Regulating inorganic and natural elements to construct amorphous-ZnFx enriched stable–electrolyte interphase for extremely reversible Zn steel chemistry. Adv. Mater. 35, 2210051 (2023).
Chang, N. et al. An aqueous hybrid electrolyte for low-temperature zinc-based vitality storage gadgets. Power Environ. Sci. 13, 3527–3535 (2020).
Wang, S. et al. Quick response kinetics and commendable low-temperature adaptability of zinc batteries enabled by aprotic water–acetamide symbiotic solvation sheath. Angew. Chem. Int. Ed. 63, e202316841 (2024).
Qiu, Y. et al. Möbius solvation construction for zinc-ion batteries. Adv. Mater. 37, e2415373 (2025).
Cao, X. et al. Weak solvation impact induced optimum interfacial chemistry allows extremely sturdy Zn anodes for aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 63, e202317302 (2024).
Shi, J. et al. “Water-in-deep eutectic solvent” electrolytes for high-performance aqueous Zn-ion batteries. Adv. Funct. Mater. 31, 2102035 (2021).
Xie, D. et al. ZnF2-riched inorganic/natural hybrid SEI: in situ-chemical building and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216934 (2023).
Solar, P. et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 133, 18395–18403 (2021).
Jin, Y. et al. Stabilizing zinc anode reactions by polyethylene oxide polymer in delicate aqueous electrolytes. Adv. Funct. Mater. 30, 2003932 (2020).
Chen, Y. et al. Low current-density steady zinc-metal batteries by way of aqueous/natural hybrid electrolyte. Batter. Supercaps 5, e202200001 (2022).
Wang, D. et al. Solvation modulation enhances anion-derived stable electrolyte interphase for deep biking of aqueous zinc steel batteries. Angew. Chem. Int. Ed. 62, e202310290 (2023).
Zhou, A. et al. Molecular recognition impact enabled by novel crown ether as macrocyclic host in direction of extremely reversible Zn anode. Sci. Bull. 68, 2170–2179 (2023).
Wan, F. et al. Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 7062–7067 (2019).
Terban, M. W. & Billinge, S. J. Structural evaluation of molecular supplies utilizing the pair distribution perform. Chem. Rev. 122, 1208–1272 (2021).
Egami, T. & Billinge, S. J. Beneath the Bragg Peaks: Structural Evaluation of Advanced Supplies 16 (Elsevier, 2003).
Gaussian 16 Rev. B.01 (Gaussian, 2016).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Boys, S. F. & Bernardi, F. The calculation of small molecular interactions by the variations of separate whole energies. Some procedures with diminished errors. Mol. Phys. 19, 553–566 (1970).
Pan, J., Zhang, Q., Xiao, X., Cheng, Y.-T. & Qi, Y. Design of nanostructured heterogeneous stable ionic coatings via a multiscale defect mannequin. ACS Appl. Mater. Interfaces 8, 5687–5693 (2016).
Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a bundle for constructing preliminary configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).
Mark, P. & Nilsson, L. Construction and dynamics of the TIP3P, SPC, and SPC/E water fashions at 298 Ok. J. Phys. Chem. A 105, 9954–9960 (2001).
Zhu, X., Lopes, P. E. & MacKerell, A. D. Jr Current developments and purposes of the CHARMM power fields. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 167–185 (2012).
Zielkiewicz, J. Structural properties of water: comparability of the SPC, SPCE, TIP4P, and TIP5P fashions of water. J. Chem. Phys. 123, 104501 (2005).
Obst, S. & Bradaczek, H. Molecular dynamics simulations of zinc ions in water utilizing CHARMM. Mol. Mannequin. Annu. 3, 224–232 (1997).
Patil, N. et al. An ultrahigh efficiency zinc-organic battery utilizing poly (catechol) cathode in Zn (TFSI)2-based concentrated aqueous electrolytes. Adv. Power Mater. 11, 2100939 (2021).
Canongia Lopes, J. N. & Pádua, A. A. CL&P: a generic and systematic power subject for ionic liquids modeling. Theor. Chem. Acc. 131, 1–11 (2012).
Schauperl, M. et al. Non-bonded power subject mannequin with superior restrained electrostatic potential fees (RESP2). Commun. Chem. 3, 44 (2020).
Humphrey, W., Dalke, A. & Schulten, Ok. VMD: visible molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
Momma, Ok. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology knowledge. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169 (1996).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).
