8.5 C
Canberra
Wednesday, December 3, 2025

Nanoengineered aqueous-hydrotrope hybrid liquid electrolyte options for environment friendly zinc batteries throughout a large temperature vary


  • Mathlouthi, M. Water content material, water exercise, water construction and the steadiness of foodstuffs. Meals Management 12, 409–417 (2001).

    Article 

    Google Scholar
     

  • Sheng, D. et al. Hydrogen bond community regulation in electrolyte construction for Zn-based aqueous batteries. Adv. Funct. Mater. 34, 2402014 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes. Matter 5, 162–179 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Roy, Ok., Rana, A., Heil, J. N., Tackett, B. M. & Dick, J. E. For zinc steel batteries, what number of electrons go to hydrogen evolution? An electrochemical mass spectrometry examine. Angew. Chem. Int. Ed. 63, e202319010 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Emamian, S., Lu, T., Kruse, H. & Emamian, H. Exploring nature and predicting energy of hydrogen bonds: a correlation evaluation between atoms-in-molecules descriptors, binding energies, and vitality elements of symmetry-adapted perturbation idea. J. Comput. Chem. 40, 2868–2881 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. et al. Complete understandings of hydrogen bond chemistry in aqueous batteries. Adv. Mater. 36, 2308628 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, F. et al. Extremely reversible zinc steel anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, J. et al. Nanometric water channels in water-in-salt lithium ion battery electrolyte. J. Am. Chem. Soc. 140, 15661–15667 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Understanding the microscopic construction of a “water-in-salt” lithium ion battery electrolyte probed with ultrafast IR spectroscopy. J. Phys. Chem. C 124, 8594–8604 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hao, J. et al. Boosting zinc electrode reversibility in aqueous electrolytes through the use of low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, W. et al. Regulating interfacial response via electrolyte chemistry allows gradient interphase for low-temperature zinc steel batteries. Nat. Commun. 14, 5443 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ming, F. et al. Co-solvent electrolyte engineering for steady anode-free zinc steel batteries. J. Am. Chem. Soc. 144, 7160–7170 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robertson, A. E. et al. Mesoscale solubilization and demanding phenomena in binary and quasi-binary options of hydrotropes. Fluid Section Equilib. 407, 243–254 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kunz, W., Holmberg, Ok. & Zemb, T. Hydrotropes. Curr. Opin. Colloid Interface Sci. 22, 99–107 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Dukhin, A. & Pavlenishvilli, D. “Water-in-salt” tremendous concentrated electrolyte clusters are “micelles”. Colloids Surf. A 678, 132466 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Miao, L. et al. Aqueous electrolytes with hydrophobic natural cosolvents for stabilizing zinc steel anodes. ACS Nano 16, 9667–9678 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, Y. et al. Non-concentrated aqueous electrolytes with natural solvent components for steady zinc batteries. Chem. Sci. 12, 5843–5852 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauduin, P., Renoncourt, A., Kopf, A., Touraud, D. & Kunz, W. Unified idea of solubilization in water by hydrotropes and cosolvents. Langmuir 21, 6769–6775 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, D., Wang, T., Solar, Y., Fan, J. & Lu, Y.-C. Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Maintain. 6, 1474–1484 (2023).

    Article 

    Google Scholar
     

  • Zhao, Z. et al. A novel “water-in-ionic liquid” electrolyte for Zn steel batteries. ACS Power Lett. 8, 608–618 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Amann-Winkel, Ok. et al. X-ray and neutron scattering of water. Chem. Rev. 116, 7570–7589 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, J. et al. Understanding thermodynamic and kinetic contributions in increasing the steadiness window of aqueous electrolytes. Chem 4, 2872–2882 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, C. et al. The electrolyte comprising extra sturdy water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Power 3, 339–348 (2021).

    Article 

    Google Scholar
     

  • Yang, W., Yang, Y., Yang, H. & Zhou, H. Regulating water exercise for rechargeable zinc-ion batteries: progress and perspective. ACS Power Lett. 7, 2515–2530 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Miyazaki, Ok. et al. First-principles examine on the peculiar water atmosphere in a hydrate-melt electrolyte. J. Phys. Chem. Lett. 10, 6301–6305 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, D., Boughter, C. T., Klauda, J. B., Hammouda, B. & Anisimov, M. A. Mesoscale inhomogeneities in aqueous options of small amphiphilic molecules. Faraday Focus on. 167, 217–238 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Z. et al. Anion chemistry in vitality storage gadgets. Nat. Rev. Chem. 7, 616–631 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Suppressed dissolution of fluorine-rich SEI allows extremely reversible zinc steel anodes for steady aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 136, e202407067 (2024).

