8.5 C
Canberra
Tuesday, July 22, 2025

Latest advances in engineered exosome-based therapies for ocular vascular illness | Journal of Nanobiotechnology


  • Plastino F, Pesce NA, André H. MicroRNAs and the HIF/VEGF axis in ocular neovascular ailments. Acta Ophthalmol. 2021;99(8):e1255–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Vishwakarma S, Kaur I. Molecular mediators and regulators of retinal angiogenesis. Semin Ophthalmol. 2023;38(2):124–33.

    PubMed 

    Google Scholar
     

  • Terao R, Kaneko H. Lipid signaling in ocular neovascularization. Int J Mol Sci. 2020;21(13):4758.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Rossi G, Da Vitoria Lobo ME, Greenwood J, Moss SE. LRG1 as a novel therapeutic goal in eye illness. Eye. 2022;36(2):328–40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muniyandi A, Hartman G, Music Y, Mijit M, Kelley M, Corson T. Past VEGF: concentrating on irritation and different pathways for therapy of retinal illness. J Pharmacol Exp Ther. 2023;386(4):15–25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heloterä H, Kaarniranta Ok. A linkage between angiogenesis and irritation in neovascular age-related macular degeneration. Cells. 2022;11(21):3453.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pugazhendhi A, Hubbell M, Jairam P, Ambati B. Neovascular macular degeneration: a evaluate of etiology, danger elements, and up to date advances in analysis and remedy. IJMS. 2021;22(3):1170.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campochiaro PA, Akhlaq A. Sustained suppression of VEGF for therapy of retinal/choroidal vascu lar ailments. Progr Retinal Eye Res. 2021;83:100921.

    CAS 

    Google Scholar
     

  • Solomon S, Lindsley Ok, Vedula S, Krzystolik M, Hawkins B. Anti-vascular endothelial development issue for neovascular age-related macular degeneration. Cochrane Datab Syst Rev. 2014. https://doi.org/10.1002/14651858.CD005139.pub3.


    Google Scholar
     

  • Li H-Y, Yuan Y, Fu Y-H, Wang Y, Gao X-Y. Hypoxia-inducible factor-1α: a promising therapeutic goal for vascul opathy in diabetic retinopathy. Pharmacol Res. 2020;159:104924.

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng S, Zhang S, Huang M, Liu Y, Zou X, Chen X, Zhang Z. Remedy of neovascular age-related macular degeneration with anti-vascular endothelial development issue medication: progress from mechanisms to scientific purposes. Entrance Med. 2024;11:1411278.


    Google Scholar
     

  • Noma H, Yasuda Ok, Shimura M. Involvement of cytokines within the pathogenesis of diabetic macular edema. IJMS. 2021;22(7):3427.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arrigo A, Aragona E, Bandello F. VEGF-targeting medication for the therapy of retinal neovascularization in diabetic retinopathy. Ann Med. 2022;54(1):1089–111.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinkmann M, Muller T, Koster M, Schweighofer J, Danckwardt M, Giannaccare G, Marolo P, Borrelli E, Reibaldi M, El-Shabrawi Y, Toro MD. Optical coherence tomography angiography movement sign in non-treatment-naive sufferers with neovascular age-related macular degeneration handled with faricimab. Medicina (Kaunas). 2025;61(2):260.

    PubMed 

    Google Scholar
     

  • Kim HM, Woo SJ. Immunogenicity and potential for intraocular irritation of intravitreal anti-VEGF medication. Curr Ther Res Clin Exp. 2024;100: 100742.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma A, Woo SJ, Lee CS, Kumar N, Parachuri N, Bandello F, Loewenstein A, Kuppermann BD. Aflibercept 2 mg biosimilars-will they lead the Anti-VEGF biosimilar world globally. Eye (Lond). 2025. https://doi.org/10.1038/s41433-025-03732-2.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khachigian LM, Liew G, Teo KYC, Wong TY, Mitchell P. Rising therapeutic methods for unmet want in neovascular age-rela ted macular degeneration. J Transl Med. 2023;21(1):133.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ElSheikh RH, Chauhan MZ, Sallam AB. Present and novel therapeutic approaches for therapy of neovascular age-related macular degeneration. Biomolecules. 2022;12(11):1629.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao Ok, Han H, Ye J. Latest advances in nanomedicine for ocular fundus neovascularization illness administration. Adv Healthcare Mater. 2024;13(17):2304626.

    CAS 

    Google Scholar
     

  • Schargus M, Frings A. Points with intravitreal administration of anti-VEGF medication. Clin Ophthalmol (Auckland, NZ). 2020;14:897–904.

    CAS 

    Google Scholar
     

  • Ricci F, Bandello F, Navarra P, Staurenghi G, Stumpp M, Zarbin M. Neovascular age-related macular degeneration: therapeutic administration a nd new-upcoming approaches. IJMS. 2020;21(21):8242.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moon B-H, Kim Y, Kim S-Y. Twenty years of anti-vascular endothelial development issue therapeutics in neovascular age-related macular degeneration therapy. IJMS. 2023;24(16):13004.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou P, Zhang S, Li L, Zhang R, Guo G, Zhang Y, Wang R, Liu M, Wang Z, Zhao H, Yang G, Xie S, Ran J. Focused degradation of VEGF with bispecific aptamer-based LYTACs ameliorates pathological retinal angiogenesis. Theranostics. 2024;14:4983–5000.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel D, Patel SN, Chaudhary V, Garg SJ. Problems of intravitreal injections: 2022. Curr Opin Ophthalmol. 2022;33(3):137–46.

    PubMed 

    Google Scholar
     

  • Cox JT, Eliott D, Sobrin L. Inflammatory problems of intravitreal anti-VEGF injections. JCM. 2021;10(5):981.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melo GB, da Cruz NF, Emerson GG, Rezende FA, Meyer CH, Uchiyama S, Carpenter J, Shiroma HF, Farah ME, Maia M, Rodrigues EB. Crucial evaluation of methods and supplies utilized in units, syringe s, and needles used for intravitreal injections. Prog Retinal Eye Res. 2021;80:100862.

    CAS 

    Google Scholar
     

  • Ngo Ntjam N, Thulliez M, Paintaud G, Salvo F, Angoulvant D, Pisella P-J, Bejan-Angoulvant T. Cardiovascular opposed occasions with intravitreal anti-vascular endothelial development issue medication. JAMA Ophthalmol. 2021;139(6):610–9.


    Google Scholar
     

  • Patel NA, Acaba-Berrocal LA, Hoyek S, Fan KC, Martinez-Castellanos MA, Baumal CR, Harper CA, Berrocal AM, Wei-Chi W, Spencer R, Kusaka S, Quiram P, Asilis J, Blair MP, Agarwal S, Ells A, Besirli CG, Tsui I, Lee TC, Nagiel A, Kychenthal A, Kovarik J, Orlin A, Alexander J, Dedania VS, Ozdek S, Shami MJ, Regan C, Desai S, Levin MR, Chong DY, Gupta M, Pflugrath A, Abbey A, Fuller CG, Coors LE, Yannuzzi N, Negron C, Al-khersan H, Runge P, Ozdemir HB, Kucukbalci T, Iwahashi C, Solinski M, Sutter D, Sears J, Sonnie C, Portney D, Duker J, Lenis T, Di-Luciano A, Chamartin P, Kothari N, Ortiz-Ramirez GY, Amadeo Oreggioni GP, Naravane AV, Belin PJ, Vicioso NL, Vavvas D, Hartnett ME, Chan RVP, Nudleman E, Moshfeghi DM, Amphornphruet A, Chiang M, Shapiro MJ. Follow patterns and outcomes of intravitreal anti-VEGF injection for retinopathy of prematurity. Ophthalmology. 2022;129(12):1380–8.

    PubMed 

    Google Scholar
     

  • Barnett JM, Hubbard GB. Problems of retinopathy of prematurity therapy. Curr Opin Ophthalmol. 2021;32(5):475–81.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu M, Fan R, Fan X, Shao Y, Li X. Progress and Challenges of Anti-VEGF Brokers and Their Sustained-Releas e Methods for Retinal Angiogenesis. Drug Des Dev Ther. 2023. https://doi.org/10.2147/DDDT.S383101.


    Google Scholar
     

  • Wolf AT, Harris A, Oddone F, Siesky B, Verticchio Vercellin A, Ciulla TA. Illness development pathways of moist AMD: alternatives for brand new goal discovery. Exp Opin Therap Targets. 2022;26(1):5–12.

    CAS 

    Google Scholar
     

  • Wallsh JO, Gallemore RP. Anti-VEGF-resistant retinal ailments: a evaluate of the newest therapy choices. Cells. 2021;10(5):1049.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau CML, Yu Y, Jahanmir G, Chau Y. Managed launch know-how for anti-angiogenesis therapy of posterior eye ailments: present standing and challenges. Adv Drug Deliv Rev. 2018;126:145–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Huang Ok, Zhang F, Huang G, Wang L, Wu G, Ren H, Yang G, Lin Z. Multifunctional nano-in-micro supply methods for focused remedy in fundus neovascularization ailments. J Nanobiotechnology. 2024;22(1):354.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni B, Yang Z, Zhou T, Zhou H, Zhou Y, Lin S, Xu H, Lin X, Yi W, He C, Liu X. Therapeutic intervention in neuroinflammation for neovascular ocular ailments by means of concentrating on the cGAS-STING-necroptosis pathway. J Neuroinflammation. 2024;21(1):164.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Watson S, Ramaswamy Y, Singh G. Intravitreal therapeutic nanoparticles for age-related macular degeneration: design ideas, progress and alternatives. Adv Colloid Interface Sci. 2024;329:103200.

    CAS 
    PubMed 

    Google Scholar
     

  • Sharma P, Mittal S. Nanotechnology: revolutionizing the supply of medication to deal with age-related macular degeneration. Professional Opin Drug Deliv. 2021;18(8):1131–49.

    CAS 
    PubMed 

    Google Scholar
     

  • Li Q, Weng J, Wong SN, Thomas Lee WY, Chow SF. Nanoparticulate drug supply to the retina. Mol Pharm. 2020;18(2):506–21.

