Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical technique for the synthesis of nanostructures. Science 254, 1312–1319 (1991).
Lehn, J.-M. In direction of complicated matter: supramolecular chemistry and self-organization. Proc. Natl Acad. Sci. USA 99, 4763–4768 (2002).
Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly. J. Mater. Chem. 13, 2661–2670 (2003).
Hill, J. P. et al. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304, 1481–1483 (2004).
Du, C., Li, Z., Zhu, X., Ouyang, G. & Liu, M. Hierarchically self-assembled homochiral helical microtoroids. Nat. Nanotechnol. 17, 1294–1302 (2022).
Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).
Zhao, D. & Moore, J. S. Nucleation–elongation: a mechanism for cooperative supramolecular polymerization. Org. Biomol. Chem. 1, 3471–3491 (2003).
Powers, E. T. & Powers, D. L. The kinetics of nucleated polymerizations at excessive concentrations: amyloid fibril formation close to and above the ‘supercritical focus’. Biophys. J. 91, 122–132 (2006).
de Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).
Wehner, M. & Würthner, F. Supramolecular polymerization via kinetic pathway management and residing chain progress. Nat. Rev. Chem. 4, 38–53 (2020).
Cohen, S. I. A., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. From macroscopic measurements to microscopic mechanisms of protein aggregation. J. Mol. Biol. 421, 160–171 (2012).
Törnquist, M. et al. Secondary nucleation in amyloid formation. Chem. Commun. 54, 8667–8684 (2018).
Datta, S. et al. Self-assembled poly-catenanes from supramolecular toroidal constructing blocks. Nature 583, 400–405 (2020).
Lohr, A., Lysetska, M. & Würthner, F. Supramolecular stereomutation in kinetic and thermodynamic self-assembly of helical merocyanine dye nanorods. Angew. Chem. Int. Ed. 44, 5071–5074 (2005).
Johnson, R. S., Yamazaki, T., Kovalenko, A. & Fenniri, H. Molecular foundation for water-promoted supramolecular chirality inversion in helical rosette nanotubes. J. Am. Chem. Soc. 129, 5735–5743 (2007).
Aparicio, F. et al. Inversion of supramolecular helicity in oligo-π-phenylene-based supramolecular polymers: affect of molecular atropisomerism. Angew. Chem. Int. Ed. 53, 1373–1377 (2014).
Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled methods. Chem. Rev. 115, 7304–7397 (2015).
Yashima, E. et al. Supramolecular helical methods: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their features. Chem. Rev. 116, 13752–13990 (2016).
Web optimization, J. et al. Mild-directed trapping of metastable intermediates in a self-assembly course of. Nat. Commun. 11, 6260 (2020).
Fernández, Z., Fernández, B., Quiñoá, E. & Freire, F. The aggressive aggregation pathway of an uneven chiral oligo(p-phenyleneethynylene) in direction of the formation of particular person P and M supramolecular helical polymers. Angew. Chem. Int. Ed. 60, 9919–9924 (2021).
Liu, G., Humphrey, M. G., Zhang, C. & Zhao, Y. Self-assembled stereomutation with supramolecular chirality inversion. Chem. Soc. Rev. 52, 4443–4487 (2023).
Wolffs, M. et al. The position of heterogeneous nucleation within the self-assembly of oligothiophenes. Chem. Commun. https://doi.org/10.1039/B809560D (2008).
Yagai, S. et al. Management over hierarchy ranges within the self-assembly of stackable nanotoroids. J. Am. Chem. Soc. 134, 18205–18208 (2012).
Yamauchi, M., Ohba, T., Karatsu, T. & Yagai, S. Photoreactive helical nanoaggregates exhibiting morphology transition on thermal reconstruction. Nat. Commun. 6, 8936 (2015).
Arima, H., Saito, T., Kajitani, T. & Yagai, S. Self-assembly of alkylated and perfluoroalkylated scissor-shaped azobenzene dyads into distinct buildings. Chem. Commun. 56, 15619–15622 (2020).
Suda, N., Saito, T., Arima, H. & Yagai, S. Picture-modulation of supramolecular polymorphism within the self-assembly of a scissor-shaped azobenzene dyad into nanotoroids and fibers. Chem. Sci. 13, 3249–3255 (2022).
