Plastino F, Pesce NA, André H. MicroRNAs and the HIF/VEGF axis in ocular neovascular ailments. Acta Ophthalmol. 2021;99(8):e1255–62.
Vishwakarma S, Kaur I. Molecular mediators and regulators of retinal angiogenesis. Semin Ophthalmol. 2023;38(2):124–33.
Terao R, Kaneko H. Lipid signaling in ocular neovascularization. Int J Mol Sci. 2020;21(13):4758.
De Rossi G, Da Vitoria Lobo ME, Greenwood J, Moss SE. LRG1 as a novel therapeutic goal in eye illness. Eye. 2022;36(2):328–40.
Muniyandi A, Hartman G, Music Y, Mijit M, Kelley M, Corson T. Past VEGF: concentrating on irritation and different pathways for therapy of retinal illness. J Pharmacol Exp Ther. 2023;386(4):15–25.
Heloterä H, Kaarniranta Ok. A linkage between angiogenesis and irritation in neovascular age-related macular degeneration. Cells. 2022;11(21):3453.
Pugazhendhi A, Hubbell M, Jairam P, Ambati B. Neovascular macular degeneration: a evaluate of etiology, danger elements, and up to date advances in analysis and remedy. IJMS. 2021;22(3):1170.
Campochiaro PA, Akhlaq A. Sustained suppression of VEGF for therapy of retinal/choroidal vascu lar ailments. Progr Retinal Eye Res. 2021;83:100921.
Solomon S, Lindsley Ok, Vedula S, Krzystolik M, Hawkins B. Anti-vascular endothelial development issue for neovascular age-related macular degeneration. Cochrane Datab Syst Rev. 2014. https://doi.org/10.1002/14651858.CD005139.pub3.
Li H-Y, Yuan Y, Fu Y-H, Wang Y, Gao X-Y. Hypoxia-inducible factor-1α: a promising therapeutic goal for vascul opathy in diabetic retinopathy. Pharmacol Res. 2020;159:104924.
Cheng S, Zhang S, Huang M, Liu Y, Zou X, Chen X, Zhang Z. Remedy of neovascular age-related macular degeneration with anti-vascular endothelial development issue medication: progress from mechanisms to scientific purposes. Entrance Med. 2024;11:1411278.
Noma H, Yasuda Ok, Shimura M. Involvement of cytokines within the pathogenesis of diabetic macular edema. IJMS. 2021;22(7):3427.
Arrigo A, Aragona E, Bandello F. VEGF-targeting medication for the therapy of retinal neovascularization in diabetic retinopathy. Ann Med. 2022;54(1):1089–111.
Brinkmann M, Muller T, Koster M, Schweighofer J, Danckwardt M, Giannaccare G, Marolo P, Borrelli E, Reibaldi M, El-Shabrawi Y, Toro MD. Optical coherence tomography angiography movement sign in non-treatment-naive sufferers with neovascular age-related macular degeneration handled with faricimab. Medicina (Kaunas). 2025;61(2):260.
Kim HM, Woo SJ. Immunogenicity and potential for intraocular irritation of intravitreal anti-VEGF medication. Curr Ther Res Clin Exp. 2024;100: 100742.
Sharma A, Woo SJ, Lee CS, Kumar N, Parachuri N, Bandello F, Loewenstein A, Kuppermann BD. Aflibercept 2 mg biosimilars-will they lead the Anti-VEGF biosimilar world globally. Eye (Lond). 2025. https://doi.org/10.1038/s41433-025-03732-2.
Khachigian LM, Liew G, Teo KYC, Wong TY, Mitchell P. Rising therapeutic methods for unmet want in neovascular age-rela ted macular degeneration. J Transl Med. 2023;21(1):133.
ElSheikh RH, Chauhan MZ, Sallam AB. Present and novel therapeutic approaches for therapy of neovascular age-related macular degeneration. Biomolecules. 2022;12(11):1629.
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao Ok, Han H, Ye J. Latest advances in nanomedicine for ocular fundus neovascularization illness administration. Adv Healthcare Mater. 2024;13(17):2304626.
Schargus M, Frings A. Points with intravitreal administration of anti-VEGF medication. Clin Ophthalmol (Auckland, NZ). 2020;14:897–904.
Ricci F, Bandello F, Navarra P, Staurenghi G, Stumpp M, Zarbin M. Neovascular age-related macular degeneration: therapeutic administration a nd new-upcoming approaches. IJMS. 2020;21(21):8242.
Moon B-H, Kim Y, Kim S-Y. Twenty years of anti-vascular endothelial development issue therapeutics in neovascular age-related macular degeneration therapy. IJMS. 2023;24(16):13004.
Zhou P, Zhang S, Li L, Zhang R, Guo G, Zhang Y, Wang R, Liu M, Wang Z, Zhao H, Yang G, Xie S, Ran J. Focused degradation of VEGF with bispecific aptamer-based LYTACs ameliorates pathological retinal angiogenesis. Theranostics. 2024;14:4983–5000.
Patel D, Patel SN, Chaudhary V, Garg SJ. Problems of intravitreal injections: 2022. Curr Opin Ophthalmol. 2022;33(3):137–46.
Cox JT, Eliott D, Sobrin L. Inflammatory problems of intravitreal anti-VEGF injections. JCM. 2021;10(5):981.
Melo GB, da Cruz NF, Emerson GG, Rezende FA, Meyer CH, Uchiyama S, Carpenter J, Shiroma HF, Farah ME, Maia M, Rodrigues EB. Crucial evaluation of methods and supplies utilized in units, syringe s, and needles used for intravitreal injections. Prog Retinal Eye Res. 2021;80:100862.
Ngo Ntjam N, Thulliez M, Paintaud G, Salvo F, Angoulvant D, Pisella P-J, Bejan-Angoulvant T. Cardiovascular opposed occasions with intravitreal anti-vascular endothelial development issue medication. JAMA Ophthalmol. 2021;139(6):610–9.
Patel NA, Acaba-Berrocal LA, Hoyek S, Fan KC, Martinez-Castellanos MA, Baumal CR, Harper CA, Berrocal AM, Wei-Chi W, Spencer R, Kusaka S, Quiram P, Asilis J, Blair MP, Agarwal S, Ells A, Besirli CG, Tsui I, Lee TC, Nagiel A, Kychenthal A, Kovarik J, Orlin A, Alexander J, Dedania VS, Ozdek S, Shami MJ, Regan C, Desai S, Levin MR, Chong DY, Gupta M, Pflugrath A, Abbey A, Fuller CG, Coors LE, Yannuzzi N, Negron C, Al-khersan H, Runge P, Ozdemir HB, Kucukbalci T, Iwahashi C, Solinski M, Sutter D, Sears J, Sonnie C, Portney D, Duker J, Lenis T, Di-Luciano A, Chamartin P, Kothari N, Ortiz-Ramirez GY, Amadeo Oreggioni GP, Naravane AV, Belin PJ, Vicioso NL, Vavvas D, Hartnett ME, Chan RVP, Nudleman E, Moshfeghi DM, Amphornphruet A, Chiang M, Shapiro MJ. Follow patterns and outcomes of intravitreal anti-VEGF injection for retinopathy of prematurity. Ophthalmology. 2022;129(12):1380–8.
Barnett JM, Hubbard GB. Problems of retinopathy of prematurity therapy. Curr Opin Ophthalmol. 2021;32(5):475–81.
Xu M, Fan R, Fan X, Shao Y, Li X. Progress and Challenges of Anti-VEGF Brokers and Their Sustained-Releas e Methods for Retinal Angiogenesis. Drug Des Dev Ther. 2023. https://doi.org/10.2147/DDDT.S383101.
Wolf AT, Harris A, Oddone F, Siesky B, Verticchio Vercellin A, Ciulla TA. Illness development pathways of moist AMD: alternatives for brand new goal discovery. Exp Opin Therap Targets. 2022;26(1):5–12.
Wallsh JO, Gallemore RP. Anti-VEGF-resistant retinal ailments: a evaluate of the newest therapy choices. Cells. 2021;10(5):1049.
Lau CML, Yu Y, Jahanmir G, Chau Y. Managed launch know-how for anti-angiogenesis therapy of posterior eye ailments: present standing and challenges. Adv Drug Deliv Rev. 2018;126:145–61.
Liu X, Huang Ok, Zhang F, Huang G, Wang L, Wu G, Ren H, Yang G, Lin Z. Multifunctional nano-in-micro supply methods for focused remedy in fundus neovascularization ailments. J Nanobiotechnology. 2024;22(1):354.
Ni B, Yang Z, Zhou T, Zhou H, Zhou Y, Lin S, Xu H, Lin X, Yi W, He C, Liu X. Therapeutic intervention in neuroinflammation for neovascular ocular ailments by means of concentrating on the cGAS-STING-necroptosis pathway. J Neuroinflammation. 2024;21(1):164.
Zhang Y, Watson S, Ramaswamy Y, Singh G. Intravitreal therapeutic nanoparticles for age-related macular degeneration: design ideas, progress and alternatives. Adv Colloid Interface Sci. 2024;329:103200.
Sharma P, Mittal S. Nanotechnology: revolutionizing the supply of medication to deal with age-related macular degeneration. Professional Opin Drug Deliv. 2021;18(8):1131–49.
Li Q, Weng J, Wong SN, Thomas Lee WY, Chow SF. Nanoparticulate drug supply to the retina. Mol Pharm. 2020;18(2):506–21.
Zhang M, Lu N, Li Q, Cui M, Zhang M. Editorial: drug supply system based mostly on nanoparticles for irritation and most cancers remedy. Entrance Mol Biosci. 2022;9:938348.
Chen H, Yao H, Chi J, Li C, Liu Y, Yang J, Yu J, Wang J, Ruan Y, Pi J, Xu J-F. Engineered exosomes as drug and RNA co-delivery system: new hope for enhanced therapeutics. Entrance Bioeng Biotechnol. 2023;11:1254356.
Klyachko NL, Arzt CJ, Li SM, Gololobova OA, Batrakova EV. Extracellular vesicle-based therapeutics: preclinical and scientific investigations. Pharmaceutics. 2020;12(12):1171.
Ke W, Afonin KA. Exosomes as pure supply carriers for programmable therapeutic nuc leic acid nanoparticles (NANPs). Adv Drug Deliv Rev. 2021;176:113835.
Liao W, Du Y, Zhang C, Pan F, Yao Y, Zhang T, Peng Q. Exosomes: the following technology of endogenous nanomaterials for superior drug supply and remedy. Acta Biomater. 2019;86:1–14.
Fu P, Zhang J, Li H, Mak M, Xu W, Tao Z. Extracellular vesicles as supply methods at nano-/micro-scale. Adv Drug Deliv Rev. 2021;179:113910.
Ferreira D, Moreira JN, Rodrigues LR. New advances in exosome-based focused drug supply methods. Crit Rev Oncol Hematol. 2022;172:103628.
Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for focused drug supply. Theranostics. 2021;11:3183–95.
Cheung CMG. Age-related macular degeneration in 2025- alternatives and challenges. Eye (Lond). 2025. https://doi.org/10.1038/s41433-025-03710-8.
Wang S, Chen X, Liu Y, Jiang Y, Li J, Ren L, Wang J, Wang Z, Li Y, Wu H, Zhang Y, Gao Y, Wang L. Hybrid biomembrane-functionalized nanorobots penetrate the vitreous physique of the attention for the therapy of retinal vein occlusion. ACS Nano. 2025;19(8):7728–41.
Nan W, He Y, Shen S, Wu M, Wang S, Zhang Y. BMP4 inhibits corneal neovascularization by interfering with tip cells in angiogenesis. Exp Eye Res. 2023;237: 109680.
Vaglienti MV, Subirada PV, Joray MB, Bonacci G, Sanchez MC. Protecting impact of NO(2)-OA on oxidative stress, gliosis, and pro-angiogenic response in muller glial cells. Cells. 2023;12(3):494.
Pisani F, Cammalleri M, Dal Monte M, Locri F, Mola MG, Nicchia GP, Frigeri A, Bagnoli P, Svelto M. Potential function of the methylation of VEGF gene promoter in response to hypoxia in oxygen-induced retinopathy: useful impact of the absence of AQP4. J Cell Mol Med. 2018;22(1):613–27.
Wang B, Zhang C, Chu D, Ma X, Yu T, Liu X, Hu C. Astragaloside IV improves angiogenesis below hypoxic circumstances by enhancing hypoxia-inducible factor-1alpha SUMOylation. Mol Med Rep. 2021;23(4):244.
Ali Z, Mukwaya A, Biesemeier A, Ntzouni M, Ramskold D, Giatrellis S, Mammadzada P, Cao R, Lennikov A, Marass M, Gerri C, Hildesjo C, Taylor M, Deng Q, Peebo B, Del Peso L, Kvanta A, Sandberg R, Schraermeyer U, Andre H, Steffensen JF, Lagali N, Cao Y, Kele J, Jensen LD. Intussusceptive vascular reworking precedes pathological neovascularization. Arterioscler Thromb Vasc Biol. 2019;39(7):1402–18.
Mesquita J, Castro-de-Sousa JP, Vaz-Pereira S, Neves A, Passarinha LA, Tomaz CT. Vascular endothelial development elements and placenta development think about retinal vasculopathies: present analysis and future views. Cytokine Progress Issue Rev. 2018;39:102–15.
Sui A, Chen X, Shen J, Demetriades AM, Yao Y, Yao Y, Zhu Y, Shen X, Xie B. Inhibiting the NLRP3 inflammasome with MCC950 ameliorates retinal neovascularization and leakage by reversing the IL-1beta/IL-18 activation sample in an oxygen-induced ischemic retinopathy mouse mannequin. Cell Demise Dis. 2020;11(10):901.
Campochiaro PA. Molecular pathogenesis of retinal and choroidal vascular ailments. Prog Retin Eye Res. 2015;49:67–81.
Hackett SF, Fu J, Kim YC, Tsujinaka H, Shen J, Lima ESR, Khan M, Hafiz Z, Wang T, Shin M, Anders NM, He P, Ensign LM, Hanes J, Campochiaro PA. Sustained supply of acriflavine from the suprachoroidal area supplies long run suppression of choroidal neovascularization. Biomaterials. 2020;243: 119935.
Sheridan CM, Pate S, Hiscott P, Wong D, Pattwell DM, Kent D. Expression of hypoxia-inducible factor-1alpha and -2alpha in human choroidal neovascular membranes. Graefes Arch Clin Exp Ophthalmol. 2009;247(10):1361–7.
Almalki WH, Almujri SS. The affect of NF-kappaB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res. 2024;248: 110111.
Servillo A, Scandale P, Oldoni G, Begar PG, Bandello F, Miserocchi E, Cicinelli MV. Inflammatory choroidal neovascularization: an evidence-based replace. Surv Ophthalmol. 2024. https://doi.org/10.1016/j.survophthal.2024.12.004.
Gong QY, Hu GY, Yu SQ, Qian TW, Xu X. Complete evaluation of development elements, inflammatory mediators, and cytokines in vitreous from sufferers with proliferative diabetic retinopathy. Int J Ophthalmol. 2022;15(11):1736–42.
Bai Y, Jiao X, Hu J, Xue W, Zhou Z, Wang W. WTAP promotes macrophage recruitment and will increase VEGF secretion by way of N6-methyladenosine modification in corneal neovascularization. Biochim Biophys Acta Mol Foundation Dis. 2023;1869(6): 166708.
Tu Y, Luo Y, Zhao Q, Zeng Y, Leng Ok, Zhu M. Function of macrophage in ocular neovascularization. Heliyon. 2024;10(10): e30840.
Cai C, Meng C, He S, Gu C, Lhamo T, Draga D, Luo D, Qiu Q. DNA methylation in diabetic retinopathy: pathogenetic function and potential therapeutic targets. Cell Biosci. 2022;12(1):186.
Bhargavan B, Chhunchha B, Kubo E, Singh DP. DNA methylation as an epigenetic mechanism within the regulation of LEDGF expression and organic response in growing older and oxidative stress. Cell Demise Discov. 2024;10(1):296.
Li S, Solar D, Chen S, Zhang S, Gu Q, Shen Y, Xu L, Xu X, Wei F, Wang N. UCP2-SIRT3 signaling relieved hyperglycemia-induced oxidative stress and senescence in diabetic retinopathy. Make investments Ophthalmol Vis Sci. 2024;65(1):14.
Huang SQ, Cao KX, Wang CL, Chen PL, Chen YX, Zhang YT, Yu SH, Bai ZX, Guo S, Liao MX, Li QW, Zhang GQ, He J, Xu YM. Lowering mitochondrial fission ameliorates HIF-1alpha-dependent pathological retinal angiogenesis. Acta Pharmacol Sin. 2024;45(7):1438–50.
Averill-Bates D. Reactive oxygen species and cell signaling. Evaluate. Biochim Biophys Acta Mol Cell Res. 2024;1871(2): 119573.
Jiang X, Liu C, Zhang Q, Lv Y, Lu C, Su W, Zhou J, Zhang H, Gong H, Liu Y, Yuan S, Chen Y, Qu D. Strategic supply of rapamycin and ranibizumab with intravitreal hydrogel depot disrupts multipathway-driven angiogenesis loop for boosted wAMD remedy. J Management Launch. 2025;377:239–55.
Zhao M, Wang S, Zuo A, Zhang J, Wen W, Jiang W, Chen H, Liang D, Solar J, Wang M. HIF-1α/JMJD1A signaling regulates irritation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell harm. Cell Mol Biol Lett. 2021;26(1):40.
Al-Kharashi AS. Function of oxidative stress, irritation, hypoxia and angiogenesis within the improvement of diabetic retinopathy. Saudi J Ophthalmol. 2018;32(4):318–23.
Srejovic JV, Muric MD, Jakovljevic VL, Srejovic IM, Sreckovic SB, Petrovic NT, Todorovic DZ, Bolevich SB, Sarenac Vulovic TS. Molecular and mobile mechanisms concerned within the pathophysiology of retinal vascular disease-interplay between irritation and oxidative stress. Int J Mol Sci. 2024;25(21):11850.
Wang X, Gong L, Wei C, Zhao Y, Ran L, Li P, Gu W, Wu X, Liang Z, Wang X. Inhibition of NSUN6 protects towards intermittent hypoxia-induced oxidative stress and inflammatory response in adipose tissue by means of suppressing macrophage ferroptosis and M1 polarization. Life Sci. 2025;364: 123433.
Ochoa Hernández ME, Lewis-Luján LM, Burboa Zazueta MG, Del Castillo Castro T, De La Re Vega E, Gálvez-Ruiz JC, Trujillo-López S, López Torres MA, Iloki-Assanga SB. Function of oxidative stress and irritation in age associated macular degeneration: insights into the retinal pigment epithelium (RPE). Int J Mol Sci. 2025;26(8):3463.
Zhang SM, Fan B, Li YL, Zuo ZY, Li GY. Oxidative stress-involved mitophagy of retinal pigment epithelium and retinal degenerative ailments. Cell Mol Neurobiol. 2023;43(7):3265–76.