    PubMed 

    Google Scholar
     

  • Zhang M, Lu N, Li Q, Cui M, Zhang M. Editorial: drug supply system based mostly on nanoparticles for irritation and most cancers remedy. Entrance Mol Biosci. 2022;9:938348.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Yao H, Chi J, Li C, Liu Y, Yang J, Yu J, Wang J, Ruan Y, Pi J, Xu J-F. Engineered exosomes as drug and RNA co-delivery system: new hope for enhanced therapeutics. Entrance Bioeng Biotechnol. 2023;11:1254356.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klyachko NL, Arzt CJ, Li SM, Gololobova OA, Batrakova EV. Extracellular vesicle-based therapeutics: preclinical and scientific investigations. Pharmaceutics. 2020;12(12):1171.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke W, Afonin KA. Exosomes as pure supply carriers for programmable therapeutic nuc leic acid nanoparticles (NANPs). Adv Drug Deliv Rev. 2021;176:113835.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao W, Du Y, Zhang C, Pan F, Yao Y, Zhang T, Peng Q. Exosomes: the following technology of endogenous nanomaterials for superior drug supply and remedy. Acta Biomater. 2019;86:1–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Fu P, Zhang J, Li H, Mak M, Xu W, Tao Z. Extracellular vesicles as supply methods at nano-/micro-scale. Adv Drug Deliv Rev. 2021;179:113910.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira D, Moreira JN, Rodrigues LR. New advances in exosome-based focused drug supply methods. Crit Rev Oncol Hematol. 2022;172:103628.

    PubMed 

    Google Scholar
     

  • Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for focused drug supply. Theranostics. 2021;11:3183–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung CMG. Age-related macular degeneration in 2025- alternatives and challenges. Eye (Lond). 2025. https://doi.org/10.1038/s41433-025-03710-8.

    PubMed 

    Google Scholar
     

  • Wang S, Chen X, Liu Y, Jiang Y, Li J, Ren L, Wang J, Wang Z, Li Y, Wu H, Zhang Y, Gao Y, Wang L. Hybrid biomembrane-functionalized nanorobots penetrate the vitreous physique of the attention for the therapy of retinal vein occlusion. ACS Nano. 2025;19(8):7728–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Nan W, He Y, Shen S, Wu M, Wang S, Zhang Y. BMP4 inhibits corneal neovascularization by interfering with tip cells in angiogenesis. Exp Eye Res. 2023;237: 109680.

    CAS 
    PubMed 

    Google Scholar
     

  • Vaglienti MV, Subirada PV, Joray MB, Bonacci G, Sanchez MC. Protecting impact of NO(2)-OA on oxidative stress, gliosis, and pro-angiogenic response in muller glial cells. Cells. 2023;12(3):494.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pisani F, Cammalleri M, Dal Monte M, Locri F, Mola MG, Nicchia GP, Frigeri A, Bagnoli P, Svelto M. Potential function of the methylation of VEGF gene promoter in response to hypoxia in oxygen-induced retinopathy: useful impact of the absence of AQP4. J Cell Mol Med. 2018;22(1):613–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang B, Zhang C, Chu D, Ma X, Yu T, Liu X, Hu C. Astragaloside IV improves angiogenesis below hypoxic circumstances by enhancing hypoxia-inducible factor-1alpha SUMOylation. Mol Med Rep. 2021;23(4):244.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali Z, Mukwaya A, Biesemeier A, Ntzouni M, Ramskold D, Giatrellis S, Mammadzada P, Cao R, Lennikov A, Marass M, Gerri C, Hildesjo C, Taylor M, Deng Q, Peebo B, Del Peso L, Kvanta A, Sandberg R, Schraermeyer U, Andre H, Steffensen JF, Lagali N, Cao Y, Kele J, Jensen LD. Intussusceptive vascular reworking precedes pathological neovascularization. Arterioscler Thromb Vasc Biol. 2019;39(7):1402–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mesquita J, Castro-de-Sousa JP, Vaz-Pereira S, Neves A, Passarinha LA, Tomaz CT. Vascular endothelial development elements and placenta development think about retinal vasculopathies: present analysis and future views. Cytokine Progress Issue Rev. 2018;39:102–15.

    CAS 
    PubMed 

    Google Scholar
     

  • Sui A, Chen X, Shen J, Demetriades AM, Yao Y, Yao Y, Zhu Y, Shen X, Xie B. Inhibiting the NLRP3 inflammasome with MCC950 ameliorates retinal neovascularization and leakage by reversing the IL-1beta/IL-18 activation sample in an oxygen-induced ischemic retinopathy mouse mannequin. Cell Demise Dis. 2020;11(10):901.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campochiaro PA. Molecular pathogenesis of retinal and choroidal vascular ailments. Prog Retin Eye Res. 2015;49:67–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hackett SF, Fu J, Kim YC, Tsujinaka H, Shen J, Lima ESR, Khan M, Hafiz Z, Wang T, Shin M, Anders NM, He P, Ensign LM, Hanes J, Campochiaro PA. Sustained supply of acriflavine from the suprachoroidal area supplies long run suppression of choroidal neovascularization. Biomaterials. 2020;243: 119935.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheridan CM, Pate S, Hiscott P, Wong D, Pattwell DM, Kent D. Expression of hypoxia-inducible factor-1alpha and -2alpha in human choroidal neovascular membranes. Graefes Arch Clin Exp Ophthalmol. 2009;247(10):1361–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Almalki WH, Almujri SS. The affect of NF-kappaB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res. 2024;248: 110111.

    CAS 
    PubMed 

    Google Scholar
     

  • Servillo A, Scandale P, Oldoni G, Begar PG, Bandello F, Miserocchi E, Cicinelli MV. Inflammatory choroidal neovascularization: an evidence-based replace. Surv Ophthalmol. 2024. https://doi.org/10.1016/j.survophthal.2024.12.004.

    PubMed 

    Google Scholar
     

  • Gong QY, Hu GY, Yu SQ, Qian TW, Xu X. Complete evaluation of development elements, inflammatory mediators, and cytokines in vitreous from sufferers with proliferative diabetic retinopathy. Int J Ophthalmol. 2022;15(11):1736–42.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai Y, Jiao X, Hu J, Xue W, Zhou Z, Wang W. WTAP promotes macrophage recruitment and will increase VEGF secretion by way of N6-methyladenosine modification in corneal neovascularization. Biochim Biophys Acta Mol Foundation Dis. 2023;1869(6): 166708.

    CAS 
    PubMed 

    Google Scholar
     

  • Tu Y, Luo Y, Zhao Q, Zeng Y, Leng Ok, Zhu M. Function of macrophage in ocular neovascularization. Heliyon. 2024;10(10): e30840.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai C, Meng C, He S, Gu C, Lhamo T, Draga D, Luo D, Qiu Q. DNA methylation in diabetic retinopathy: pathogenetic function and potential therapeutic targets. Cell Biosci. 2022;12(1):186.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhargavan B, Chhunchha B, Kubo E, Singh DP. DNA methylation as an epigenetic mechanism within the regulation of LEDGF expression and organic response in growing older and oxidative stress. Cell Demise Discov. 2024;10(1):296.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li S, Solar D, Chen S, Zhang S, Gu Q, Shen Y, Xu L, Xu X, Wei F, Wang N. UCP2-SIRT3 signaling relieved hyperglycemia-induced oxidative stress and senescence in diabetic retinopathy. Make investments Ophthalmol Vis Sci. 2024;65(1):14.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang SQ, Cao KX, Wang CL, Chen PL, Chen YX, Zhang YT, Yu SH, Bai ZX, Guo S, Liao MX, Li QW, Zhang GQ, He J, Xu YM. Lowering mitochondrial fission ameliorates HIF-1alpha-dependent pathological retinal angiogenesis. Acta Pharmacol Sin. 2024;45(7):1438–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Averill-Bates D. Reactive oxygen species and cell signaling. Evaluate. Biochim Biophys Acta Mol Cell Res. 2024;1871(2): 119573.

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang X, Liu C, Zhang Q, Lv Y, Lu C, Su W, Zhou J, Zhang H, Gong H, Liu Y, Yuan S, Chen Y, Qu D. Strategic supply of rapamycin and ranibizumab with intravitreal hydrogel depot disrupts multipathway-driven angiogenesis loop for boosted wAMD remedy. J Management Launch. 2025;377:239–55.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao M, Wang S, Zuo A, Zhang J, Wen W, Jiang W, Chen H, Liang D, Solar J, Wang M. HIF-1α/JMJD1A signaling regulates irritation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell harm. Cell Mol Biol Lett. 2021;26(1):40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Kharashi AS. Function of oxidative stress, irritation, hypoxia and angiogenesis within the improvement of diabetic retinopathy. Saudi J Ophthalmol. 2018;32(4):318–23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srejovic JV, Muric MD, Jakovljevic VL, Srejovic IM, Sreckovic SB, Petrovic NT, Todorovic DZ, Bolevich SB, Sarenac Vulovic TS. Molecular and mobile mechanisms concerned within the pathophysiology of retinal vascular disease-interplay between irritation and oxidative stress. Int J Mol Sci. 2024;25(21):11850.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Gong L, Wei C, Zhao Y, Ran L, Li P, Gu W, Wu X, Liang Z, Wang X. Inhibition of NSUN6 protects towards intermittent hypoxia-induced oxidative stress and inflammatory response in adipose tissue by means of suppressing macrophage ferroptosis and M1 polarization. Life Sci. 2025;364: 123433.

    CAS 
    PubMed 

    Google Scholar
     

  • Ochoa Hernández ME, Lewis-Luján LM, Burboa Zazueta MG, Del Castillo Castro T, De La Re Vega E, Gálvez-Ruiz JC, Trujillo-López S, López Torres MA, Iloki-Assanga SB. Function of oxidative stress and irritation in age associated macular degeneration: insights into the retinal pigment epithelium (RPE). Int J Mol Sci. 2025;26(8):3463.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang SM, Fan B, Li YL, Zuo ZY, Li GY. Oxidative stress-involved mitophagy of retinal pigment epithelium and retinal degenerative ailments. Cell Mol Neurobiol. 2023;43(7):3265–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su W, Solar S, Tian B, Tai PWL, Luo Y, Ko J, Zhan W, Ke X, Zheng Q, Li X, Yan H, Gao G, Lin H. Efficacious, protected, and steady inhibition of corneal neovascularization by AAV-vectored anti-VEGF therapeutics. Mol Ther Strategies Clin Dev. 2021;22:107–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Liu J, Hoh J, Liu J. Muller cells in pathological retinal angiogenesis. Transl Res. 2019;207:96–106.