    Article 

    Google Scholar
     

  • Shi, H.-Y. et al. Inhibiting VOPO4xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to advertise voltage and capability stabilities. Angew. Chem. Int. Ed. 58, 16057–16061 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. et al. From room temperature to harsh temperature purposes: fundamentals and views on electrolytes in zinc steel batteries. Sci. Adv. 8, eabn5097 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borodin, O. et al. Liquid construction with nano-heterogeneity promotes cationic transport in concentrated electrolytes. ACS Nano 11, 10462–10471 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, L. et al. Fluorinated interphase allows reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C. et al. All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Maintain. 6, 325–335 (2023).

    Article 

    Google Scholar
     

  • Cong, J. et al. Kinetics compensation mechanism in cosolvent electrolyte technique for aqueous zinc batteries. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.4c16880 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Sulfolane-containing aqueous electrolyte options for producing environment friendly ampere-hour-level zinc steel battery pouch cells. Nat. Commun. 14, 1828 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, G. et al. Regulating inorganic and natural elements to construct amorphous-ZnFx enriched stable–electrolyte interphase for extremely reversible Zn steel chemistry. Adv. Mater. 35, 2210051 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chang, N. et al. An aqueous hybrid electrolyte for low-temperature zinc-based vitality storage gadgets. Power Environ. Sci. 13, 3527–3535 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Quick response kinetics and commendable low-temperature adaptability of zinc batteries enabled by aprotic water–acetamide symbiotic solvation sheath. Angew. Chem. Int. Ed. 63, e202316841 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, Y. et al. Möbius solvation construction for zinc-ion batteries. Adv. Mater. 37, e2415373 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, X. et al. Weak solvation impact induced optimum interfacial chemistry allows extremely sturdy Zn anodes for aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 63, e202317302 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shi, J. et al. “Water-in-deep eutectic solvent” electrolytes for high-performance aqueous Zn-ion batteries. Adv. Funct. Mater. 31, 2102035 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xie, D. et al. ZnF2-riched inorganic/natural hybrid SEI: in situ-chemical building and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216934 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Solar, P. et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 133, 18395–18403 (2021).

    Article 

    Google Scholar
     

  • Jin, Y. et al. Stabilizing zinc anode reactions by polyethylene oxide polymer in delicate aqueous electrolytes. Adv. Funct. Mater. 30, 2003932 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Low current-density steady zinc-metal batteries by way of aqueous/natural hybrid electrolyte. Batter. Supercaps 5, e202200001 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, D. et al. Solvation modulation enhances anion-derived stable electrolyte interphase for deep biking of aqueous zinc steel batteries. Angew. Chem. Int. Ed. 62, e202310290 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, A. et al. Molecular recognition impact enabled by novel crown ether as macrocyclic host in direction of extremely reversible Zn anode. Sci. Bull. 68, 2170–2179 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wan, F. et al. Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 7062–7067 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Terban, M. W. & Billinge, S. J. Structural evaluation of molecular supplies utilizing the pair distribution perform. Chem. Rev. 122, 1208–1272 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egami, T. & Billinge, S. J. Beneath the Bragg Peaks: Structural Evaluation of Advanced Supplies 16 (Elsevier, 2003).

  • Gaussian 16 Rev. B.01 (Gaussian, 2016).

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Boys, S. F. & Bernardi, F. The calculation of small molecular interactions by the variations of separate whole energies. Some procedures with diminished errors. Mol. Phys. 19, 553–566 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Pan, J., Zhang, Q., Xiao, X., Cheng, Y.-T. & Qi, Y. Design of nanostructured heterogeneous stable ionic coatings via a multiscale defect mannequin. ACS Appl. Mater. Interfaces 8, 5687–5693 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a bundle for constructing preliminary configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Mark, P. & Nilsson, L. Construction and dynamics of the TIP3P, SPC, and SPC/E water fashions at 298 Ok. J. Phys. Chem. A 105, 9954–9960 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X., Lopes, P. E. & MacKerell, A. D. Jr Current developments and purposes of the CHARMM power fields. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 167–185 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zielkiewicz, J. Structural properties of water: comparability of the SPC, SPCE, TIP4P, and TIP5P fashions of water. J. Chem. Phys. 123, 104501 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Obst, S. & Bradaczek, H. Molecular dynamics simulations of zinc ions in water utilizing CHARMM. Mol. Mannequin. Annu. 3, 224–232 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Patil, N. et al. An ultrahigh efficiency zinc-organic battery utilizing poly (catechol) cathode in Zn (TFSI)2-based concentrated aqueous electrolytes. Adv. Power Mater. 11, 2100939 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Canongia Lopes, J. N. & Pádua, A. A. CL&P: a generic and systematic power subject for ionic liquids modeling. Theor. Chem. Acc. 131, 1–11 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Schauperl, M. et al. Non-bonded power subject mannequin with superior restrained electrostatic potential fees (RESP2). Commun. Chem. 3, 44 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, Ok. VMD: visible molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Momma, Ok. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology knowledge. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles