Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 1–16 (2017).
Wan, J. et al. Ultrathin, versatile, strong polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019).
Choudhury, S. Stable-state polymer electrolytes for high-performance lithium metallic batteries. Nat. Commun. 10, 4398 (2019).
Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Growing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).
Dong, T. et al. A multifunctional polymer electrolyte allows ultra-long cycle-life in a high-voltage lithium metallic battery. Power Environ. Sci. 11, 1197–1203 (2018).
Zhao, Q., Liu, X., Stalin, S., Khan, Okay. & Archer, L. A. Stable-state polymer electrolytes with in-built quick interfacial transport for secondary lithium batteries. Nat. Power 4, 365–373 (2019).
Hatzell, Okay. B. et al. Challenges in lithium metallic anodes for solid-state batteries. ACS Power Lett. 5, 922–934 (2020).
Wang, X. et al. Towards high-energy-density lithium metallic batteries: alternatives and challenges for strong natural electrolytes. Adv. Mater. 32, 1905219 (2020).
Glynos, E., Pantazidis, C. & Sakellariou, G. Designing all-polymer nanostructured strong electrolytes: advances and prospects. ACS Omega 5, 2531–2540 (2020).
Lu, G. et al. Commerce-offs between ion-conducting and mechanical properties: the case of polyacrylate electrolytes. Carbon Power 5, e287 (2023).
Gu, Y. et al. Excessive toughness, excessive conductivity ion gels by sequential triblock copolymer self-assembly and chemical cross-linking. J. Am. Chem. Soc. 135, 9652–9655 (2013).
Cho, B. Okay., Jain, A., Gruner, S. M. & Wiesner, U. Mesophase structure-mechanical and ionic transport correlations in prolonged amphiphilic dendrons. Science 305, 1598–1601 (2004).
Grundy, L. S. et al. Inaccessible polarization-induced part transitions in a block copolymer electrolyte: an unconventional mechanism for the limiting present. Macromolecules 55, 7637–7649 (2022).
Galluzzo, M. D., Lavatory, W. S., Schaible, E., Zhu, C. & Balsara, N. P. Dynamic construction and part conduct of a block copolymer electrolyte beneath dc polarization. ACS Appl. Mater. Interfaces 12, 57421–57430 (2020).
Virgili, J. M., Nedoma, A. J., Segalman, R. A. & Balsara, N. P. Ionic liquid distribution in ordered block copolymer options. Macromolecules 43, 3750–3756 (2010).
Gomez, E. D. et al. Impact of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 9, 1212–1216 (2009).
Choi, J. H., Ye, Y., Elabd, Y. A. & Winey, Okay. I. Community construction and powerful microphase separation for top ion conductivity in polymerized ionic liquid block copolymers. Macromolecules 46, 5290–5300 (2013).
Koerver, R. et al. Chemo-mechanical growth of lithium electrode supplies—on the path to mechanically optimized all-solid-state batteries. Power Environ. Sci. 11, 2142–2158 (2018).
Lewis, J. A. et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Power Lett. 4, 591–599 (2019).
Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries utilizing operando X-ray tomography. Nat. Mater. 20, 503–510 (2021).
Tippens, J. et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Power Lett. 4, 1475–1483 (2019).
Lewis, J. A., Tippens, J., Cortes, F. J. Q. & McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Traits Chem. 1, 845–857 (2019).
Sharon, D. et al. Molecular degree variations in ionic solvation and transport conduct in ethylene oxide-based homopolymer and block copolymer electrolytes. J. Am. Chem. Soc. 143, 3180–3190 (2021).
Chintapalli, M. et al. Construction and ionic conductivity of polystyrene-block-poly(ethylene oxide) electrolytes within the excessive salt focus restrict. Macromolecules 49, 1770–1780 (2016).
Shen, Okay. H. & Corridor, L. M. Ion conductivity and correlations in mannequin salt-doped polymers: results of interplay power and focus. Macromolecules 53, 3655–3668 (2020).
Lee, Y., Ma, B. & Bai, P. Overlimiting ion transport dynamic towards Sand’s time in strong polymer electrolytes. Mater. At this time Power 27, 101037 (2022).
Lee, Y., Ma, B. & Bai, P. Focus polarization and metallic dendrite initiation in remoted electrolyte microchannels. Power Environ. Sci. 13, 3504–3513 (2020).
Cheng, Q. et al. Operando and three-dimensional visualization of anion depletion and lithium development by stimulated Raman scattering microscopy. Nat. Commun. 9, 2942 (2018).
Devaux, D. et al. Failure mode of lithium metallic batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J. Electrochem. Soc. 162, A1301–A1309 (2015).
Kaboli, S. et al. Conduct of strong electrolyte in Li-polymer battery with NMC cathode by way of in-situ scanning electron microscopy. Nano Lett. 20, 1607–1613 (2020).
Harry, Okay. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface buildings beneath dendrites shaped on cycled lithium metallic electrodes. Nat. Mater. 13, 69–73 (2013).
Golozar, M. et al. In situ scanning electron microscopy detection of carbide nature of dendrites in Li-polymer batteries. Nano Lett. 18, 7583–7589 (2018).