Su W, Solar S, Tian B, Tai PWL, Luo Y, Ko J, Zhan W, Ke X, Zheng Q, Li X, Yan H, Gao G, Lin H. Efficacious, protected, and steady inhibition of corneal neovascularization by AAV-vectored anti-VEGF therapeutics. Mol Ther Strategies Clin Dev. 2021;22:107–21.
Li X, Liu J, Hoh J, Liu J. Muller cells in pathological retinal angiogenesis. Transl Res. 2019;207:96–106.
Otsuka Ok, Morita A, Kashihara T, Nakahara T. Pharmacological depletion of pericytes induces diabetic retinopathy-like irregular blood vessels in neonatal rat retina. Exp Eye Res. 2025;251: 110243.
Shi LJ, Ge H, Ye F, Li X, Jiang Q. The function of pericyte in ocular vascular ailments. J Biomed Res. 2024;38(6):1–10.
Zhang Q, Yan X, Han H, Wang Y, Solar J. Pericyte in retinal vascular ailments: a multifunctional regulator and potential therapeutic goal. FASEB J. 2024;38(10): e23679.
Ren JS, Bai W, Ding JJ, Zhao Y, Wang SY, Chen X, Jiang Q. The function of PIWIL4 and piRNAs within the improvement of choroidal neovascularization. Genomics. 2023;115(3): 110615.
Liukkonen M, Helotera H, Siintamo L, Ghimire B, Mattila P, Kivinen N, Kostanek J, Watala C, Hytti M, Hyttinen J, Koskela A, Blasiak J, Kaarniranta Ok. Oxidative stress and inflammation-related mRNAs are elevated in serum of a Finnish moist AMD cohort. Make investments Ophthalmol Vis Sci. 2024;65(13):30.
Vidović BB, Milinčić DD, Marčetić MD, Djuriš JD, Ilić TD, Kostić A, Pešić MB. Well being advantages and purposes of goji berries in practical meals merchandise improvement: a evaluate. Antioxidants (Basel). 2022;11(2):248.
Uemura A, Fruttiger M, D’Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res. 2021;84: 100954.
Yazdanyar A, Cai CL, Aranda JV, Shrier E, Beharry KD. Comparability of bevacizumab and aflibercept for suppression of angiogenesis in human retinal microvascular endothelial cells. Prescription drugs (Basel). 2023;16(7):939.
Patel SA, Nilsson MB, Le X, Cascone T, Jain RK, Heymach JV. Molecular mechanisms and future implications of VEGF/VEGFR in most cancers remedy. Clin Most cancers Res. 2023;29(1):30–9.
Joussen AM, Ricci F, Paris LP, Korn C, Quezada-Ruiz C, Zarbin M. Angiopoietin/Tie2 signalling and its function in retinal and choroidal vascular ailments: a evaluate of preclinical information. Eye. 2021;35(5):1305–16.
Colucciello M, Khanani AM, Fasrs JIL, Farvo F. Controversies in care: the proof that Ang-2 suppression confers a scientific profit. Retinal Phys. 2025;22:22.
Fragiotta S, Bassis L, Abdolrahimzadeh B, Marino A, Sepe M, Abdolrahimzadeh S. Exploring present molecular targets within the therapy of neovascular age-related macular degeneration towards the angle of long-term brokers. Int J Mol Sci. 2024;25(8):4433.
Siekmann AF, Lawson ND. Notch signalling and the regulation of angiogenesis. Cell Adh Migr. 2007;1(2):104–6.
Hellstrom M, Phng LK, Gerhardt H. VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh Migr. 2007;1(3):133–6.
Hasan SS, Tsaryk R, Lange M, Wisniewski L, Moore JC, Lawson ND, Wojciechowska Ok, Schnittler H, Siekmann AF. Endothelial Notch signalling limits angiogenesis by way of management of artery formation. Nat Cell Biol. 2017;19(8):928–40.
Potente M, Mäkinen T. Vascular heterogeneity and specialization in improvement and illness. Nat Rev Mol Cell Biol. 2017;18(8):477–94.
Blanco R, Gerhardt H. VEGF and Notch in tip and stalk cell choice. Chilly Spring Harb Perspect Med. 2013;3(1): a006569.
Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH. The notch ligands Dll4 and Jagged1 have opposing results on angiogenesis. Cell. 2009;137(6):1124–35.
Jin F, Guan P, Huang L, Zhang A, Gao S, Wang L, Liu Z. DLL4/VEGF bispecific molecularly imprinted nanomissile for sturdy tumor remedy. Biomaterials. 2025;322: 123412.
Sreelakshmi BJ, Karthika CL, Ahalya S, Kalpana SR, Kartha CC, Sumi S. Mechanoresponsive ETS1 causes endothelial dysfunction and arterialization in varicose veins by way of NOTCH4/DLL4 signaling. Eur J Cell Biol. 2024;103(2): 151420.
Jawad SF, Altalbawy FMA, Hussein RM, Fadhil AA, Jawad MA, Zabibah RS, Taraki TY, Mohan CD, Rangappa KS. The strict regulation of HIF-1α by non-coding RNAs: new perception in direction of proliferation, metastasis, and therapeutic resistance methods. Most cancers Metastasis Rev. 2024;43(1):5–27.
Razavi ZS, Asgarpour Ok, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal most cancers. Mol Ther Oncolytics. 2021;21:220–41.
Bassand Ok, Metzinger L, Naïm M, Mouhoubi N, Haddad O, Assoun V, Zaïdi N, Sainte-Catherine O, Butt A, Guyot E, Oudar O, Laguillier-Morizot C, Sutton A, Charnaux N, Metzinger-Le Meuth V, Hlawaty H. miR-126–3p is important for CXCL12-induced angiogenesis. J Cell Mol Med. 2021;25(13):6032–45.
Qu Q, Liu L, Cui Y, Liu H, Yi J, Bing W, Liu C, Jiang D, Bi Y. miR-126-3p containing exosomes derived from human umbilical twine mesenchymal stem cells promote angiogenesis and attenuate ovarian granulosa cell apoptosis in a preclinical rat mannequin of untimely ovarian failure. Stem Cell Res Ther. 2022;13(1):352.
Akaray I, Ozal SA, Sancar H, Ozal E, Ayaz L. miR-124, miR-126-3p, and miR-200b: potential therapeutic targets for VEGF-mediated problems in proliferative diabetic retinopathy. Indian J Ophthalmol. 2025;73(6):886–92. https://doi.org/10.4103/IJO.IJO_1791_24.
Conde E, Earl J, Crespo-Toro L, Blanco-Agudo C, Ramos-Muñoz E, Rodríguez-Serrano EM, Martínez Ávila JC, Salinas-Muñoz L, Serrano-Huertas S, Ferreiro R, Rodriguez-Garrote M, Sainz B Jr, Massuti B, Alfonso PG, Benavides M, Aranda E, García-Bermejo ML, Carrato A. Biomarkers related to regorafenib first-line therapy advantages in metastatic colorectal most cancers sufferers: REFRAME molecular examine. Cancers (Basel). 2021;13(7):1710.
Xue W, Zhang Q, Chen Y, Zhu Y. Hydrogen sulfide improves angiogenesis by regulating the transcription of pri-miR-126 in diabetic endothelial cells. Cells. 2022;11(17):2651.
Akpınar Ok, Aslan D, Fenkçi SM, Caner V. miR-21-3p and miR-192-5p in sufferers with sort 2 diabetic nephropathy. Prognosis (Berl). 2022;9(4):499–507.
Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Sign. 2021;19(1):47.
McAndrews KM, Kalluri R. Mechanisms related to biogenesis of exosomes in most cancers. Mol Most cancers. 2019;18(1):52.
Xie S, Zhang Q, Jiang L. Present information on exosome biogenesis, cargo-sorting mechanism and therapeutic implications. Membranes. 2022;12(5):498.
Li X, Corbett A, Taatizadeh E, Tasnim N, Little J, Garnis C, Daugaard M, Weapons E, Hoorfar M, Li I. Challenges and alternatives in exosome analysis—views from biology, engineering, and most cancers remedy. APL Bioeng. 2019;3: 011503.
Xu M, Ye Z, Music X-T, Huang R-C. Variations within the cargos and features of exosomes derived from six cardiac cell sorts: a scientific evaluate. Stem Cell Res Ther. 2019;10:194.
Kalluri R, LeBleu V. The biology, perform, and biomedical purposes of exosomes. Science. 2020;367:eaau6977.
Jan A, Rahman S, Khan S, Tasduq S, Choi I. Biology, pathophysiological function, and scientific implications of exosomes: a vital appraisal. Cells. 2019;8:99.
Vidal M. Exosomes: revisiting their function as “rubbish luggage.” Site visitors. 2019;20:815–28.
Wessler S, Meisner-Kober N. On the highway: extracellular vesicles in intercellular communication. Cell Commun Sign. 2025;23(1):95.
Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic perform and scientific potential. Cell Biosci. 2019;9:19.
Matsui T, Osaki F, Hiragi S, Sakamaki Y, Fukuda M. ALIX and ceramide differentially management polarized small extracellular vesicle launch from epithelial cells. Embo Rep. 2021;22(5):e51475.
Singh A, Das Ok, Banerjee S, Sen P. Elucidation of the signalling pathways for enhanced exosome launch from Mycobacterium-infected macrophages and subsequent induction of differentiation. Immunology. 2022;168(1):63–82.
Singh P, Smith V, Karakousis PC, Schorey JS. Exosomes remoted from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo. J Immunol. 2012;189(2):777–85.
Jeppesen DK, Sanchez ZC, Kelley NM, Hayes JB, Ambroise J, Koory EN, Krystofiak E, Taneja N, Zhang Q, Dungan MM, Perkins OL, Tyska MJ, Knapik EW, Dean KM, Doran AC, Coffey RJ, Burnette DT. Blebbisomes are massive, organelle-rich extracellular vesicles with cell-like properties. Nat Cell Biol. 2025. https://doi.org/10.1038/s41556-025-01621-0.