    CAS 
    PubMed 

    Google Scholar
     

  • Otsuka Ok, Morita A, Kashihara T, Nakahara T. Pharmacological depletion of pericytes induces diabetic retinopathy-like irregular blood vessels in neonatal rat retina. Exp Eye Res. 2025;251: 110243.

    CAS 
    PubMed 

    Google Scholar
     

  • Shi LJ, Ge H, Ye F, Li X, Jiang Q. The function of pericyte in ocular vascular ailments. J Biomed Res. 2024;38(6):1–10.


    Google Scholar
     

  • Zhang Q, Yan X, Han H, Wang Y, Solar J. Pericyte in retinal vascular ailments: a multifunctional regulator and potential therapeutic goal. FASEB J. 2024;38(10): e23679.

    CAS 
    PubMed 

    Google Scholar
     

  • Ren JS, Bai W, Ding JJ, Zhao Y, Wang SY, Chen X, Jiang Q. The function of PIWIL4 and piRNAs within the improvement of choroidal neovascularization. Genomics. 2023;115(3): 110615.

    CAS 
    PubMed 

    Google Scholar
     

  • Liukkonen M, Helotera H, Siintamo L, Ghimire B, Mattila P, Kivinen N, Kostanek J, Watala C, Hytti M, Hyttinen J, Koskela A, Blasiak J, Kaarniranta Ok. Oxidative stress and inflammation-related mRNAs are elevated in serum of a Finnish moist AMD cohort. Make investments Ophthalmol Vis Sci. 2024;65(13):30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidović BB, Milinčić DD, Marčetić MD, Djuriš JD, Ilić TD, Kostić A, Pešić MB. Well being advantages and purposes of goji berries in practical meals merchandise improvement: a evaluate. Antioxidants (Basel). 2022;11(2):248.

    PubMed 

    Google Scholar
     

  • Uemura A, Fruttiger M, D’Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res. 2021;84: 100954.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yazdanyar A, Cai CL, Aranda JV, Shrier E, Beharry KD. Comparability of bevacizumab and aflibercept for suppression of angiogenesis in human retinal microvascular endothelial cells. Prescription drugs (Basel). 2023;16(7):939.

    CAS 
    PubMed 

    Google Scholar
     

  • Patel SA, Nilsson MB, Le X, Cascone T, Jain RK, Heymach JV. Molecular mechanisms and future implications of VEGF/VEGFR in most cancers remedy. Clin Most cancers Res. 2023;29(1):30–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joussen AM, Ricci F, Paris LP, Korn C, Quezada-Ruiz C, Zarbin M. Angiopoietin/Tie2 signalling and its function in retinal and choroidal vascular ailments: a evaluate of preclinical information. Eye. 2021;35(5):1305–16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colucciello M, Khanani AM, Fasrs JIL, Farvo F. Controversies in care: the proof that Ang-2 suppression confers a scientific profit. Retinal Phys. 2025;22:22.


    Google Scholar
     

  • Fragiotta S, Bassis L, Abdolrahimzadeh B, Marino A, Sepe M, Abdolrahimzadeh S. Exploring present molecular targets within the therapy of neovascular age-related macular degeneration towards the angle of long-term brokers. Int J Mol Sci. 2024;25(8):4433.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siekmann AF, Lawson ND. Notch signalling and the regulation of angiogenesis. Cell Adh Migr. 2007;1(2):104–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hellstrom M, Phng LK, Gerhardt H. VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh Migr. 2007;1(3):133–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasan SS, Tsaryk R, Lange M, Wisniewski L, Moore JC, Lawson ND, Wojciechowska Ok, Schnittler H, Siekmann AF. Endothelial Notch signalling limits angiogenesis by way of management of artery formation. Nat Cell Biol. 2017;19(8):928–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potente M, Mäkinen T. Vascular heterogeneity and specialization in improvement and illness. Nat Rev Mol Cell Biol. 2017;18(8):477–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Blanco R, Gerhardt H. VEGF and Notch in tip and stalk cell choice. Chilly Spring Harb Perspect Med. 2013;3(1): a006569.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH. The notch ligands Dll4 and Jagged1 have opposing results on angiogenesis. Cell. 2009;137(6):1124–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Jin F, Guan P, Huang L, Zhang A, Gao S, Wang L, Liu Z. DLL4/VEGF bispecific molecularly imprinted nanomissile for sturdy tumor remedy. Biomaterials. 2025;322: 123412.

    CAS 
    PubMed 

    Google Scholar
     

  • Sreelakshmi BJ, Karthika CL, Ahalya S, Kalpana SR, Kartha CC, Sumi S. Mechanoresponsive ETS1 causes endothelial dysfunction and arterialization in varicose veins by way of NOTCH4/DLL4 signaling. Eur J Cell Biol. 2024;103(2): 151420.

    CAS 
    PubMed 

    Google Scholar
     

  • Jawad SF, Altalbawy FMA, Hussein RM, Fadhil AA, Jawad MA, Zabibah RS, Taraki TY, Mohan CD, Rangappa KS. The strict regulation of HIF-1α by non-coding RNAs: new perception in direction of proliferation, metastasis, and therapeutic resistance methods. Most cancers Metastasis Rev. 2024;43(1):5–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Razavi ZS, Asgarpour Ok, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal most cancers. Mol Ther Oncolytics. 2021;21:220–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bassand Ok, Metzinger L, Naïm M, Mouhoubi N, Haddad O, Assoun V, Zaïdi N, Sainte-Catherine O, Butt A, Guyot E, Oudar O, Laguillier-Morizot C, Sutton A, Charnaux N, Metzinger-Le Meuth V, Hlawaty H. miR-126–3p is important for CXCL12-induced angiogenesis. J Cell Mol Med. 2021;25(13):6032–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu Q, Liu L, Cui Y, Liu H, Yi J, Bing W, Liu C, Jiang D, Bi Y. miR-126-3p containing exosomes derived from human umbilical twine mesenchymal stem cells promote angiogenesis and attenuate ovarian granulosa cell apoptosis in a preclinical rat mannequin of untimely ovarian failure. Stem Cell Res Ther. 2022;13(1):352.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akaray I, Ozal SA, Sancar H, Ozal E, Ayaz L. miR-124, miR-126-3p, and miR-200b: potential therapeutic targets for VEGF-mediated problems in proliferative diabetic retinopathy. Indian J Ophthalmol. 2025;73(6):886–92. https://doi.org/10.4103/IJO.IJO_1791_24.

    PubMed 

    Google Scholar
     

  • Conde E, Earl J, Crespo-Toro L, Blanco-Agudo C, Ramos-Muñoz E, Rodríguez-Serrano EM, Martínez Ávila JC, Salinas-Muñoz L, Serrano-Huertas S, Ferreiro R, Rodriguez-Garrote M, Sainz B Jr, Massuti B, Alfonso PG, Benavides M, Aranda E, García-Bermejo ML, Carrato A. Biomarkers related to regorafenib first-line therapy advantages in metastatic colorectal most cancers sufferers: REFRAME molecular examine. Cancers (Basel). 2021;13(7):1710.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue W, Zhang Q, Chen Y, Zhu Y. Hydrogen sulfide improves angiogenesis by regulating the transcription of pri-miR-126 in diabetic endothelial cells. Cells. 2022;11(17):2651.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akpınar Ok, Aslan D, Fenkçi SM, Caner V. miR-21-3p and miR-192-5p in sufferers with sort 2 diabetic nephropathy. Prognosis (Berl). 2022;9(4):499–507.

    PubMed 

    Google Scholar
     

  • Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Sign. 2021;19(1):47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McAndrews KM, Kalluri R. Mechanisms related to biogenesis of exosomes in most cancers. Mol Most cancers. 2019;18(1):52.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie S, Zhang Q, Jiang L. Present information on exosome biogenesis, cargo-sorting mechanism and therapeutic implications. Membranes. 2022;12(5):498.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Corbett A, Taatizadeh E, Tasnim N, Little J, Garnis C, Daugaard M, Weapons E, Hoorfar M, Li I. Challenges and alternatives in exosome analysis—views from biology, engineering, and most cancers remedy. APL Bioeng. 2019;3: 011503.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu M, Ye Z, Music X-T, Huang R-C. Variations within the cargos and features of exosomes derived from six cardiac cell sorts: a scientific evaluate. Stem Cell Res Ther. 2019;10:194.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalluri R, LeBleu V. The biology, perform, and biomedical purposes of exosomes. Science. 2020;367:eaau6977.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jan A, Rahman S, Khan S, Tasduq S, Choi I. Biology, pathophysiological function, and scientific implications of exosomes: a vital appraisal. Cells. 2019;8:99.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidal M. Exosomes: revisiting their function as “rubbish luggage.” Site visitors. 2019;20:815–28.

    CAS 
    PubMed 

    Google Scholar
     

  • Wessler S, Meisner-Kober N. On the highway: extracellular vesicles in intercellular communication. Cell Commun Sign. 2025;23(1):95.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic perform and scientific potential. Cell Biosci. 2019;9:19.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsui T, Osaki F, Hiragi S, Sakamaki Y, Fukuda M. ALIX and ceramide differentially management polarized small extracellular vesicle launch from epithelial cells. Embo Rep. 2021;22(5):e51475.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh A, Das Ok, Banerjee S, Sen P. Elucidation of the signalling pathways for enhanced exosome launch from Mycobacterium-infected macrophages and subsequent induction of differentiation. Immunology. 2022;168(1):63–82.

    PubMed 

    Google Scholar
     

  • Singh P, Smith V, Karakousis PC, Schorey JS. Exosomes remoted from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo. J Immunol. 2012;189(2):777–85.