Tashiro, Okay. et al. Scissor-shaped photochromic dyads: hierarchical self-assembly and photoresponsive property. Chem. Rec. 22, e202100252 (2022).
Saito, T., Kajitani, T. & Yagai, S. Amplification of molecular asymmetry through the hierarchical self-assembly of foldable azobenzene dyads into nanotoroids and nanotubes. J. Am. Chem. Soc. 145, 443–454 (2023).
Laishram, R. et al. Secondary nucleation-triggered bodily cross-links and tunable stiffness in seeded supramolecular hydrogels. J. Am. Chem. Soc. 144, 11306–11315 (2022).
Yagai, S. & Kitamura, A. Latest advances in photoresponsive supramolecular self-assemblies. Chem. Soc. Rev. 37, 1520–1529 (2008).
Endo, M. et al. Photoregulated residing supramolecular polymerization established by combining power landscapes of photoisomerization and nucleation–elongation processes. J. Am. Chem. Soc. 138, 14347–14353 (2016).
Fredy, J. W. et al. Molecular photoswitches mediating the strain-driven disassembly of supramolecular tubules. Proc. Natl Acad. Sci. USA 114, 11850–11855 (2017).
Xu, F. & Feringa, B. L. Photoresponsive supramolecular polymers: from light-controlled small molecules to good supplies. Adv. Mater. 35, 2204413 (2023).
Cohen, S. I. A. et al. Distinct thermodynamic signatures of oligomer technology within the aggregation of the amyloid-β peptide. Nat. Chem. 10, 523–531 (2018).
Sasaki, N. et al. Multistep, site-selective noncovalent synthesis of two-dimensional block supramolecular polymers. Nat. Chem. 15, 922–929 (2023).
Bishop, M. F. & Ferrone, F. A. Kinetics of nucleation-controlled polymerization. A perturbation therapy to be used with a secondary pathway. Biophys. J. 46, 631–644 (1984).
Cohen, S. I. A. et al. Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J. Chem. Phys. 135, 065105 (2011).
Cohen, S. I. A., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. Nucleated polymerization with secondary pathways. II. Willpower of self-consistent options to progress processes described by non-linear grasp equations. J. Chem. Phys. 135, 065106 (2011).
Fischer, E., Frankel, M. & Wolovsky, R. Wavelength dependence of photoisomerization equilibria in azocompounds. J. Chem. Phys. 23, 1367 (1955).
Cohen, S. I. A. et al. Proliferation of amyloid-β42 aggregates happens via a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013).
Itabashi, H., Datta, S., Tsukuda, R., Hollamby, M. J. & Yagai, S. Wonderful-tuning of the scale of supramolecular nanotoroids suppresses the following catenation of nano-[2]catenane. Chem. Sci. 14, 3270–3276 (2023).
Roche, C. et al. A supramolecular helix that disregards chirality. Nat. Chem. 8, 80–89 (2016).
Wehner, M., Röhr, M. I. S., Stepanenko, V. & Würthner, F. Management of self-assembly pathways towards conglomerate and racemic supramolecular polymers. Nat. Commun. 11, 5460 (2020).
Sarkar, S., Sarkar, A., Som, A., Agasti, S. S. & George, S. J. Stereoselective main and secondary nucleation occasions in multicomponent seeded supramolecular polymerization. J. Am. Chem. Soc. 143, 11777–11787 (2021).
Törnquist, M. & Linse, S. Chiral selectivity of secondary nucleation in amyloid fibril propagation. Angew. Chem. Int. Ed. 60, 24008–24011 (2021).
Sarkar, S., Laishram, R., Deb, D. & George, S. J. Managed noncovalent synthesis of secondary supramolecular polymers. J. Am. Chem. Soc. 145, 22009–22018 (2023).
Bloom, B. P., Paltiel, Y., Naaman, R. & Waldeck, D. H. Chiral induced spin selectivity. Chem. Rev. 124, 1950–1991 (2024).
Kulkarni, C. et al. Extremely environment friendly and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based supplies. Adv. Mater. 32, 1904965 (2020).
Suda, M. et al. Mild-driven molecular change for reconfigurable spin filters. Nat. Commun. 10, 2455 (2019).
Schrödinger Launch 2023-1: MacroModel (Schrödinger, LLC, 2021).
Frisch, M. J. et al. Gaussian 09, Revision E. 01 (Gaussian, Inc., 2009).
Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).