Donoso-Quezada J, Ayala-Mar S, Gonzalez-Valdez J. The function of lipids in exosome biology and intercellular communication: perform, analytics and purposes. Site visitors. 2021;22(7):204–20.
Lee YJ, Shin KJ, Chae YC. Regulation of cargo choice in exosome biogenesis and its biomedical purposes in most cancers. Exp Mol Med. 2024;56(4):877–89.
Kim HS, Jang H, Cho H, Choi J, Hwang KY, Choi Y, Kim SH, Yang Y. Latest advances in exosome-based drug supply for most cancers remedy. Cancers. 2021;13(17):4435.
Rajput A, Varshney A, Bajaj R, Pokharkar V. Exosomes as new technology autos for drug supply: biomedical purposes and future views. Molecules. 2022;27:7289.
Mathew B, Ravindran S, Liu X, Torres L, Chennakesavalu M, Huang CC, Feng L, Zelka R, Lopez J, Sharma M, Roth S. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials. 2019;197:146–60.
Yu Z, Wen Y, Jiang N, Li Z, Guan J, Zhang Y, Deng C, Zhao L, Zheng SG, Zhu Y, Su W, Zhuo Y. TNF-α stimulation enhances the neuroprotective results of gingival MSCs derived exosomes in retinal ischemia-reperfusion harm by way of the MEG3/miR-21a-5p axis. Biomaterials. 2022;284: 121484.
Elshaer SL, Park HS, Pearson L, Hill WD, Longo FM, El-Remessy AB. Modulation of p75(NTR) on mesenchymal stem cells will increase their vascular safety in retinal ischemia-reperfusion mouse mannequin. Int J Mol Sci. 2021;22(2):829.
Dalmizrak A, Dalmızrak Ö. Mesenchymal Stem Cell-Derived Exosomes as New Instruments for Supply of miRNAs within the Remedy of Most cancers. Entrance Bioeng Biotechnol. 2022;10: 956563.
Gim JA, Bang SM, Lee YS, Yim SY, Jung YK, Kim H, Kim B-H, Kim JH, Website positioning YS, Yim HJ, Yeon JE, Um SH, Byun KS. Analysis of the severity of nonalcoholic fatty liver illness by means of evaluation of serum exosomal miRNA expression. PLoS ONE. 2021;16(8): e0255822.
Music H, Liu B, Dong B, Xu J, Zhou H, Sha N, Liu Y, Pan Y, Chen F, Li L, Wang J. Exosome-based supply of pure merchandise in most cancers remedy. Entrance Cell Dev Biol. 2021;9: 650426.
Wu Q. Tumor cell-derived exosomal hybrid nanosystems loaded with rhubarbic acid and Tanshinone IIA for sepsis therapy. J Inflamm Res. 2024;17:5093–112.
Choi H, Kim M-Y, Kim D-H, Yun H, Oh B-Ok, Kim S-B, Music I, Park H-S, Kim SE, Park C, Choi C. Quantitative biodistribution and pharmacokinetics examine of gmp-grade exosomes labeled with 89Zr radioisotope in mice and rats. Pharmaceutics. 2022;14(6):1118.
Hofmann L, Ludwig S, Vahl JM, Brunner C, Hoffmann T, Theodoraki MN. The rising function of exosomes in prognosis, prognosis, and remedy in head and neck most cancers. IJMS. 2020;21(11):4072.
Liu J-Y, Ren L-W, Li S, Li W, Zheng X-J, Yang Y, Fu W, Yi J, Wang J, Du G. The biology, perform, and purposes of exosomes in most cancers. Acta Pharmaceutica Sinica B. 2021;11:2783–97.
Kim HI, Park J, Zhu Y, Wang X, Han Y, Zhang D. Latest advances in extracellular vesicles for therapeutic cargo supply. Exp Mol Med. 2024;56(4):836–49.
Blanco-Agudin N, Ye S, Gonzalez-Fernandez S, Alcalde I, Merayo-Lloves J, Quiros LM. Exosomes in ocular well being: current insights into pathology. Diagn Appl Therap Funct Biomed. 2025;13(1):233.
Pan M, Zhang Z, Wang Q, Shang L. Exosome-loaded microcarriers for intraocular drug supply. Sci Bull (Beijing). 2024;69(4):434–6.
Tian Y, Zhang T, Li J, Tao Y. Advances in improvement of exosomes for ophthalmic therapeutics. Adv Drug Deliv Rev. 2023;199: 114899.
Zhang Y, Bi JY, Huang J, Tang YN, Du S, Li P. Exosome: a evaluate of its classification, isolation methods, storage, diagnostic and focused remedy purposes. Int J Nanomed. 2020;15:6917–34.
Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Evaluate of the isolation, characterization, organic perform, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):307.
Tenchov R, Sasso J, Wang X, Liaw W, Chen C-A, Zhou Q. Exosomes—nature’s lipid nanoparticles, a rising star in drug supply and diagnostics. ACS Nano. 2022;16:17802–46.
Tian Y, Zhang F, Qiu Y, Wang S, Li F, Zhao J, Pan C, Tao Y, Yu D, Wei W. Discount of choroidal neovascularization by way of cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells. Nat Biomed Eng. 2021;5(9):968–82.
An W, Zhang W, Qi J, Xu W, Lengthy Y, Qin H, Yao Ok. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: a promising technique for treating retinal degenerative ailments. Mol Med. 2025;31(1):75.
Zhou W, Xu M, Wang Z, Yang M. Engineered exosomes loaded with miR-449a selectively inhibit the expansion of homologous non-small cell lung most cancers. Most cancers Cell Int. 2021;21(1):485.
Aatonen MT, Ohman T, Nyman TA, Laitinen S, Gronholm M, Siljander PR. Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles. 2014;3:24692.
Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen C, Li H, Li P, Quinn D, Dao M, Suresh S, Sadovsky Y, Huang TJ. Isolation of exosomes from complete blood by integrating acoustics and microfluidics. Proc Natl Acad Sci USA. 2017;114(40):10584–9.
Chen BY, Sung CW, Chen C, Cheng CM, Lin DP, Huang CT, Hsu MY. Advances in exosomes know-how. Clin Chim Acta. 2019;493:14–9.
Tang YT, Huang YY, Zheng L, Qin SH, Xu XP, An TX, Xu Y, Wu YS, Hu XM, Ping BH, Wang Q. Comparability of isolation strategies of exosomes and exosomal RNA from cell tradition medium and serum. Int J Mol Med. 2017;40(3):834–44.
Wu Y, Wang Y, Lu Y, Luo X, Huang Y, Xie T, Pilarsky C, Dang Y, Zhang J. Microfluidic know-how for the isolation and evaluation of exosomes. Micromachines (Basel). 2022;13(10):1571.
Hassanpour Tamrin S, Sanati Nezhad A, Sen A. Label-free isolation of exosomes utilizing microfluidic applied sciences. ACS Nano. 2021;15(11):17047–79.
Singh S, Dansby C, Agarwal D, Bhat PD, Dubey PK, Krishnamurthy P. Exosomes: strategies for isolation and characterization in organic samples. Strategies Mol Biol. 2024;2835:181–213.
Tiwari S, Kumar V, Randhawa S, Verma SK. Preparation and characterization of extracellular vesicles. Am J Reprod Immunol. 2021;85(2): e13367.
Thery C, Witwer KW, Aikawa E. Minimal info for research of extracellular vesicles 2018 (MISEV2018) a place assertion of the Worldwide society for extracellular vesicles and replace of the MISEV2014 tips. J Extracell Vesicles. 2018;7(1):1535750.
Yin W. Focused exosome-based nanoplatform for new-generation therapeutic methods. Biomed Mater. 2024;19(3): 032002.
Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai U, Graham D, Namdee Ok. Floor modification of gold nanoparticles with neuron-targeted exosome for enhanced blood–mind barrier penetration. Sci Rep. 2019;9(1):8278.
Gečys D, Kazlauskas A, Gečytė E, Paužienė N, Kulakauskienė D, Lukminaitė I, Jekabsone A. Internalisation of RGD-engineered extracellular vesicles by glioblastoma cells. Biology. 2022;11(10):1483.
Samaeekia R, Rabiee B, Putra I, Shen X, Park YJ, Hematti P, Eslani M, Djalilian AR. Impact of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound therapeutic. Investig Opthalmol Visible Sci. 2018;59(12):5194.
Nasirishargh A, Kumar P, Ramasubramanian L, Clark KC, Hao D, Lazar SV, Wang A. Exosomal microRNAs from mesenchymal stem/stromal cells: biology and purposes in neuroprotection. World J Stem Cells. 2021;13(7):776–94.
Chen Y, Wang L, Yu X, Mao W, Wan Y. Ultrasonication outperforms electroporation for extracellular vesicle cargo depletion. Extracell Vesicle. 2024;4:8278.
Ahmed W, Mushtaq A, Ali S, Khan N, Liang Y, Duan L. Engineering approaches for exosome cargo loading and focused supply: organic versus chemical views. ACS Biomater Sci Eng. 2024;10(10):5960–76. https://doi.org/10.1021/acsbiomaterials.4c00856.
Szewczyk A, Rembialkowska N, Saczko J, Daczewska M, Novickij V, Kulbacka J. Calcium electroporation induces stress response by means of upregulation of HSP27, HSP70, aspartate beta-hydroxylase, and CD133 in human colon most cancers cells. Biol Res. 2025;58(1):10.
Millan Cotto HA, Pathrikar TV, Hakim B, Child HM, Zhang H, Zhao P, Ansaripour R, Amini R, Service RL, Bajpayee AG. Cationic-motif-modified exosomes for mRNA supply to retinal photoreceptors. J Mater Chem B. 2024;12(30):7384–400. https://doi.org/10.1039/D4TB00849A.