    CAS 
    PubMed 

    Google Scholar
     

  • Jeppesen DK, Sanchez ZC, Kelley NM, Hayes JB, Ambroise J, Koory EN, Krystofiak E, Taneja N, Zhang Q, Dungan MM, Perkins OL, Tyska MJ, Knapik EW, Dean KM, Doran AC, Coffey RJ, Burnette DT. Blebbisomes are massive, organelle-rich extracellular vesicles with cell-like properties. Nat Cell Biol. 2025. https://doi.org/10.1038/s41556-025-01621-0.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donoso-Quezada J, Ayala-Mar S, Gonzalez-Valdez J. The function of lipids in exosome biology and intercellular communication: perform, analytics and purposes. Site visitors. 2021;22(7):204–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee YJ, Shin KJ, Chae YC. Regulation of cargo choice in exosome biogenesis and its biomedical purposes in most cancers. Exp Mol Med. 2024;56(4):877–89.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HS, Jang H, Cho H, Choi J, Hwang KY, Choi Y, Kim SH, Yang Y. Latest advances in exosome-based drug supply for most cancers remedy. Cancers. 2021;13(17):4435.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajput A, Varshney A, Bajaj R, Pokharkar V. Exosomes as new technology autos for drug supply: biomedical purposes and future views. Molecules. 2022;27:7289.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathew B, Ravindran S, Liu X, Torres L, Chennakesavalu M, Huang CC, Feng L, Zelka R, Lopez J, Sharma M, Roth S. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials. 2019;197:146–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu Z, Wen Y, Jiang N, Li Z, Guan J, Zhang Y, Deng C, Zhao L, Zheng SG, Zhu Y, Su W, Zhuo Y. TNF-α stimulation enhances the neuroprotective results of gingival MSCs derived exosomes in retinal ischemia-reperfusion harm by way of the MEG3/miR-21a-5p axis. Biomaterials. 2022;284: 121484.

    CAS 
    PubMed 

    Google Scholar
     

  • Elshaer SL, Park HS, Pearson L, Hill WD, Longo FM, El-Remessy AB. Modulation of p75(NTR) on mesenchymal stem cells will increase their vascular safety in retinal ischemia-reperfusion mouse mannequin. Int J Mol Sci. 2021;22(2):829.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalmizrak A, Dalmızrak Ö. Mesenchymal Stem Cell-Derived Exosomes as New Instruments for Supply of miRNAs within the Remedy of Most cancers. Entrance Bioeng Biotechnol. 2022;10: 956563.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gim JA, Bang SM, Lee YS, Yim SY, Jung YK, Kim H, Kim B-H, Kim JH, Website positioning YS, Yim HJ, Yeon JE, Um SH, Byun KS. Analysis of the severity of nonalcoholic fatty liver illness by means of evaluation of serum exosomal miRNA expression. PLoS ONE. 2021;16(8): e0255822.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Music H, Liu B, Dong B, Xu J, Zhou H, Sha N, Liu Y, Pan Y, Chen F, Li L, Wang J. Exosome-based supply of pure merchandise in most cancers remedy. Entrance Cell Dev Biol. 2021;9: 650426.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Q. Tumor cell-derived exosomal hybrid nanosystems loaded with rhubarbic acid and Tanshinone IIA for sepsis therapy. J Inflamm Res. 2024;17:5093–112.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi H, Kim M-Y, Kim D-H, Yun H, Oh B-Ok, Kim S-B, Music I, Park H-S, Kim SE, Park C, Choi C. Quantitative biodistribution and pharmacokinetics examine of gmp-grade exosomes labeled with 89Zr radioisotope in mice and rats. Pharmaceutics. 2022;14(6):1118.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofmann L, Ludwig S, Vahl JM, Brunner C, Hoffmann T, Theodoraki MN. The rising function of exosomes in prognosis, prognosis, and remedy in head and neck most cancers. IJMS. 2020;21(11):4072.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J-Y, Ren L-W, Li S, Li W, Zheng X-J, Yang Y, Fu W, Yi J, Wang J, Du G. The biology, perform, and purposes of exosomes in most cancers. Acta Pharmaceutica Sinica B. 2021;11:2783–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HI, Park J, Zhu Y, Wang X, Han Y, Zhang D. Latest advances in extracellular vesicles for therapeutic cargo supply. Exp Mol Med. 2024;56(4):836–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanco-Agudin N, Ye S, Gonzalez-Fernandez S, Alcalde I, Merayo-Lloves J, Quiros LM. Exosomes in ocular well being: current insights into pathology. Diagn Appl Therap Funct Biomed. 2025;13(1):233.

    CAS 

    Google Scholar
     

  • Pan M, Zhang Z, Wang Q, Shang L. Exosome-loaded microcarriers for intraocular drug supply. Sci Bull (Beijing). 2024;69(4):434–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Tian Y, Zhang T, Li J, Tao Y. Advances in improvement of exosomes for ophthalmic therapeutics. Adv Drug Deliv Rev. 2023;199: 114899.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Bi JY, Huang J, Tang YN, Du S, Li P. Exosome: a evaluate of its classification, isolation methods, storage, diagnostic and focused remedy purposes. Int J Nanomed. 2020;15:6917–34.

    CAS 

    Google Scholar
     

  • Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Evaluate of the isolation, characterization, organic perform, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):307.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tenchov R, Sasso J, Wang X, Liaw W, Chen C-A, Zhou Q. Exosomes—nature’s lipid nanoparticles, a rising star in drug supply and diagnostics. ACS Nano. 2022;16:17802–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian Y, Zhang F, Qiu Y, Wang S, Li F, Zhao J, Pan C, Tao Y, Yu D, Wei W. Discount of choroidal neovascularization by way of cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells. Nat Biomed Eng. 2021;5(9):968–82.

    CAS 
    PubMed 

    Google Scholar
     

  • An W, Zhang W, Qi J, Xu W, Lengthy Y, Qin H, Yao Ok. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: a promising technique for treating retinal degenerative ailments. Mol Med. 2025;31(1):75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou W, Xu M, Wang Z, Yang M. Engineered exosomes loaded with miR-449a selectively inhibit the expansion of homologous non-small cell lung most cancers. Most cancers Cell Int. 2021;21(1):485.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aatonen MT, Ohman T, Nyman TA, Laitinen S, Gronholm M, Siljander PR. Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles. 2014;3:24692.


    Google Scholar
     

  • Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen C, Li H, Li P, Quinn D, Dao M, Suresh S, Sadovsky Y, Huang TJ. Isolation of exosomes from complete blood by integrating acoustics and microfluidics. Proc Natl Acad Sci USA. 2017;114(40):10584–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen BY, Sung CW, Chen C, Cheng CM, Lin DP, Huang CT, Hsu MY. Advances in exosomes know-how. Clin Chim Acta. 2019;493:14–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Tang YT, Huang YY, Zheng L, Qin SH, Xu XP, An TX, Xu Y, Wu YS, Hu XM, Ping BH, Wang Q. Comparability of isolation strategies of exosomes and exosomal RNA from cell tradition medium and serum. Int J Mol Med. 2017;40(3):834–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Wang Y, Lu Y, Luo X, Huang Y, Xie T, Pilarsky C, Dang Y, Zhang J. Microfluidic know-how for the isolation and evaluation of exosomes. Micromachines (Basel). 2022;13(10):1571.

    PubMed 

    Google Scholar
     

  • Hassanpour Tamrin S, Sanati Nezhad A, Sen A. Label-free isolation of exosomes utilizing microfluidic applied sciences. ACS Nano. 2021;15(11):17047–79.

    CAS 
    PubMed 

    Google Scholar
     

  • Singh S, Dansby C, Agarwal D, Bhat PD, Dubey PK, Krishnamurthy P. Exosomes: strategies for isolation and characterization in organic samples. Strategies Mol Biol. 2024;2835:181–213.

    PubMed 

    Google Scholar
     

  • Tiwari S, Kumar V, Randhawa S, Verma SK. Preparation and characterization of extracellular vesicles. Am J Reprod Immunol. 2021;85(2): e13367.

    CAS 
    PubMed 

    Google Scholar
     

  • Thery C, Witwer KW, Aikawa E. Minimal info for research of extracellular vesicles 2018 (MISEV2018) a place assertion of the Worldwide society for extracellular vesicles and replace of the MISEV2014 tips. J Extracell Vesicles. 2018;7(1):1535750.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin W. Focused exosome-based nanoplatform for new-generation therapeutic methods. Biomed Mater. 2024;19(3): 032002.

    CAS 

    Google Scholar
     

  • Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai U, Graham D, Namdee Ok. Floor modification of gold nanoparticles with neuron-targeted exosome for enhanced blood–mind barrier penetration. Sci Rep. 2019;9(1):8278.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gečys D, Kazlauskas A, Gečytė E, Paužienė N, Kulakauskienė D, Lukminaitė I, Jekabsone A. Internalisation of RGD-engineered extracellular vesicles by glioblastoma cells. Biology. 2022;11(10):1483.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samaeekia R, Rabiee B, Putra I, Shen X, Park YJ, Hematti P, Eslani M, Djalilian AR. Impact of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound therapeutic. Investig Opthalmol Visible Sci. 2018;59(12):5194.

    CAS 

    Google Scholar
     

  • Nasirishargh A, Kumar P, Ramasubramanian L, Clark KC, Hao D, Lazar SV, Wang A. Exosomal microRNAs from mesenchymal stem/stromal cells: biology and purposes in neuroprotection. World J Stem Cells. 2021;13(7):776–94.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Wang L, Yu X, Mao W, Wan Y. Ultrasonication outperforms electroporation for extracellular vesicle cargo depletion. Extracell Vesicle. 2024;4:8278.


    Google Scholar
     

  • Ahmed W, Mushtaq A, Ali S, Khan N, Liang Y, Duan L. Engineering approaches for exosome cargo loading and focused supply: organic versus chemical views. ACS Biomater Sci Eng. 2024;10(10):5960–76. https://doi.org/10.1021/acsbiomaterials.4c00856.