Maslyn, J. A. et al. Development of lithium dendrites and globules by way of a strong block copolymer electrolyte as a operate of present density. J. Phys. Chem. C 122, 26797–26804 (2018).
Harry, Okay. J., Liao, X., Parkinson, D. Y., Minor, A. M. & Balsara, N. P. Electrochemical deposition and stripping conduct of lithium metallic throughout a inflexible block copolymer electrolyte membrane. J. Electrochem. Soc. 162, A2699–A2706 (2015).
Andersson, E. Okay. W. et al. Early-stage decomposition of strong polymer electrolytes in Li-metal batteries. J. Mater. Chem. A 9, 22462–22471 (2021).
Zhang, X. et al. Multi-scale characterization strategies for polymer-based solid-state lithium batteries. Macromol. Chem. Phys. 224, 2200351 (2023).
Bostwick, J. E. et al. Ionic interactions management the modulus and mechanical properties of molecular ionic composite electrolytes. J. Mater. Chem. C 10, 947–957 (2022).
Yu, D. et al. Room temperature to 150 °C lithium metallic batteries enabled by a inflexible molecular ionic composite electrolyte. Adv. Power Mater. 11, 2003559 (2021).
Fox, R. J. et al. Nanofibrillar ionic polymer composites allow high-modulus ion-conducting membranes. ACS Appl. Mater. Interfaces 11, 40551–40563 (2019).
Wang, Y. et al. Extremely conductive and thermally steady ion gels with tunable anisotropy and modulus. Adv. Mater. 28, 2571–2578 (2016).
Bostwick, J. E. et al. Ion transport and mechanical properties of non-crystallizable molecular ionic composite electrolytes. Macromolecules 53, 1405–1414 (2020).
Wang, Y. et al. Stable-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021).
Wang, Y. Double helical conformation and excessive rigidity in a rodlike polyelectrolyte. Nat. Commun. 10, 801 (2019).
Yu, Z., He, Y., Wang, Y., Madsen, L. A. & Qiao, R. Molecular construction and dynamics of ionic liquids in a rigid-rod polyanion-based ion gel. Langmuir 33, 322–331 (2017).
Forsyth, M., Porcarelli, L., Wang, X., Goujon, N. & Mecerreyes, D. Progressive electrolytes based mostly on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 52, 686–694 (2019).
Hasanpoor, M. et al. Morphological evolution and solid-electrolyte interphase formation on LiNi0.6Mn0.2Co0.2O2 cathodes utilizing extremely concentrated ionic liquid electrolytes. ACS Appl. Mater. Interfaces 14, 13196–13205 (2022).
Yu, D., Zanelotti, C. J., Fox, R. J., Dingemans, T. J. & Madsen, L. A. Solvent-cast strong electrolyte membranes based mostly on a charged rigid-rod polymer and ionic liquids. ACS Appl. Power Mater. 4, 6599–6605 (2021).
Dong, Q. et al. Insights into the twin function of lithium difluoro(oxalato)borate additive in enhancing the electrochemical efficiency of NMC811||graphite cells. ACS Appl. Power Mater. 3, 695–704 (2020).
Gao, H., Maglia, F., Lamp, P., Amine, Okay. & Chen, Z. Mechanistic research of electrolyte components to stabilize high-voltage cathode-electrolyte interface in lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 44542–44549 (2017).
Swiderska-Mocek, A. & Gabryelczyk, A. Interfacial stabilizing impact of lithium borates and pyrrolidinium ionic liquid in gel polymer electrolytes for lithium-metal batteries. J. Phys. Chem. C 127, 18875–18890 (2023).
Yu, X. et al. Direct statement of the redistribution of sulfur and polysulfides in Li-S batteries throughout first cycle by in situ X-ray fluorescence microscopy. Adv. Power Mater. 5, 1500072 (2015).
Freiberg, A. T. S. et al. Species in lithium-sulfur batteries utilizing spatially resolved operando X-ray absorption spectroscopy and X-ray fluorescence mapping. J. Phys. Chem. C 122, 5303–5316 (2018).
Solar, B. et al. On the polymer electrolyte interfaces: the function of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 3, 13994–14000 (2015).
Vairavamurthy, A. Utilizing X-ray absorption to probe sulfur oxidation states in advanced molecules. Spectrochim. Acta A 54, 2009–2017 (1998).
Lin, Z. et al. Excessive-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode. Nano Power 9, 408–416 (2014).
Pickering, I. J., Prince, R. C., Divers, T. & George, G. N. Sulfur Okay-edge X-ray absorption spectroscopy for figuring out the chemical speciation of sulfur in organic methods. FEBS Lett. 441, 11–14 (1998).
Dey, A. et al. Sulfur Okay-edge XAS and DFT calculations on nitrile hydratase: geometric and digital construction of the non-heme iron lively web site. J. Am. Chem. Soc. 128, 533–541 (2006).
Dezarnaud, C., Tronc, M. & Hitchcock, A. P. Inside shell spectroscopy of the carbon—sulfur bond. Chem. Phys. 142, 455–462 (1990).
Jalilehvand, F. Sulfur: not a “silent” aspect any extra. Chem. Soc. Rev. 35, 1256–1268 (2006).