Johnsen KB, Gudbergsson JM, Skov MN, Christiansen G, Gurevich L, Moos T, Duroux M. Analysis of electroporation-induced opposed results on adipose-derived stem cell exosomes. Cytotechnology. 2016;68(5):2125–38.
Zeng H, Guo S, Ren X, Wu Z, Liu S, Yao X. Present methods for exosome cargo loading and concentrating on supply. Cells. 2023;12(10):1416.
Nizamudeen ZA, Xerri R, Parmenter C, Suain Ok, Markus R, Chakrabarti L, Sottile V. Low-power sonication can alter extracellular vesicle measurement and properties. Cells. 2021;10(9):2413.
Koh HB, Kim HJ, Kang SW, Yoo TH. Exosome-based drug supply: translation from bench to clinic. Pharmaceutics. 2023;15(8):2402.
Liu C, Cheng C, Cheng Ok, Gao AS, Li Q, Atala A, Zhang Y. Precision exosome engineering for enhanced wound therapeutic and scar revision. J Transl Med. 2025;23(1):578.
Tang Z, Ye F, Ni N, Fan X, Lu L, Gu P. Frontier purposes of retinal nanomedicine: progress, challenges and views. J Nanobiotechnology. 2025;23(1):143.
Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug supply methods formulated as eye drops. J Management Launch. 2020;321:1–22.
Yang H, Wu P, Wang T, Yu Y, Li J, Liu R, Ruan Q. Topical ophthalmic instillation of engineered hMSCs-derived exosomes: a novel non-invasive therapeutic technique for ocular posterior-segment dysfunction. Biochem Biophys Res Commun. 2024;723: 150212.
Mantelli F, Mauris J, Argüeso P. The ocular floor epithelial barrier and different mechanisms of mucosal safety: from allergy to infectious ailments. Curr Opin Allergy Clin Immunol. 2013;13(5):563–8.
Elliott RO, He M. Unlocking the facility of exosomes for crossing organic limitations in drug supply. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13010122.
Zhang Z, Mugisha A, Fransisca S, Liu Q, Xie P, Hu Z. Rising function of exosomes in retinal ailments. Entrance Cell Dev Biol. 2021;9: 643680.
Mehdizadeh S, Mamaghani M, Hassanikia S, Pilehvar Y, Ertas YN. Exosome-powered neuropharmaceutics: unlocking the blood-brain barrier for next-gen therapies. J Nanobiotechnol. 2025;23(1):329.
Martins B, Pires M, Ambrósio AF, Girão H, Fernandes R. Contribution of extracellular vesicles for the pathogenesis of retinal ailments: shedding mild on blood-retinal barrier dysfunction. J Biomed Sci. 2024;31(1):48.
Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug supply to the retina: present standing and implications for gene remedy. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(12):1477–507.
Feng X, Peng Z, Yuan L, Jin M, Hu H, Peng X, Wang Y, Zhang C, Luo Z, Liao H. Analysis progress of exosomes in pathogenesis, prognosis, and therapy of ocular ailments. Entrance Bioeng Biotechnol. 2023;11:1100310.
Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen KS, Ruponen M, Urtti A. Pharmacokinetic facets of retinal drug supply. Prog Retin Eye Res. 2017;57:134–85.
Sadeghi S, Tehrani FR, Tahmasebi S, Shafiee A, Hashemi SM. Exosome engineering in cell remedy and drug supply. Inflammopharmacology. 2023;31(1):145–69.
Muniyandi A, Martin M, Sishtla Ok, Motolani A, Solar M, Jensen NR, Qi X, Boulton ME, Prabhu L, Lu T, Corson TW. PRMT5 is a therapeutic goal in choroidal neovascularization. Sci Rep. 2023;13(1):1747.
Tzaridis S, Aguilar E, Dorrell MI, Friedlander M, Eade KT. Retinal pigment epithelial cells scale back vascular leak and proliferation in retinal neovessels. Angiogenesis. 2024;28(1):1.
Pollalis D, Kim D, Nair GKG, Kang C, Nanda AV, Lee SY. Intraocular RGD-engineered exosomes and energetic concentrating on of choroidal neovascularization (CNV). Cells. 2022;11(16):2573.
Zhao H, Cai Y, Pan J, Chen Q. Function of microRNA in linking diabetic retinal neurodegeneration and vascular degeneration. Entrance Endocrinol (Lausanne). 2024;15:1412138.
Fukushima A, Takahashi E, Saruwatari J, Tanihara H, Inoue T. The angiogenic results of exosomes secreted from retinal pigment epithelial cells on endothelial cells. Biochem Biophys Rep. 2020;22: 100760.
Knickelbein JE, Liu B, Arakelyan A, Zicari S, Hannes S, Chen P, Li Z, Grivel JC, Chaigne-Delalande B, Sen HN, Margolis L, Nussenblatt RB. Modulation of immune responses by extracellular vesicles from retinal pigment epithelium. Make investments Ophthalmol Vis Sci. 2016;57(10):4101–7.
Jiao YR, Chen KX, Tang X, Tang YL, Yang HL, Yin YL, Li CJ. Exosomes derived from mesenchymal stem cells in diabetes and diabetic problems. Cell Demise Dis. 2024;15(4):271.
Wu KY, Ahmad H, Lin G, Carbonneau M, Tran SD. Mesenchymal Stem Cell-Derived Exosomes in Ophthalmology: A Complete Evaluate. Pharmaceutics. 2023;15(4):1167.
Liu JJJ, Liu D, To SKY, Wong AST. Exosomes in most cancers nanomedicine: biotechnological developments and improvements. Mol Most cancers. 2025;24(1):166.
Wang Y, Zhang Q, Yang G, Wei Y, Li M, Du E, Li H, Music Z, Tao Y. RPE-derived exosomes rescue the photoreceptors throughout retina degeneration: an intraocular strategy to ship exosomes into the subretinal area. Drug Deliv. 2021;28(1):218–28.
Music Y, Yin C, Kong N. Stem cell-derived exosomes: pure intercellular messengers with versatile mechanisms for the therapy of diabetic retinopathy. Int J Nanomedicine. 2024;19:10767–84.
Bairagi RD, Reon RR, Hasan MM, Sarker S, Debnath D, Rahman MT, Rahman S, Islam MA, Siddique MAT, Bokshi B, Rahman MM, Acharzo AK. Ocular drug supply methods based mostly on nanotechnology: a complete evaluate for the therapy of eye ailments. Discov Nano. 2025;20(1):75.
Liang X, Niu Z, Galli V, Howe N, Zhao Y, Wiklander OPB, Zheng W, Wiklander RJ, Corso G, Davies C, Hean J, Kyriakopoulou E, Mamand DR, Amin R, Nordin JZ, Gupta D, Andaloussi SE. Extracellular vesicles engineered to bind albumin display prolonged circulation time and lymph node accumulation in mouse fashions. J Extracell Vesicles. 2022;11(7): e12248.
Parada N, Romero-Trujillo A, Georges N, Alcayaga-Miranda F. Camouflage methods for therapeutic exosomes evasion from phagocytosis. J Adv Res. 2021;31:61–74.
Whiteside TL. Therapeutic concentrating on of oncogenic KRAS in pancreatic most cancers by engineered exosomes. Transl Most cancers Res. 2017;6(Suppl 9):S1406-s1408.
Bao H, Tian Y, Wang H, Ye T, Wang S, Zhao J, Qiu Y, Li J, Pan C, Ma G, Wei W, Tao Y. Exosome-loaded degradable polymeric microcapsules for the therapy of vitreoretinal ailments. Nat Biomed Eng. 2024;8(11):1436–52.
Chen X, Tian B, Wang Y, Zheng J, Kang X. Potential and challenges of using exosomes in osteoarthritis remedy (evaluate). Int J Mol Med. 2025;55(3):43.
Geng JX, Lu YF, Zhou JN, Huang B, Qin Y. Exosome know-how: a novel and efficient drug supply system within the discipline of most cancers remedy. World J Gastrointest Oncol. 2025;17(3): 101857.
Peng X, Zhang T, Liu R, Jin X. Potential in exosome-based focused nano-drugs and supply autos for posterior ocular illness therapy: from limitations to therapeutic utility. Mol Cell Biochem. 2024;479(6):1319–33.
Grad J, Hatamnejad A, Dadak R, Sodhi S, Pattathil N, Choudhry N. Anti-VEGF monotherapy vs anti-VEGF and steroid mixture remedy for diabetic macular edema: a meta-analysis. J Vitreoretin Dis. 2024. https://doi.org/10.1177/24741264241280597.
Duke LC, Cone AS, Solar L, Dittmer DP, Meckes DG, Tomko RJ. Tetraspanin CD9 alters mobile trafficking and endocytosis of tetraspanin CD63, affecting CD63 packaging into small extracellular vesicles. J Biol Chem. 2025;301: 108255.
Parton RG, Richards AA. Lipid rafts and caveolae as portals for endocytosis: new insights and customary mechanisms. Site visitors. 2003;4(11):724–38.
Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, Zhou Q, Sui SF. Mobile internalization of exosomes happens by means of phagocytosis. Site visitors. 2010;11(5):675–87.
Olejarz W, Kubiak-Tomaszewska G, Chrzanowska A, Lorenc T. Exosomes in angiogenesis and anti-angiogenic remedy in cancers. Int J Mol Sci. 2020;21(16):5840.
Zhang H, Mao Y, Nie Z, Li Q, Wang M, Cai C, Hao W, Shen X, Gu N, Shen W, Music H. Iron oxide nanoparticles engineered macrophage-derived exosomes for focused pathological angiogenesis remedy. ACS Nano. 2024;18(10):7644–55.