    CAS 
    PubMed 

    Google Scholar
     

  • Szewczyk A, Rembialkowska N, Saczko J, Daczewska M, Novickij V, Kulbacka J. Calcium electroporation induces stress response by means of upregulation of HSP27, HSP70, aspartate beta-hydroxylase, and CD133 in human colon most cancers cells. Biol Res. 2025;58(1):10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millan Cotto HA, Pathrikar TV, Hakim B, Child HM, Zhang H, Zhao P, Ansaripour R, Amini R, Service RL, Bajpayee AG. Cationic-motif-modified exosomes for mRNA supply to retinal photoreceptors. J Mater Chem B. 2024;12(30):7384–400. https://doi.org/10.1039/D4TB00849A.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnsen KB, Gudbergsson JM, Skov MN, Christiansen G, Gurevich L, Moos T, Duroux M. Analysis of electroporation-induced opposed results on adipose-derived stem cell exosomes. Cytotechnology. 2016;68(5):2125–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng H, Guo S, Ren X, Wu Z, Liu S, Yao X. Present methods for exosome cargo loading and concentrating on supply. Cells. 2023;12(10):1416.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nizamudeen ZA, Xerri R, Parmenter C, Suain Ok, Markus R, Chakrabarti L, Sottile V. Low-power sonication can alter extracellular vesicle measurement and properties. Cells. 2021;10(9):2413.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koh HB, Kim HJ, Kang SW, Yoo TH. Exosome-based drug supply: translation from bench to clinic. Pharmaceutics. 2023;15(8):2402.


    Google Scholar
     

  • Liu C, Cheng C, Cheng Ok, Gao AS, Li Q, Atala A, Zhang Y. Precision exosome engineering for enhanced wound therapeutic and scar revision. J Transl Med. 2025;23(1):578.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Z, Ye F, Ni N, Fan X, Lu L, Gu P. Frontier purposes of retinal nanomedicine: progress, challenges and views. J Nanobiotechnology. 2025;23(1):143.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug supply methods formulated as eye drops. J Management Launch. 2020;321:1–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang H, Wu P, Wang T, Yu Y, Li J, Liu R, Ruan Q. Topical ophthalmic instillation of engineered hMSCs-derived exosomes: a novel non-invasive therapeutic technique for ocular posterior-segment dysfunction. Biochem Biophys Res Commun. 2024;723: 150212.

    CAS 
    PubMed 

    Google Scholar
     

  • Mantelli F, Mauris J, Argüeso P. The ocular floor epithelial barrier and different mechanisms of mucosal safety: from allergy to infectious ailments. Curr Opin Allergy Clin Immunol. 2013;13(5):563–8.

    PubMed 

    Google Scholar
     

  • Elliott RO, He M. Unlocking the facility of exosomes for crossing organic limitations in drug supply. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13010122.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Mugisha A, Fransisca S, Liu Q, Xie P, Hu Z. Rising function of exosomes in retinal ailments. Entrance Cell Dev Biol. 2021;9: 643680.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehdizadeh S, Mamaghani M, Hassanikia S, Pilehvar Y, Ertas YN. Exosome-powered neuropharmaceutics: unlocking the blood-brain barrier for next-gen therapies. J Nanobiotechnol. 2025;23(1):329.


    Google Scholar
     

  • Martins B, Pires M, Ambrósio AF, Girão H, Fernandes R. Contribution of extracellular vesicles for the pathogenesis of retinal ailments: shedding mild on blood-retinal barrier dysfunction. J Biomed Sci. 2024;31(1):48.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug supply to the retina: present standing and implications for gene remedy. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(12):1477–507.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng X, Peng Z, Yuan L, Jin M, Hu H, Peng X, Wang Y, Zhang C, Luo Z, Liao H. Analysis progress of exosomes in pathogenesis, prognosis, and therapy of ocular ailments. Entrance Bioeng Biotechnol. 2023;11:1100310.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen KS, Ruponen M, Urtti A. Pharmacokinetic facets of retinal drug supply. Prog Retin Eye Res. 2017;57:134–85.

    PubMed 

    Google Scholar
     

  • Sadeghi S, Tehrani FR, Tahmasebi S, Shafiee A, Hashemi SM. Exosome engineering in cell remedy and drug supply. Inflammopharmacology. 2023;31(1):145–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muniyandi A, Martin M, Sishtla Ok, Motolani A, Solar M, Jensen NR, Qi X, Boulton ME, Prabhu L, Lu T, Corson TW. PRMT5 is a therapeutic goal in choroidal neovascularization. Sci Rep. 2023;13(1):1747.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tzaridis S, Aguilar E, Dorrell MI, Friedlander M, Eade KT. Retinal pigment epithelial cells scale back vascular leak and proliferation in retinal neovessels. Angiogenesis. 2024;28(1):1.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pollalis D, Kim D, Nair GKG, Kang C, Nanda AV, Lee SY. Intraocular RGD-engineered exosomes and energetic concentrating on of choroidal neovascularization (CNV). Cells. 2022;11(16):2573.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao H, Cai Y, Pan J, Chen Q. Function of microRNA in linking diabetic retinal neurodegeneration and vascular degeneration. Entrance Endocrinol (Lausanne). 2024;15:1412138.

    PubMed 

    Google Scholar
     

  • Fukushima A, Takahashi E, Saruwatari J, Tanihara H, Inoue T. The angiogenic results of exosomes secreted from retinal pigment epithelial cells on endothelial cells. Biochem Biophys Rep. 2020;22: 100760.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knickelbein JE, Liu B, Arakelyan A, Zicari S, Hannes S, Chen P, Li Z, Grivel JC, Chaigne-Delalande B, Sen HN, Margolis L, Nussenblatt RB. Modulation of immune responses by extracellular vesicles from retinal pigment epithelium. Make investments Ophthalmol Vis Sci. 2016;57(10):4101–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao YR, Chen KX, Tang X, Tang YL, Yang HL, Yin YL, Li CJ. Exosomes derived from mesenchymal stem cells in diabetes and diabetic problems. Cell Demise Dis. 2024;15(4):271.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu KY, Ahmad H, Lin G, Carbonneau M, Tran SD. Mesenchymal Stem Cell-Derived Exosomes in Ophthalmology: A Complete Evaluate. Pharmaceutics. 2023;15(4):1167.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu JJJ, Liu D, To SKY, Wong AST. Exosomes in most cancers nanomedicine: biotechnological developments and improvements. Mol Most cancers. 2025;24(1):166.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Zhang Q, Yang G, Wei Y, Li M, Du E, Li H, Music Z, Tao Y. RPE-derived exosomes rescue the photoreceptors throughout retina degeneration: an intraocular strategy to ship exosomes into the subretinal area. Drug Deliv. 2021;28(1):218–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Music Y, Yin C, Kong N. Stem cell-derived exosomes: pure intercellular messengers with versatile mechanisms for the therapy of diabetic retinopathy. Int J Nanomedicine. 2024;19:10767–84.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bairagi RD, Reon RR, Hasan MM, Sarker S, Debnath D, Rahman MT, Rahman S, Islam MA, Siddique MAT, Bokshi B, Rahman MM, Acharzo AK. Ocular drug supply methods based mostly on nanotechnology: a complete evaluate for the therapy of eye ailments. Discov Nano. 2025;20(1):75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang X, Niu Z, Galli V, Howe N, Zhao Y, Wiklander OPB, Zheng W, Wiklander RJ, Corso G, Davies C, Hean J, Kyriakopoulou E, Mamand DR, Amin R, Nordin JZ, Gupta D, Andaloussi SE. Extracellular vesicles engineered to bind albumin display prolonged circulation time and lymph node accumulation in mouse fashions. J Extracell Vesicles. 2022;11(7): e12248.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parada N, Romero-Trujillo A, Georges N, Alcayaga-Miranda F. Camouflage methods for therapeutic exosomes evasion from phagocytosis. J Adv Res. 2021;31:61–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whiteside TL. Therapeutic concentrating on of oncogenic KRAS in pancreatic most cancers by engineered exosomes. Transl Most cancers Res. 2017;6(Suppl 9):S1406-s1408.

    CAS 
    PubMed 

    Google Scholar
     

  • Bao H, Tian Y, Wang H, Ye T, Wang S, Zhao J, Qiu Y, Li J, Pan C, Ma G, Wei W, Tao Y. Exosome-loaded degradable polymeric microcapsules for the therapy of vitreoretinal ailments. Nat Biomed Eng. 2024;8(11):1436–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Tian B, Wang Y, Zheng J, Kang X. Potential and challenges of using exosomes in osteoarthritis remedy (evaluate). Int J Mol Med. 2025;55(3):43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng JX, Lu YF, Zhou JN, Huang B, Qin Y. Exosome know-how: a novel and efficient drug supply system within the discipline of most cancers remedy. World J Gastrointest Oncol. 2025;17(3): 101857.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng X, Zhang T, Liu R, Jin X. Potential in exosome-based focused nano-drugs and supply autos for posterior ocular illness therapy: from limitations to therapeutic utility. Mol Cell Biochem. 2024;479(6):1319–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Grad J, Hatamnejad A, Dadak R, Sodhi S, Pattathil N, Choudhry N. Anti-VEGF monotherapy vs anti-VEGF and steroid mixture remedy for diabetic macular edema: a meta-analysis. J Vitreoretin Dis. 2024. https://doi.org/10.1177/24741264241280597.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duke LC, Cone AS, Solar L, Dittmer DP, Meckes DG, Tomko RJ. Tetraspanin CD9 alters mobile trafficking and endocytosis of tetraspanin CD63, affecting CD63 packaging into small extracellular vesicles. J Biol Chem. 2025;301: 108255.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parton RG, Richards AA. Lipid rafts and caveolae as portals for endocytosis: new insights and customary mechanisms. Site visitors. 2003;4(11):724–38.

    CAS 
    PubMed 

    Google Scholar
     

  • Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, Zhou Q, Sui SF. Mobile internalization of exosomes happens by means of phagocytosis. Site visitors. 2010;11(5):675–87.