Petrovič D. Candidate genes for proliferative diabetic retinopathy. Biomed Res Int. 2013;2013: 540416.
Kaur C, Foulds WS, Ling EA. Hypoxia-ischemia and retinal ganglion cell injury. Clin Ophthalmol. 2008;2(4):879–89.
Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic concentrating on of vascular endothelial development issue A. Nat Rev Mol Cell Biol. 2023;24(11):816–34.
Wu D, Chan KE, Lim BXH, Lim DK, Wong WM, Chai C, Manotosh R, Lim CHL. Administration of corneal neovascularization: present and rising therapeutic approaches. Indian J Ophthalmol. 2024;72(Suppl 3):S354-s371.
Website positioning H, Park SJ, Music M. Diabetic retinopathy (DR): mechanisms, present therapies, and rising methods. Cells. 2025;14(5):376.
Menna F, Meduri A, Lupo S, Vingolo EM. WAMD: from pathophysiology to therapeutic therapies. Biomedicines. 2022;10(8):1996.
Su Y, Liu A, Chen H, Chen Q, Zhao B, Gao R, Zhang Ok, Peng T, Zhang Z, Ouyang C, Zhu D. Analysis progress of mind organoids within the discipline of diabetes. Mol Mind. 2024;17(1):53.
Zhang M, Lu X, Luo L, Dou J, Zhang J, Li G, Zhao L, Solar F. Focusing on glutamine synthetase with AS1411-modified exosome-liposome hybrid nanoparticles for inhibition of choroidal neovascularization. J Nanobiotechnology. 2024;22(1):703.
Dong X, Lei Y, Yu Z, Wang T, Liu Y, Han G, Zhang X, Li Y, Music Y, Xu H, Du M, Yin H, Wang X, Yan H. Exosome-mediated supply of an anti-angiogenic peptide inhibits pathological retinal angiogenesis. Theranostics. 2021;11(11):5107–26.
Zhang HY, Zhang QY, Liu Q, Feng SG, Ma Y, Wang FS, Zhu Y, Yao J, Yan B. Exosome-loading miR-205: a two-pronged strategy to ocular neovascularization remedy. J Nanobiotechnology. 2025;23(1):36.
Bhujel B, Oh SH, Kim CM, Yoon YJ, Kim YJ, Chung HS, Ye EA, Lee H, Kim JY. Mesenchymal stem cells and exosomes: a novel therapeutic strategy for corneal ailments. Int J Mol Sci. 2023;24(13):10917.
Zhang Y, Xu Y, Zhou Ok, Kao G, Xiao J. MicroRNA-126 and VEGF improve the perform of endothelial progenitor cells in acute myocardial infarction. Exp Ther Med. 2022;23(2):142.
Ahmadi S, Gohari-Lasaki S, Jahangiri N, Ejlalidiz M, Saberiyan M. The multifaceted roles of exosomes in corneal biology: elucidation of underlying mechanisms and therapeutic purposes. Mol Biol Rep. 2025;52(1):527.
Saleem M, Shahzad KA, Marryum M, Singh S, Zhou Q, Du S, Wang S, Shao C. Shaikh, II, Exosome-based therapies for inflammatory problems: a evaluate of current advances. Stem Cell Res Ther. 2024;15(1):477.
Akhlaghpasand M, Tavanaei R, Hosseinpoor M, Yazdani KO, Soleimani A, Zoshk MY, Soleimani M, Chamanara M, Ghorbani M, Deylami M, Zali A, Heidari R, Oraee-Yazdani S. Security and potential results of intrathecal injection of allogeneic human umbilical twine mesenchymal stem cell-derived exosomes in full subacute spinal twine harm: a first-in-human, single-arm, open-label, part I scientific trial. Stem Cell Res Ther. 2024;15(1):264.
Pu X, Ma S, Gao Y, Xu T, Chang P, Dong L. Mesenchymal stem cell-derived exosomes: organic perform and their therapeutic potential in radiation injury. Cells. 2020;10(1):42.
Gilyazova I, Asadullina D, Kagirova E, Sikka R, Mustafin A, Ivanova E, Bakhtiyarova Ok, Gilyazova G, Gupta S, Khusnutdinova E, Gupta H, Pavlov V. MiRNA-146a-a key participant in immunity and ailments. Int J Mol Sci. 2023;24(16):12767.
Robbins BT, Montreuil KA, Kundu N, Kumar P, Agrahari V. Corneal therapy restore, and regeneration: exosomes at rescue. Pharmaceutics. 2024;16(11):1424.
Lee S, Han J, Yang J, Lyu J, Park H, Bang J, Kim Y, Chang H, Park T. Exosomes from human iPSC-derived retinal organoids improve corneal epithelial wound therapeutic. Int J Mol Sci. 2024;25(16):8925.
McKay TB, Schlötzer-Schrehardt U, Pal-Ghosh S, Stepp MA. Integrin: basement membrane adhesion by corneal epithelial and endothelial cells. Exp Eye Res. 2020;198: 108138.
Liu GS, Chen HA, Chang CY, Chen YJ, Wu YY, Widhibrata A, Yang YH, Hsieh EH, Delila L, Lin IC, Burnouf T, Tseng CL. Platelet-derived extracellular vesicle drug supply system loaded with kaempferol for treating corneal neovascularization. Biomaterials. 2025;319: 123205.
Yang J, Kang H, Liu Y, Lu S, Wu H, Zhang B, He Y, Zhou W. Harnessing tumor cell-derived exosomes for immune rejection administration in corneal transplantation. Adv Sci (Weinh). 2025;12(2): e2409207.
Duh EJ, Solar JK, Stitt AW. Diabetic retinopathy: present understanding, mechanisms, and therapy methods. JCI Perception. 2017;2(14): e93751.
Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and coverings. Int J Mol Sci. 2018;19(6):1816.
Evans JR, Michelessi M, Virgili G. Laser photocoagulation for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2014;2014(11):11234.
Pei X, Li Z. Narrative evaluate of complete administration methods for diabetic retinopathy: interdisciplinary approaches and future views. BMJ Public Well being. 2025;3(1): e001353.
Zhang J, Zhang J, Zhang C, Zhang J, Gu L, Luo D, Qiu Q. Diabetic macular edema: present understanding, molecular mechanisms and therapeutic implications. Cells. 2022;11(21):3362.
Kusuhara S, Fukushima Y, Ogura S, Inoue N, Uemura A. Pathophysiology of diabetic retinopathy: the outdated and the brand new. Diabetes Metab J. 2018;42(5):364–76.
Lee C, Kim MJ, Kumar A, Lee HW, Yang Y, Kim Y. Vascular endothelial development issue signaling in well being and illness: from molecular mechanisms to therapeutic views. Sign Transduct Goal Ther. 2025;10(1):170.
Schwarz G, Ren X, Xie W, Guo H, Jiang Y, Zhang J. Engineered exosomes: a promising drug supply platform with therapeutic potential. Entrance Mol Biosci. 2025;12:1583992.
Tang L, Xu GT, Zhang JF. Irritation in diabetic retinopathy: attainable roles in pathogenesis and potential implications for remedy. Neural Regen Res. 2023;18(5):976–82.
Yu H, Wu J, Pan G. Focusing on the ophthalmic ailments utilizing extracellular vesicles ‘exosomes’: present insights on their scientific approval and current trials. Growing older Dis. 2024;16(3):1225–41.
Wang Y, Tang Z, Gu P. Stem/progenitor cell-based transplantation for retinal degeneration: a evaluate of scientific trials. Cell Demise Dis. 2020;11(9):793.
Li Y, Gappy S, Liu X, Sassalos T, Zhou T, Hsu A, Zhang A, Edwards PA, Gao H, Qiao X. Metformin suppresses pro-inflammatory cytokines in vitreous of diabetes sufferers and human retinal vascular endothelium. PLoS ONE. 2022;17(7): e0268451.
El Bakkouri Y, Chidiac R, Delisle C, Corriveau J, Cagnone G, Gaonac’h-Lovejoy V, Chin A, Lécuyer É, Angers S, Joyal JS, Topisirovic I, Hulea L, Dubrac A, Gratton JP. ZO-1 interacts with YB-1 in endothelial cells to manage stress granule formation throughout angiogenesis. Nat Commun. 2024;15(1):4405.
Tong J, Chen Y, Ling X, Huang Z, Yao G, Xie Z. MSC-derived exosomal miR-125b-5p suppressed retinal microvascular endothelial cell ferroptosis in diabetic retinopathy. Stem Cells. 2025;43(6):sxaf023.
Jiang L, Cao H, Deng T, Yang M, Meng T, Yang H, Luo X. Serum exosomal miR-377-3p inhibits retinal pigment epithelium proliferation and presents a biomarker for diabetic macular edema. J Int Med Res. 2021;49(4):3000605211002975.
Chung SH, Frick SL, Yiu G. Focusing on vascular endothelial development issue utilizing retinal gene remedy. Ann Transl Med. 2021;9(15):1277.
Liao HJ, Yang YP, Liu YH, Tseng HC, Huo TI, Chiou SH, Chang CH. Harnessing the potential of mesenchymal stem cells-derived exosomes in degenerative ailments. Regen Ther. 2024;26:599–610.
Friedlander M. Fibrosis and ailments of the attention. J Clin Make investments. 2007;117(3):576–86.
Huang S, Yan F, Qiu Y, Liu T, Zhang W, Yang Y, Zhong R, Yang Y, Peng X. Exosomes in irritation and most cancers: from bench to bedside purposes. Mol Biomed. 2025;6(1):41.
Hu Z, Mao X, Chen M, Wu X, Zhu T, Liu Y, Zhang Z, Fan W, Xie P, Yuan S, Liu Q. Single-cell transcriptomics reveals novel function of microglia in fibrovascular membrane of proliferative diabetic retinopathy. Diabetes. 2022;71(4):762–73.
Liu S, Ju Y, Gu P. Experiment-based interventions to diabetic retinopathy: current and advances. Int J Mol Sci. 2022;23(13):7005.
Chen Q, Chen J, Liu YN, Qi SH, Huang LY. Exosome-based drug supply methods for the therapy of diabetes and its problems: present opinion. Extracell Vesicles Circ Nucl Acids. 2023;4(3):502–17.
Bates DO. Vascular endothelial development elements and vascular permeability. Cardiovasc Res. 2010;87(2):262–71.
Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Soo Y, Anderesi M, Groetzbach G, Sommerauer B, Sandbrink R, Simader C, Schmidt-Erfurth U. Intravitreal aflibercept (VEGF trap-eye) in moist age-related macular degeneration. Ophthalmology. 2012;119(12):2537–48.
Spooner Ok, Hong T, Nair R, Chow NCC, Broadhead GK, Wijeyakumar W, Chang AA. Lengthy-term outcomes of switching to aflibercept for treatment-resistant neovascular age-related macular degeneration. Acta Ophthalmol. 2019;97(5):e706–12.
Wang T, Jian Z, Baskys A, Yang J, Li J, Guo H, Hei Y, Xian P, He Z, Li Z, Li N, Lengthy Q. MSC-derived exosomes defend towards oxidative stress-induced pores and skin harm by way of adaptive regulation of the NRF2 protection system. Biomaterials. 2020;257: 120264.
Meng Z, Zhang Y, Zhou X, Ji J, Liu Z. Nanovaccines with cell-derived elements for most cancers immunotherapy. Adv Drug Deliv Rev. 2022;182: 114107.
Hsu CW, Huang TL, Tsai MC. Decreased stage of blood microRNA-133b in males with opioid use dysfunction on methadone upkeep remedy. J Clin Med. 2019;8(8):1105.
Zhang X, Ye L, Xu H, Zhou Q, Tan B, Yi Q, Yan L, Xie M, Zhang Y, Tian J, Zhu J. NRF2 is required for structural and metabolic maturation of human induced pluripotent stem cell-derived ardiomyocytes. Stem Cell Res Ther. 2021;12(1):208.
Gui X, Zhang H, Zhang R, Li Q, Zhu W, Nie Z, Zhao J, Cui X, Hao W, Wen X, Shen W, Music H. Exosomes integrated with black phosphorus quantum dots attenuate retinal angiogenesis by way of disrupting glucose metabolism. Mater At the moment Bio. 2023;19: 100602.
Atienzar-Aroca S, Flores-Bellver M, Serrano-Heras G, Martinez-Gil N, Barcia JM, Aparicio S, Perez-Cremades D, Garcia-Verdugo JM, Diaz-Llopis M, Romero FJ, Sancho-Pelluz J. Oxidative stress in retinal pigment epithelium cells will increase exosome secretion and promotes angiogenesis in endothelial cells. J Cell Mol Med. 2016;20(8):1457–66.
Todorova D, Simoncini S, Lacroix R, Sabatier F, Dignat-George F. Extracellular vesicles in angiogenesis. Circ Res. 2017;120(10):1658–73.
Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.
Basu B, Gowtham NH, Xiao Y, Kalidindi SR, Leong KW. Biomaterialomics: Knowledge science-driven pathways to develop fourth-generation biomaterials. Acta Biomater. 2022;143:1–25.
Chen Y, Thompson DC, Koppaka V, Jester JV, Vasiliou V. Ocular aldehyde dehydrogenases: safety towards ultraviolet injury and upkeep of transparency for imaginative and prescient. Prog Retin Eye Res. 2013;33:28–39.
Germann JA, Martínez-Enríquez E, Martínez-García MC, Kochevar IE, Marcos S. Corneal collagen ordering after in vivo rose bengal and riboflavin cross-linking. Make investments Ophthalmol Vis Sci. 2020;61(3):28.
Yan W, Diao S, Fan Z. The function and mechanism of mitochondrial features and power metabolism within the perform regulation of the mesenchymal stem cells. Stem Cell Res Ther. 2021;12(1):140.
Yeh SA, Hou J, Wu JW, Yu S, Zhang Y, Belfield KD, Camargo FD, Lin CP. Writer correction: quantification of bone marrow interstitial pH and calcium focus by intravital ratiometric imaging. Nat Commun. 2022;13(1):1563.
Chaturvedi P, George V, Shrestha N, Wang M, Dee MJ, Zhu X, Liu B, Egan J, D’Eramo F, Spanoudis C, Gallo V, Echeverri C, You L, Kong L, Fang B, Jeng EK, Rhode PR, Wong HC. Immunotherapeutic HCW9218 augments anti-tumor exercise of chemotherapy by way of NK cell-mediated discount of therapy-induced senescent cells. Mol Ther. 2022;30(3):1171–87.
Bi G, Liang J, Zhao M, Zhang H, Jin X, Lu T, Zheng Y, Bian Y, Chen Z, Huang Y, Besskaya V, Zhan C, Wang Q, Tan L. miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma by way of CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Mol Ther Nucleic Acids. 2022;28:366–86.
Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R. Exosomes facilitate therapeutic concentrating on of oncogenic KRAS in pancreatic most cancers. Nature. 2017;546(7659):498–503.
Ohno S, Takanashi M, Sudo Ok, Ueda S, Ishikawa A, Matsuyama N, Fujita Ok, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M. Systemically injected exosomes focused to EGFR ship antitumor microRNA to breast most cancers cells. Mol Ther. 2013;21(1):185–91.
Wu T, Dufford AJ, Mackie MA, Egan LJ, Fan J. The capability of cognitive management estimated from a perceptual determination making job. Sci Rep. 2016;6:34025.
Martínez-Greene JA, Hernández-Ortega Ok, Quiroz-Baez R, Resendis-Antonio O, Pichardo-Casas I, Sinclair DA, Budnik B, Hidalgo-Miranda A, Uribe-Querol E, Ramos-Godínez MDP, Martínez-Martínez E. Quantitative proteomic evaluation of extracellular vesicle subgroups remoted by an optimized technique combining polymer-based precipitation and measurement exclusion chromatography. J Extracell Vesicles. 2021;10(6): e12087.
Rossi F, Noren H, Jove R, Beljanski V, Grinnemo KH. Variations and similarities between most cancers and somatic stem cells: therapeutic implications. Stem Cell Res Ther. 2020;11(1):489.
Gu Z, Yin Z, Music P, Wu Y, He Y, Zhu M, Wu Z, Zhao S, Huang H, Wang H, Tong C, Qi Z. Security and biodistribution of exosomes derived from human induced pluripotent stem cells. Entrance Bioeng Biotechnol. 2022;10: 949724.
Rezaie J, Feghhi M, Etemadi T. A evaluate on exosomes utility in scientific trials: perspective, questions, and challenges. Cell Commun Sign. 2022;20(1):145.
Ludwig N, Whiteside T, Reichert T. Challenges in exosome isolation and evaluation in well being and illness. Int J Mol Sci. 2019;20:4684.
Sousa P, Lopes B, Sousa AC, Moreira A, Coelho A, Alvites R, Sousa Â, Geuna S, Maurício AC. Developments and insights in exosome-based therapies for wound therapeutic: a complete systematic evaluate (2018–June 2023). Biomedicines. 2023;11(8):2099.
Barjesteh T, Mansur S, Bao Y. Inorganic nanoparticle-loaded exosomes for biomedical purposes. Molecules. 2021;26(4):1135.
Wang CK, Tsai TH, Lee CH. Regulation of exosomes as biologic medicines: regulatory challenges confronted in exosome improvement and manufacturing processes. Clin Transl Sci. 2024;17(8): e13904.
Fujita M, Hatta T, Ikka T, Onishi T. The pressing want for clear and concise laws on exosome-based interventions. Stem Cell Studies. 2024;19(11):1517–9.
Yamashita T, Takahashi Y, Takakura Y. Chance of exosome-based therapeutics and challenges in manufacturing of exosomes eligible for therapeutic utility. Biol Pharm Bull. 2018;41(6):835–42.
Tian J. Engineered exosome for drug supply: current improvement and scientific purposes. Int J Nanomed. 2023;18:7923–40.
Lu Y, Huang W, Li M, Zheng A. Exosome-based provider for RNA supply: progress and challenges. Pharmaceutics. 2023;15:598.
Ahmadian S, Jafari N, Tamadon A, Ghaffarzadeh A, Rahbarghazi R, Mahdipour M. Completely different storage and freezing protocols for extracellular vesicles: a scientific evaluate. Stem Cell Res Ther. 2024;15(1):453.
Wang Y, Huo Y, Zhao C, Liu H, Shao Y, Zhu C, An L, Chen X, Chen Z. Engineered exosomes with enhanced stability and supply effectivity for glioblastoma remedy. J Management Launch. 2024;368:170–83.
Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming therapy challenges in posterior section ailments with biodegradable nano-based drug supply methods. Pharmaceutics. 2023;15(4):1094.
Tan F, Li X, Wang Z, Li J, Shahzad Ok, Zheng J. Medical purposes of stem cell-derived exosomes. Sign Transduct Goal Ther. 2024;9(1):17.
Crescitelli R, Falcon-Perez J, Hendrix A, Lenassi M, Minh LTN, Ochiya T, Noren Hooten N, Sandau U, Thery C, Nieuwland R. Reproducibility of extracellular vesicle analysis. J Extracell Vesicles. 2025;14(1): e70036.