    CAS 
    PubMed 

    Google Scholar
     

  • Olejarz W, Kubiak-Tomaszewska G, Chrzanowska A, Lorenc T. Exosomes in angiogenesis and anti-angiogenic remedy in cancers. Int J Mol Sci. 2020;21(16):5840.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Mao Y, Nie Z, Li Q, Wang M, Cai C, Hao W, Shen X, Gu N, Shen W, Music H. Iron oxide nanoparticles engineered macrophage-derived exosomes for focused pathological angiogenesis remedy. ACS Nano. 2024;18(10):7644–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrovič D. Candidate genes for proliferative diabetic retinopathy. Biomed Res Int. 2013;2013: 540416.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur C, Foulds WS, Ling EA. Hypoxia-ischemia and retinal ganglion cell injury. Clin Ophthalmol. 2008;2(4):879–89.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic concentrating on of vascular endothelial development issue A. Nat Rev Mol Cell Biol. 2023;24(11):816–34.

    PubMed 

    Google Scholar
     

  • Wu D, Chan KE, Lim BXH, Lim DK, Wong WM, Chai C, Manotosh R, Lim CHL. Administration of corneal neovascularization: present and rising therapeutic approaches. Indian J Ophthalmol. 2024;72(Suppl 3):S354-s371.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Website positioning H, Park SJ, Music M. Diabetic retinopathy (DR): mechanisms, present therapies, and rising methods. Cells. 2025;14(5):376.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menna F, Meduri A, Lupo S, Vingolo EM. WAMD: from pathophysiology to therapeutic therapies. Biomedicines. 2022;10(8):1996.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su Y, Liu A, Chen H, Chen Q, Zhao B, Gao R, Zhang Ok, Peng T, Zhang Z, Ouyang C, Zhu D. Analysis progress of mind organoids within the discipline of diabetes. Mol Mind. 2024;17(1):53.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Lu X, Luo L, Dou J, Zhang J, Li G, Zhao L, Solar F. Focusing on glutamine synthetase with AS1411-modified exosome-liposome hybrid nanoparticles for inhibition of choroidal neovascularization. J Nanobiotechnology. 2024;22(1):703.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong X, Lei Y, Yu Z, Wang T, Liu Y, Han G, Zhang X, Li Y, Music Y, Xu H, Du M, Yin H, Wang X, Yan H. Exosome-mediated supply of an anti-angiogenic peptide inhibits pathological retinal angiogenesis. Theranostics. 2021;11(11):5107–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang HY, Zhang QY, Liu Q, Feng SG, Ma Y, Wang FS, Zhu Y, Yao J, Yan B. Exosome-loading miR-205: a two-pronged strategy to ocular neovascularization remedy. J Nanobiotechnology. 2025;23(1):36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhujel B, Oh SH, Kim CM, Yoon YJ, Kim YJ, Chung HS, Ye EA, Lee H, Kim JY. Mesenchymal stem cells and exosomes: a novel therapeutic strategy for corneal ailments. Int J Mol Sci. 2023;24(13):10917.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Xu Y, Zhou Ok, Kao G, Xiao J. MicroRNA-126 and VEGF improve the perform of endothelial progenitor cells in acute myocardial infarction. Exp Ther Med. 2022;23(2):142.

    PubMed 

    Google Scholar
     

  • Ahmadi S, Gohari-Lasaki S, Jahangiri N, Ejlalidiz M, Saberiyan M. The multifaceted roles of exosomes in corneal biology: elucidation of underlying mechanisms and therapeutic purposes. Mol Biol Rep. 2025;52(1):527.

    CAS 
    PubMed 

    Google Scholar
     

  • Saleem M, Shahzad KA, Marryum M, Singh S, Zhou Q, Du S, Wang S, Shao C. Shaikh, II, Exosome-based therapies for inflammatory problems: a evaluate of current advances. Stem Cell Res Ther. 2024;15(1):477.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akhlaghpasand M, Tavanaei R, Hosseinpoor M, Yazdani KO, Soleimani A, Zoshk MY, Soleimani M, Chamanara M, Ghorbani M, Deylami M, Zali A, Heidari R, Oraee-Yazdani S. Security and potential results of intrathecal injection of allogeneic human umbilical twine mesenchymal stem cell-derived exosomes in full subacute spinal twine harm: a first-in-human, single-arm, open-label, part I scientific trial. Stem Cell Res Ther. 2024;15(1):264.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pu X, Ma S, Gao Y, Xu T, Chang P, Dong L. Mesenchymal stem cell-derived exosomes: organic perform and their therapeutic potential in radiation injury. Cells. 2020;10(1):42.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilyazova I, Asadullina D, Kagirova E, Sikka R, Mustafin A, Ivanova E, Bakhtiyarova Ok, Gilyazova G, Gupta S, Khusnutdinova E, Gupta H, Pavlov V. MiRNA-146a-a key participant in immunity and ailments. Int J Mol Sci. 2023;24(16):12767.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robbins BT, Montreuil KA, Kundu N, Kumar P, Agrahari V. Corneal therapy restore, and regeneration: exosomes at rescue. Pharmaceutics. 2024;16(11):1424.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee S, Han J, Yang J, Lyu J, Park H, Bang J, Kim Y, Chang H, Park T. Exosomes from human iPSC-derived retinal organoids improve corneal epithelial wound therapeutic. Int J Mol Sci. 2024;25(16):8925.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKay TB, Schlötzer-Schrehardt U, Pal-Ghosh S, Stepp MA. Integrin: basement membrane adhesion by corneal epithelial and endothelial cells. Exp Eye Res. 2020;198: 108138.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu GS, Chen HA, Chang CY, Chen YJ, Wu YY, Widhibrata A, Yang YH, Hsieh EH, Delila L, Lin IC, Burnouf T, Tseng CL. Platelet-derived extracellular vesicle drug supply system loaded with kaempferol for treating corneal neovascularization. Biomaterials. 2025;319: 123205.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Kang H, Liu Y, Lu S, Wu H, Zhang B, He Y, Zhou W. Harnessing tumor cell-derived exosomes for immune rejection administration in corneal transplantation. Adv Sci (Weinh). 2025;12(2): e2409207.

    PubMed 

    Google Scholar
     

  • Duh EJ, Solar JK, Stitt AW. Diabetic retinopathy: present understanding, mechanisms, and therapy methods. JCI Perception. 2017;2(14): e93751.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and coverings. Int J Mol Sci. 2018;19(6):1816.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans JR, Michelessi M, Virgili G. Laser photocoagulation for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2014;2014(11):11234.


    Google Scholar
     

  • Pei X, Li Z. Narrative evaluate of complete administration methods for diabetic retinopathy: interdisciplinary approaches and future views. BMJ Public Well being. 2025;3(1): e001353.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Zhang J, Zhang C, Zhang J, Gu L, Luo D, Qiu Q. Diabetic macular edema: present understanding, molecular mechanisms and therapeutic implications. Cells. 2022;11(21):3362.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kusuhara S, Fukushima Y, Ogura S, Inoue N, Uemura A. Pathophysiology of diabetic retinopathy: the outdated and the brand new. Diabetes Metab J. 2018;42(5):364–76.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee C, Kim MJ, Kumar A, Lee HW, Yang Y, Kim Y. Vascular endothelial development issue signaling in well being and illness: from molecular mechanisms to therapeutic views. Sign Transduct Goal Ther. 2025;10(1):170.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwarz G, Ren X, Xie W, Guo H, Jiang Y, Zhang J. Engineered exosomes: a promising drug supply platform with therapeutic potential. Entrance Mol Biosci. 2025;12:1583992.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang L, Xu GT, Zhang JF. Irritation in diabetic retinopathy: attainable roles in pathogenesis and potential implications for remedy. Neural Regen Res. 2023;18(5):976–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Yu H, Wu J, Pan G. Focusing on the ophthalmic ailments utilizing extracellular vesicles ‘exosomes’: present insights on their scientific approval and current trials. Growing older Dis. 2024;16(3):1225–41.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Tang Z, Gu P. Stem/progenitor cell-based transplantation for retinal degeneration: a evaluate of scientific trials. Cell Demise Dis. 2020;11(9):793.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Gappy S, Liu X, Sassalos T, Zhou T, Hsu A, Zhang A, Edwards PA, Gao H, Qiao X. Metformin suppresses pro-inflammatory cytokines in vitreous of diabetes sufferers and human retinal vascular endothelium. PLoS ONE. 2022;17(7): e0268451.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Bakkouri Y, Chidiac R, Delisle C, Corriveau J, Cagnone G, Gaonac’h-Lovejoy V, Chin A, Lécuyer É, Angers S, Joyal JS, Topisirovic I, Hulea L, Dubrac A, Gratton JP. ZO-1 interacts with YB-1 in endothelial cells to manage stress granule formation throughout angiogenesis. Nat Commun. 2024;15(1):4405.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong J, Chen Y, Ling X, Huang Z, Yao G, Xie Z. MSC-derived exosomal miR-125b-5p suppressed retinal microvascular endothelial cell ferroptosis in diabetic retinopathy. Stem Cells. 2025;43(6):sxaf023.

    PubMed 

    Google Scholar
     

  • Jiang L, Cao H, Deng T, Yang M, Meng T, Yang H, Luo X. Serum exosomal miR-377-3p inhibits retinal pigment epithelium proliferation and presents a biomarker for diabetic macular edema. J Int Med Res. 2021;49(4):3000605211002975.

    CAS 
    PubMed 

    Google Scholar
     

  • Chung SH, Frick SL, Yiu G. Focusing on vascular endothelial development issue utilizing retinal gene remedy. Ann Transl Med. 2021;9(15):1277.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao HJ, Yang YP, Liu YH, Tseng HC, Huo TI, Chiou SH, Chang CH. Harnessing the potential of mesenchymal stem cells-derived exosomes in degenerative ailments. Regen Ther. 2024;26:599–610.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedlander M. Fibrosis and ailments of the attention. J Clin Make investments. 2007;117(3):576–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang S, Yan F, Qiu Y, Liu T, Zhang W, Yang Y, Zhong R, Yang Y, Peng X. Exosomes in irritation and most cancers: from bench to bedside purposes. Mol Biomed. 2025;6(1):41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Z, Mao X, Chen M, Wu X, Zhu T, Liu Y, Zhang Z, Fan W, Xie P, Yuan S, Liu Q. Single-cell transcriptomics reveals novel function of microglia in fibrovascular membrane of proliferative diabetic retinopathy. Diabetes. 2022;71(4):762–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Ju Y, Gu P. Experiment-based interventions to diabetic retinopathy: current and advances. Int J Mol Sci. 2022;23(13):7005.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Q, Chen J, Liu YN, Qi SH, Huang LY. Exosome-based drug supply methods for the therapy of diabetes and its problems: present opinion. Extracell Vesicles Circ Nucl Acids. 2023;4(3):502–17.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bates DO. Vascular endothelial development elements and vascular permeability. Cardiovasc Res. 2010;87(2):262–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Soo Y, Anderesi M, Groetzbach G, Sommerauer B, Sandbrink R, Simader C, Schmidt-Erfurth U. Intravitreal aflibercept (VEGF trap-eye) in moist age-related macular degeneration. Ophthalmology. 2012;119(12):2537–48.

    PubMed 

    Google Scholar
     

  • Spooner Ok, Hong T, Nair R, Chow NCC, Broadhead GK, Wijeyakumar W, Chang AA. Lengthy-term outcomes of switching to aflibercept for treatment-resistant neovascular age-related macular degeneration. Acta Ophthalmol. 2019;97(5):e706–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Jian Z, Baskys A, Yang J, Li J, Guo H, Hei Y, Xian P, He Z, Li Z, Li N, Lengthy Q. MSC-derived exosomes defend towards oxidative stress-induced pores and skin harm by way of adaptive regulation of the NRF2 protection system. Biomaterials. 2020;257: 120264.

    CAS 
    PubMed 

    Google Scholar
     

  • Meng Z, Zhang Y, Zhou X, Ji J, Liu Z. Nanovaccines with cell-derived elements for most cancers immunotherapy. Adv Drug Deliv Rev. 2022;182: 114107.

    CAS 
    PubMed 

    Google Scholar
     

  • Hsu CW, Huang TL, Tsai MC. Decreased stage of blood microRNA-133b in males with opioid use dysfunction on methadone upkeep remedy. J Clin Med. 2019;8(8):1105.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Ye L, Xu H, Zhou Q, Tan B, Yi Q, Yan L, Xie M, Zhang Y, Tian J, Zhu J. NRF2 is required for structural and metabolic maturation of human induced pluripotent stem cell-derived ardiomyocytes. Stem Cell Res Ther. 2021;12(1):208.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gui X, Zhang H, Zhang R, Li Q, Zhu W, Nie Z, Zhao J, Cui X, Hao W, Wen X, Shen W, Music H. Exosomes integrated with black phosphorus quantum dots attenuate retinal angiogenesis by way of disrupting glucose metabolism. Mater At the moment Bio. 2023;19: 100602.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atienzar-Aroca S, Flores-Bellver M, Serrano-Heras G, Martinez-Gil N, Barcia JM, Aparicio S, Perez-Cremades D, Garcia-Verdugo JM, Diaz-Llopis M, Romero FJ, Sancho-Pelluz J. Oxidative stress in retinal pigment epithelium cells will increase exosome secretion and promotes angiogenesis in endothelial cells. J Cell Mol Med. 2016;20(8):1457–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todorova D, Simoncini S, Lacroix R, Sabatier F, Dignat-George F. Extracellular vesicles in angiogenesis. Circ Res. 2017;120(10):1658–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Basu B, Gowtham NH, Xiao Y, Kalidindi SR, Leong KW. Biomaterialomics: Knowledge science-driven pathways to develop fourth-generation biomaterials. Acta Biomater. 2022;143:1–25.

    PubMed 

    Google Scholar
     

  • Chen Y, Thompson DC, Koppaka V, Jester JV, Vasiliou V. Ocular aldehyde dehydrogenases: safety towards ultraviolet injury and upkeep of transparency for imaginative and prescient. Prog Retin Eye Res. 2013;33:28–39.

    PubMed 

    Google Scholar
     

  • Germann JA, Martínez-Enríquez E, Martínez-García MC, Kochevar IE, Marcos S. Corneal collagen ordering after in vivo rose bengal and riboflavin cross-linking. Make investments Ophthalmol Vis Sci. 2020;61(3):28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan W, Diao S, Fan Z. The function and mechanism of mitochondrial features and power metabolism within the perform regulation of the mesenchymal stem cells. Stem Cell Res Ther. 2021;12(1):140.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeh SA, Hou J, Wu JW, Yu S, Zhang Y, Belfield KD, Camargo FD, Lin CP. Writer correction: quantification of bone marrow interstitial pH and calcium focus by intravital ratiometric imaging. Nat Commun. 2022;13(1):1563.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaturvedi P, George V, Shrestha N, Wang M, Dee MJ, Zhu X, Liu B, Egan J, D’Eramo F, Spanoudis C, Gallo V, Echeverri C, You L, Kong L, Fang B, Jeng EK, Rhode PR, Wong HC. Immunotherapeutic HCW9218 augments anti-tumor exercise of chemotherapy by way of NK cell-mediated discount of therapy-induced senescent cells. Mol Ther. 2022;30(3):1171–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi G, Liang J, Zhao M, Zhang H, Jin X, Lu T, Zheng Y, Bian Y, Chen Z, Huang Y, Besskaya V, Zhan C, Wang Q, Tan L. miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma by way of CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Mol Ther Nucleic Acids. 2022;28:366–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R. Exosomes facilitate therapeutic concentrating on of oncogenic KRAS in pancreatic most cancers. Nature. 2017;546(7659):498–503.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohno S, Takanashi M, Sudo Ok, Ueda S, Ishikawa A, Matsuyama N, Fujita Ok, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M. Systemically injected exosomes focused to EGFR ship antitumor microRNA to breast most cancers cells. Mol Ther. 2013;21(1):185–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu T, Dufford AJ, Mackie MA, Egan LJ, Fan J. The capability of cognitive management estimated from a perceptual determination making job. Sci Rep. 2016;6:34025.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Greene JA, Hernández-Ortega Ok, Quiroz-Baez R, Resendis-Antonio O, Pichardo-Casas I, Sinclair DA, Budnik B, Hidalgo-Miranda A, Uribe-Querol E, Ramos-Godínez MDP, Martínez-Martínez E. Quantitative proteomic evaluation of extracellular vesicle subgroups remoted by an optimized technique combining polymer-based precipitation and measurement exclusion chromatography. J Extracell Vesicles. 2021;10(6): e12087.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi F, Noren H, Jove R, Beljanski V, Grinnemo KH. Variations and similarities between most cancers and somatic stem cells: therapeutic implications. Stem Cell Res Ther. 2020;11(1):489.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu Z, Yin Z, Music P, Wu Y, He Y, Zhu M, Wu Z, Zhao S, Huang H, Wang H, Tong C, Qi Z. Security and biodistribution of exosomes derived from human induced pluripotent stem cells. Entrance Bioeng Biotechnol. 2022;10: 949724.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rezaie J, Feghhi M, Etemadi T. A evaluate on exosomes utility in scientific trials: perspective, questions, and challenges. Cell Commun Sign. 2022;20(1):145.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ludwig N, Whiteside T, Reichert T. Challenges in exosome isolation and evaluation in well being and illness. Int J Mol Sci. 2019;20:4684.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sousa P, Lopes B, Sousa AC, Moreira A, Coelho A, Alvites R, Sousa Â, Geuna S, Maurício AC. Developments and insights in exosome-based therapies for wound therapeutic: a complete systematic evaluate (2018–June 2023). Biomedicines. 2023;11(8):2099.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barjesteh T, Mansur S, Bao Y. Inorganic nanoparticle-loaded exosomes for biomedical purposes. Molecules. 2021;26(4):1135.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang CK, Tsai TH, Lee CH. Regulation of exosomes as biologic medicines: regulatory challenges confronted in exosome improvement and manufacturing processes. Clin Transl Sci. 2024;17(8): e13904.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujita M, Hatta T, Ikka T, Onishi T. The pressing want for clear and concise laws on exosome-based interventions. Stem Cell Studies. 2024;19(11):1517–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamashita T, Takahashi Y, Takakura Y. Chance of exosome-based therapeutics and challenges in manufacturing of exosomes eligible for therapeutic utility. Biol Pharm Bull. 2018;41(6):835–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Tian J. Engineered exosome for drug supply: current improvement and scientific purposes. Int J Nanomed. 2023;18:7923–40.

    CAS 

    Google Scholar
     

  • Lu Y, Huang W, Li M, Zheng A. Exosome-based provider for RNA supply: progress and challenges. Pharmaceutics. 2023;15:598.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmadian S, Jafari N, Tamadon A, Ghaffarzadeh A, Rahbarghazi R, Mahdipour M. Completely different storage and freezing protocols for extracellular vesicles: a scientific evaluate. Stem Cell Res Ther. 2024;15(1):453.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Huo Y, Zhao C, Liu H, Shao Y, Zhu C, An L, Chen X, Chen Z. Engineered exosomes with enhanced stability and supply effectivity for glioblastoma remedy. J Management Launch. 2024;368:170–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming therapy challenges in posterior section ailments with biodegradable nano-based drug supply methods. Pharmaceutics. 2023;15(4):1094.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan F, Li X, Wang Z, Li J, Shahzad Ok, Zheng J. Medical purposes of stem cell-derived exosomes. Sign Transduct Goal Ther. 2024;9(1):17.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crescitelli R, Falcon-Perez J, Hendrix A, Lenassi M, Minh LTN, Ochiya T, Noren Hooten N, Sandau U, Thery C, Nieuwland R. Reproducibility of extracellular vesicle analysis. J Extracell Vesicles. 2025;14(1): e70036.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwak G, Cheng J, Kim H, Music S, Lee SJ, Yang Y, Jeong JH, Lee JE, Messersmith PB, Kim SH. Sustained exosome-guided macrophage polarization utilizing hydrolytically degradable PEG Hydrogels for cutaneous wound therapeutic: identification of key proteins and MiRNAs, and sustained launch formulation. Small. 2022;18(15): e2200060.