Kwak G, Cheng J, Kim H, Music S, Lee SJ, Yang Y, Jeong JH, Lee JE, Messersmith PB, Kim SH. Sustained exosome-guided macrophage polarization utilizing hydrolytically degradable PEG Hydrogels for cutaneous wound therapeutic: identification of key proteins and MiRNAs, and sustained launch formulation. Small. 2022;18(15): e2200060.
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in varied biomedical purposes: an replace on engineering, supply, and preclinical research. Biochimie. 2023;213:139–67.
Tomi M, Hosoya Ok. The function of blood-ocular barrier transporters in retinal drug disposition: an summary. Professional Opin Drug Metab Toxicol. 2010;6(9):1111–24.
Ramsay E, Lajunen T, Bhattacharya M, Reinisalo M, Rilla Ok, Kidron H, Terasaki T, Urtti A. Selective drug supply to the retinal cells: organic limitations and avenues. J Management Launch. 2023;361:1–19.
Quan J, Liu Q, Li P, Yang Z, Zhang Y, Zhao F, Zhu G. Mesenchymal stem cell exosome remedy: present analysis standing within the therapy of neurodegenerative ailments and the potential for reversing regular mind growing older. Stem Cell Res Ther. 2025;16(1):76.
Ozgur ME, Maras Z, Aydemir S, Acari IK, Erdogan S, Charles S, Koytepe S. Zinc sulfur nanoparticles trigger each the negatory vitality and bioaccumulation on gammarus pulex. Bull Environ Contam Toxicol. 2025;114(3):36.
Adamo G, Picciotto S, Gargano P, Paterna A, Raccosta S, Rao E, Romancino DP, Ghersi G, Manno M, Salamone M, Bongiovanni A. DetectEV: a practical enzymatic assay to evaluate integrity and bioactivity of extracellular vesicles. J Extracell Vesicles. 2025;14(1): e70030.
Kim M, Choi H, Jang D-J, Kim H-J, Sub Y, Gee H, Choi C. Exploring the scientific transition of engineered exosomes designed for intracellular supply of therapeutic proteins. Stem Cells Transl Med. 2024;13:637–47.
Yin Y, Han X, Li C, Solar T, Li Ok, Liu X, Liu M. The standing of industrialization and improvement of exosomes as a drug supply system: a evaluate. Entrance Pharmacol. 2022;13:961127.
Wang X. Enhanced therapeutic potential of hybrid exosomes loaded with paclitaxel for most cancers remedy. IJMS. 2024;25(7):3645.
Simpkins JW, Corbin D, Sarkar SN. Mouse brain-wide transgene expression by systemic injection of genetically engineered exosomes: CAP-exosomes. Biorxiv. 2022. https://doi.org/10.1101/2022.04.06.487362.
Xie M, Wu Y, Zhang Y, Lu R, Zhai Z, Huang Y, Wang F, Xin C, Rong G, Zhao C, Jiang Ok, Zhou X, Zhou X, Zhu X, Hong J, Zhang C. Membrane fusion-mediated loading of therapeutic siRNA into exosome for tissue-specific utility. Adv Mater. 2024. https://doi.org/10.1002/adma.202403935.
Zinger A, Soriano S, Baudo G, De Rosa E, Taraballi F, Villapol S. Biomimetic nanoparticles as a theranostic instrument for traumatic mind harm. Adv Funct Mater. 2021;31(30):2100722.
Wang Y, Deng T, Liu X, Fang X, Mo Y, Xie N, Nie G, Zhang B, Fan X. Good nanoplatforms responding to the tumor microenvironment for exact drug supply in most cancers remedy. Int J Nanomedicine. 2024;19:6253–77.
Khanani AM, Aziz AA, Weng CY, Lin WV, Vannavong J, Chhablani J, Danzig CJ, Kaiser PK. Port supply system: a novel drug supply platform to deal with retinal ailments. Professional Opin Drug Deliv. 2021;18(11):1571–6.
Liu J, Solar J, Music Y, Wang M, Zhao P, Wang W, Yang M, Wang Y, Music Y, Solar B. Prussian blue nanozyme therapy of ischemic mind harm by way of decreasing oxidative stress inhibits irritation, suppresses apoptosis, and promotes neurological restoration. ACS Chem Neurosci. 2023. https://doi.org/10.1021/acschemneuro.3c00144.
Ling Y, Nie D, Huang Y, Deng M, Liu Q, Shi J, Ouyang S, Yang Y, Deng S, Lu Z, Yang J, Wang Y, Huang R, Shi W. Antioxidant cascade nanoenzyme antagonize inflammatory ache by modulating MAPK/p-65 signaling pathway. Adv Sci (Weinh). 2023;10(12): e2206934.
Cheng X, Gao J, Ding Y, Lu Y, Wei Q, Cui D, Fan J, Li X, Zhu E, Lu Y, Wu Q, Li L, Huang W. Multi-functional liposome: a robust theranostic nano-platform enhancing photodynamic remedy. Adv Sci (Weinh). 2021;8(16): e2100876.
Tiwari P, Yadav Ok, Shukla RP, Bakshi AK, Panwar D, Das S, Mishra PR. Extracellular vesicles-powered immunotherapy: unleashing the potential for safer and simpler most cancers therapy. Arch Biochem Biophys. 2024;756: 110022.
Deng Ok, Chen Y, Li C, Deng X, Hou Z, Cheng Z, Han Y, Xing B, Lin J. 808 nm mild responsive nanotheranostic brokers based mostly on near-infrared dye functionalized manganese ferrite for magnetic-targeted and imaging-guided photodynamic/photothermal remedy. J Mater Chem B. 2017;5(9):1803–14.
Houston ZH, Bunt J, Chen KS, Puttick S, Howard CB, Fletcher NL, Fuchs AV, Cui J, Ju Y, Cowin G, Music X, Boyd AW, Mahler SM, Richards LJ, Caruso F, Thurecht KJ. Understanding the uptake of nanomedicines at completely different levels of mind most cancers utilizing a modular nanocarrier platform and precision bispecific antibodies. ACS Cent Sci. 2020;6(5):727–38.
Nonaka T. Software of engineered extracellular vesicles to beat drug resistance in most cancers. Entrance Oncol. 2022;12:1070479.
Jiang D, Xu T, Zhong L, Liang Q, Hu Y, Xiao W, Shi J. Analysis progress of VEGFR small molecule inhibitors in ocular neovascular ailments. Eur J Med Chem. 2023;257: 115535.
Weng CY, Singh RP, Gillies MC, Regillo CD. Optimizing visible outcomes in sufferers with neovascular age-related macular degeneration: the potential worth of sustained anti-VEGF remedy. Ophthalmic Surg Lasers Imaging Retina. 2023;54(11):654–9.
Fu Y, Zhang Z, Webster KA, Paulus YM. Remedy methods for anti-VEGF resistance in neovascular age-related macular degeneration by concentrating on arteriolar choroidal neovascularization. Biomolecules. 2024;14(3):252.
Durmaz E, Dribika L, Kutnyanszky M, Mead B. Using extracellular vesicles as a drug supply system in glaucoma and RGC degeneration. J Management Launch. 2024. https://doi.org/10.1016/j.jconrel.2024.06.029.
Casajuana Ester M, Day RM. Manufacturing and utility of extracellular vesicles with 3D tradition strategies. Pharmaceutics. 2023;15(2):663.
van Niel G, D’Angelo G, Raposo G. Shedding mild on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.
Bordin A, Chirivì M, Pagano F, Milan M, Iuliano M, Scaccia E, Fortunato O, Mangino G, Dhori X, De Marinis E, D’Amico A, Miglietta S, Picchio V, Rizzi R, Romeo G, Pulcinelli F, Chimenti I, Frati G, De Falco E. Human platelet lysate-derived extracellular vesicles improve angiogenesis by means of miR-126. Cell Prolif. 2022;55(11): e13312.
Ebrahimi V, Rastegar-Moghaddam SH, Mohammadipour A. Therapeutic potentials of microRNA-126 in cerebral ischemia. Mol Neurobiol. 2023;60(4):2062–9.
He Q, Ye A, Ye W, Liao X, Qin G, Xu Y, Yin Y, Luo H, Yi M, Xian L, Zhang S, Qin X, Zhu W, Li Y. Most cancers-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by concentrating on KRIT1. Cell Demise Dis. 2021;12(6):576.
Cox MJ, Lucien F, Sakemura R, Boysen JC, Kim Y, Horvei P, Manriquez Roman C, Hansen MJ, Tapper EE, Siegler EL, Forsman C, Crotts SB, Schick KJ, Hefazi M, Ruff MW, Can I, Adada M, Bezerra E, Kankeu Fonkoua LA, Nevala WK, Braggio E, Ding W, Parikh SA, Kay NE, Kenderian SS. Leukemic extracellular vesicles induce chimeric antigen receptor T cell dysfunction in persistent lymphocytic leukemia. Mol Ther. 2021;29(4):1529–40.
Yi Z, Xiao X, Li S, Solar W, Zhang Q. Pathogenicity discrimination and genetic take a look at reference for CRX variants based mostly on genotype-phenotype evaluation. Exp Eye Res. 2019;189: 107846.
Rowe LW, Ciulla TA. Lengthy appearing supply and therapies for neovascular age-related macular degeneration. Professional Opin Biol Ther. 2024. https://doi.org/10.1080/14712598.2024.2374869.
Finger RP, Daien V, Eldem BM, Talks JS, Korobelnik JF, Mitchell P, Sakamoto T, Wong TY, Pantiri Ok, Carrasco J. Anti-vascular endothelial development think about neovascular age-related macular degeneration—a scientific evaluate of the affect of anti-VEGF on affected person outcomes and healthcare methods. BMC Ophthalmol. 2020;20(1):294.