    PubMed 

    Google Scholar
     

  • Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in varied biomedical purposes: an replace on engineering, supply, and preclinical research. Biochimie. 2023;213:139–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Tomi M, Hosoya Ok. The function of blood-ocular barrier transporters in retinal drug disposition: an summary. Professional Opin Drug Metab Toxicol. 2010;6(9):1111–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Ramsay E, Lajunen T, Bhattacharya M, Reinisalo M, Rilla Ok, Kidron H, Terasaki T, Urtti A. Selective drug supply to the retinal cells: organic limitations and avenues. J Management Launch. 2023;361:1–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Quan J, Liu Q, Li P, Yang Z, Zhang Y, Zhao F, Zhu G. Mesenchymal stem cell exosome remedy: present analysis standing within the therapy of neurodegenerative ailments and the potential for reversing regular mind growing older. Stem Cell Res Ther. 2025;16(1):76.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozgur ME, Maras Z, Aydemir S, Acari IK, Erdogan S, Charles S, Koytepe S. Zinc sulfur nanoparticles trigger each the negatory vitality and bioaccumulation on gammarus pulex. Bull Environ Contam Toxicol. 2025;114(3):36.

    CAS 
    PubMed 

    Google Scholar
     

  • Adamo G, Picciotto S, Gargano P, Paterna A, Raccosta S, Rao E, Romancino DP, Ghersi G, Manno M, Salamone M, Bongiovanni A. DetectEV: a practical enzymatic assay to evaluate integrity and bioactivity of extracellular vesicles. J Extracell Vesicles. 2025;14(1): e70030.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim M, Choi H, Jang D-J, Kim H-J, Sub Y, Gee H, Choi C. Exploring the scientific transition of engineered exosomes designed for intracellular supply of therapeutic proteins. Stem Cells Transl Med. 2024;13:637–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin Y, Han X, Li C, Solar T, Li Ok, Liu X, Liu M. The standing of industrialization and improvement of exosomes as a drug supply system: a evaluate. Entrance Pharmacol. 2022;13:961127.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X. Enhanced therapeutic potential of hybrid exosomes loaded with paclitaxel for most cancers remedy. IJMS. 2024;25(7):3645.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpkins JW, Corbin D, Sarkar SN. Mouse brain-wide transgene expression by systemic injection of genetically engineered exosomes: CAP-exosomes. Biorxiv. 2022. https://doi.org/10.1101/2022.04.06.487362.


    Google Scholar
     

  • Xie M, Wu Y, Zhang Y, Lu R, Zhai Z, Huang Y, Wang F, Xin C, Rong G, Zhao C, Jiang Ok, Zhou X, Zhou X, Zhu X, Hong J, Zhang C. Membrane fusion-mediated loading of therapeutic siRNA into exosome for tissue-specific utility. Adv Mater. 2024. https://doi.org/10.1002/adma.202403935.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zinger A, Soriano S, Baudo G, De Rosa E, Taraballi F, Villapol S. Biomimetic nanoparticles as a theranostic instrument for traumatic mind harm. Adv Funct Mater. 2021;31(30):2100722.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Deng T, Liu X, Fang X, Mo Y, Xie N, Nie G, Zhang B, Fan X. Good nanoplatforms responding to the tumor microenvironment for exact drug supply in most cancers remedy. Int J Nanomedicine. 2024;19:6253–77.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khanani AM, Aziz AA, Weng CY, Lin WV, Vannavong J, Chhablani J, Danzig CJ, Kaiser PK. Port supply system: a novel drug supply platform to deal with retinal ailments. Professional Opin Drug Deliv. 2021;18(11):1571–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Solar J, Music Y, Wang M, Zhao P, Wang W, Yang M, Wang Y, Music Y, Solar B. Prussian blue nanozyme therapy of ischemic mind harm by way of decreasing oxidative stress inhibits irritation, suppresses apoptosis, and promotes neurological restoration. ACS Chem Neurosci. 2023. https://doi.org/10.1021/acschemneuro.3c00144.

    PubMed 

    Google Scholar
     

  • Ling Y, Nie D, Huang Y, Deng M, Liu Q, Shi J, Ouyang S, Yang Y, Deng S, Lu Z, Yang J, Wang Y, Huang R, Shi W. Antioxidant cascade nanoenzyme antagonize inflammatory ache by modulating MAPK/p-65 signaling pathway. Adv Sci (Weinh). 2023;10(12): e2206934.

    PubMed 

    Google Scholar
     

  • Cheng X, Gao J, Ding Y, Lu Y, Wei Q, Cui D, Fan J, Li X, Zhu E, Lu Y, Wu Q, Li L, Huang W. Multi-functional liposome: a robust theranostic nano-platform enhancing photodynamic remedy. Adv Sci (Weinh). 2021;8(16): e2100876.

    PubMed 

    Google Scholar
     

  • Tiwari P, Yadav Ok, Shukla RP, Bakshi AK, Panwar D, Das S, Mishra PR. Extracellular vesicles-powered immunotherapy: unleashing the potential for safer and simpler most cancers therapy. Arch Biochem Biophys. 2024;756: 110022.

    CAS 
    PubMed 

    Google Scholar
     

  • Deng Ok, Chen Y, Li C, Deng X, Hou Z, Cheng Z, Han Y, Xing B, Lin J. 808 nm mild responsive nanotheranostic brokers based mostly on near-infrared dye functionalized manganese ferrite for magnetic-targeted and imaging-guided photodynamic/photothermal remedy. J Mater Chem B. 2017;5(9):1803–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Houston ZH, Bunt J, Chen KS, Puttick S, Howard CB, Fletcher NL, Fuchs AV, Cui J, Ju Y, Cowin G, Music X, Boyd AW, Mahler SM, Richards LJ, Caruso F, Thurecht KJ. Understanding the uptake of nanomedicines at completely different levels of mind most cancers utilizing a modular nanocarrier platform and precision bispecific antibodies. ACS Cent Sci. 2020;6(5):727–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nonaka T. Software of engineered extracellular vesicles to beat drug resistance in most cancers. Entrance Oncol. 2022;12:1070479.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang D, Xu T, Zhong L, Liang Q, Hu Y, Xiao W, Shi J. Analysis progress of VEGFR small molecule inhibitors in ocular neovascular ailments. Eur J Med Chem. 2023;257: 115535.

    CAS 
    PubMed 

    Google Scholar
     

  • Weng CY, Singh RP, Gillies MC, Regillo CD. Optimizing visible outcomes in sufferers with neovascular age-related macular degeneration: the potential worth of sustained anti-VEGF remedy. Ophthalmic Surg Lasers Imaging Retina. 2023;54(11):654–9.

    PubMed 

    Google Scholar
     

  • Fu Y, Zhang Z, Webster KA, Paulus YM. Remedy methods for anti-VEGF resistance in neovascular age-related macular degeneration by concentrating on arteriolar choroidal neovascularization. Biomolecules. 2024;14(3):252.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durmaz E, Dribika L, Kutnyanszky M, Mead B. Using extracellular vesicles as a drug supply system in glaucoma and RGC degeneration. J Management Launch. 2024. https://doi.org/10.1016/j.jconrel.2024.06.029.

    PubMed 

    Google Scholar
     

  • Casajuana Ester M, Day RM. Manufacturing and utility of extracellular vesicles with 3D tradition strategies. Pharmaceutics. 2023;15(2):663.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Niel G, D’Angelo G, Raposo G. Shedding mild on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.

    PubMed 

    Google Scholar
     

  • Bordin A, Chirivì M, Pagano F, Milan M, Iuliano M, Scaccia E, Fortunato O, Mangino G, Dhori X, De Marinis E, D’Amico A, Miglietta S, Picchio V, Rizzi R, Romeo G, Pulcinelli F, Chimenti I, Frati G, De Falco E. Human platelet lysate-derived extracellular vesicles improve angiogenesis by means of miR-126. Cell Prolif. 2022;55(11): e13312.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebrahimi V, Rastegar-Moghaddam SH, Mohammadipour A. Therapeutic potentials of microRNA-126 in cerebral ischemia. Mol Neurobiol. 2023;60(4):2062–9.

    CAS 
    PubMed 

    Google Scholar
     

  • He Q, Ye A, Ye W, Liao X, Qin G, Xu Y, Yin Y, Luo H, Yi M, Xian L, Zhang S, Qin X, Zhu W, Li Y. Most cancers-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by concentrating on KRIT1. Cell Demise Dis. 2021;12(6):576.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox MJ, Lucien F, Sakemura R, Boysen JC, Kim Y, Horvei P, Manriquez Roman C, Hansen MJ, Tapper EE, Siegler EL, Forsman C, Crotts SB, Schick KJ, Hefazi M, Ruff MW, Can I, Adada M, Bezerra E, Kankeu Fonkoua LA, Nevala WK, Braggio E, Ding W, Parikh SA, Kay NE, Kenderian SS. Leukemic extracellular vesicles induce chimeric antigen receptor T cell dysfunction in persistent lymphocytic leukemia. Mol Ther. 2021;29(4):1529–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi Z, Xiao X, Li S, Solar W, Zhang Q. Pathogenicity discrimination and genetic take a look at reference for CRX variants based mostly on genotype-phenotype evaluation. Exp Eye Res. 2019;189: 107846.

    CAS 
    PubMed 

    Google Scholar
     

  • Rowe LW, Ciulla TA. Lengthy appearing supply and therapies for neovascular age-related macular degeneration. Professional Opin Biol Ther. 2024. https://doi.org/10.1080/14712598.2024.2374869.

    PubMed 

    Google Scholar
     

  • Finger RP, Daien V, Eldem BM, Talks JS, Korobelnik JF, Mitchell P, Sakamoto T, Wong TY, Pantiri Ok, Carrasco J. Anti-vascular endothelial development think about neovascular age-related macular degeneration—a scientific evaluate of the affect of anti-VEGF on affected person outcomes and healthcare methods. BMC Ophthalmol. 2020;20(1):294.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles