That is the primary put up in a sequence introducing time-series forecasting with torch
. It does assume some prior expertise with torch
and/or deep studying. However so far as time sequence are involved, it begins proper from the start, utilizing recurrent neural networks (GRU or LSTM) to foretell how one thing develops in time.
On this put up, we construct a community that makes use of a sequence of observations to foretell a price for the very subsequent time limit. What if we’d wish to forecast a sequence of values, similar to, say, every week or a month of measurements?
One factor we may do is feed again into the system the beforehand forecasted worth; that is one thing we’ll attempt on the finish of this put up. Subsequent posts will discover different choices, a few of them involving considerably extra complicated architectures. Will probably be fascinating to check their performances; however the important aim is to introduce some torch
“recipes” which you could apply to your individual information.
We begin by inspecting the dataset used. It’s a low-dimensional, however fairly polyvalent and complicated one.
The vic_elec
dataset, accessible via package deal tsibbledata
, gives three years of half-hourly electrical energy demand for Victoria, Australia, augmented by same-resolution temperature data and a day by day vacation indicator.
Rows: 52,608
Columns: 5
$ Time 2012-01-01 00:00:00, 2012-01-01 00:30:00, 2012-01-01 01:00:00,…
$ Demand 4382.825, 4263.366, 4048.966, 3877.563, 4036.230, 3865.597, 369…
$ Temperature 21.40, 21.05, 20.70, 20.55, 20.40, 20.25, 20.10, 19.60, 19.10, …
$ Date 2012-01-01, 2012-01-01, 2012-01-01, 2012-01-01, 2012-01-01, 20…
$ Vacation TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRU…
Relying on what subset of variables is used, and whether or not and the way information is temporally aggregated, these information might serve as an instance a wide range of totally different methods. For instance, within the third version of Forecasting: Ideas and Apply day by day averages are used to show quadratic regression with ARMA errors. On this first introductory put up although, in addition to in most of its successors, we’ll try and forecast Demand
with out counting on further data, and we preserve the unique decision.
To get an impression of how electrical energy demand varies over totally different timescales. Let’s examine information for 2 months that properly illustrate the U-shaped relationship between temperature and demand: January, 2014 and July, 2014.
First, right here is July.
vic_elec_2014 <- vic_elec %>%
filter(yr(Date) == 2014) %>%
choose(-c(Date, Vacation)) %>%
mutate(Demand = scale(Demand), Temperature = scale(Temperature)) %>%
pivot_longer(-Time, names_to = "variable") %>%
update_tsibble(key = variable)
vic_elec_2014 %>% filter(month(Time) == 7) %>%
autoplot() +
scale_colour_manual(values = c("#08c5d1", "#00353f")) +
theme_minimal()

Determine 1: Temperature and electrical energy demand (normalized). Victoria, Australia, 07/2014.
It’s winter; temperature fluctuates under common, whereas electrical energy demand is above common (heating). There may be sturdy variation over the course of the day; we see troughs within the demand curve similar to ridges within the temperature graph, and vice versa. Whereas diurnal variation dominates, there is also variation over the times of the week. Between weeks although, we don’t see a lot distinction.
Examine this with the information for January:

Determine 2: Temperature and electrical energy demand (normalized). Victoria, Australia, 01/2014.
We nonetheless see the sturdy circadian variation. We nonetheless see some day-of-week variation. However now it’s excessive temperatures that trigger elevated demand (cooling). Additionally, there are two intervals of unusually excessive temperatures, accompanied by distinctive demand. We anticipate that in a univariate forecast, not considering temperature, this will probably be arduous – and even, unattainable – to forecast.
Let’s see a concise portrait of how Demand
behaves utilizing feasts::STL()
. First, right here is the decomposition for July:

Determine 3: STL decomposition of electrical energy demand. Victoria, Australia, 07/2014.
And right here, for January:

Determine 4: STL decomposition of electrical energy demand. Victoria, Australia, 01/2014.
Each properly illustrate the sturdy circadian and weekly seasonalities (with diurnal variation considerably stronger in January). If we glance intently, we are able to even see how the development part is extra influential in January than in July. This once more hints at a lot stronger difficulties predicting the January than the July developments.
Now that we have now an thought what awaits us, let’s start by making a torch
dataset
.
Here’s what we intend to do. We need to begin our journey into forecasting through the use of a sequence of observations to foretell their instant successor. In different phrases, the enter (x
) for every batch merchandise is a vector, whereas the goal (y
) is a single worth. The size of the enter sequence, x
, is parameterized as n_timesteps
, the variety of consecutive observations to extrapolate from.
The dataset
will replicate this in its .getitem()
methodology. When requested for the observations at index i
, it’ll return tensors like so:
record(
x = self$x[start:end],
y = self$x[end+1]
)
the place begin:finish
is a vector of indices, of size n_timesteps
, and finish+1
is a single index.
Now, if the dataset
simply iterated over its enter so as, advancing the index one by one, these strains may merely learn
record(
x = self$x[i:(i + self$n_timesteps - 1)],
y = self$x[self$n_timesteps + i]
)
Since many sequences within the information are related, we are able to cut back coaching time by making use of a fraction of the information in each epoch. This may be completed by (optionally) passing a sample_frac
smaller than 1. In initialize()
, a random set of begin indices is ready; .getitem()
then simply does what it usually does: search for the (x,y)
pair at a given index.
Right here is the whole dataset
code:
elec_dataset <- dataset(
identify = "elec_dataset",
initialize = operate(x, n_timesteps, sample_frac = 1) {
self$n_timesteps <- n_timesteps
self$x <- torch_tensor((x - train_mean) / train_sd)
n <- size(self$x) - self$n_timesteps
self$begins <- type(pattern.int(
n = n,
measurement = n * sample_frac
))
},
.getitem = operate(i) {
begin <- self$begins[i]
finish <- begin + self$n_timesteps - 1
record(
x = self$x[start:end],
y = self$x[end + 1]
)
},
.size = operate() {
size(self$begins)
}
)
You might have observed that we normalize the information by globally outlined train_mean
and train_sd
. We but must calculate these.
The way in which we break up the information is easy. We use the entire of 2012 for coaching, and all of 2013 for validation. For testing, we take the “tough” month of January, 2014. You might be invited to check testing outcomes for July that very same yr, and examine performances.
vic_elec_get_year <- operate(yr, month = NULL) {
vic_elec %>%
filter(yr(Date) == yr, month(Date) == if (is.null(month)) month(Date) else month) %>%
as_tibble() %>%
choose(Demand)
}
elec_train <- vic_elec_get_year(2012) %>% as.matrix()
elec_valid <- vic_elec_get_year(2013) %>% as.matrix()
elec_test <- vic_elec_get_year(2014, 1) %>% as.matrix() # or 2014, 7, alternatively
train_mean <- imply(elec_train)
train_sd <- sd(elec_train)
Now, to instantiate a dataset
, we nonetheless want to select sequence size. From prior inspection, every week looks like a good selection.
n_timesteps <- 7 * 24 * 2 # days * hours * half-hours
Now we are able to go forward and create a dataset
for the coaching information. Let’s say we’ll make use of fifty% of the information in every epoch:
train_ds <- elec_dataset(elec_train, n_timesteps, sample_frac = 0.5)
size(train_ds)
8615
Fast test: Are the shapes right?
$x
torch_tensor
-0.4141
-0.5541
[...] ### strains eliminated by me
0.8204
0.9399
... [the output was truncated (use n=-1 to disable)]
[ CPUFloatType{336,1} ]
$y
torch_tensor
-0.6771
[ CPUFloatType{1} ]
Sure: That is what we wished to see. The enter sequence has n_timesteps
values within the first dimension, and a single one within the second, similar to the one function current, Demand
. As supposed, the prediction tensor holds a single worth, corresponding– as we all know – to n_timesteps+1
.
That takes care of a single input-output pair. As normal, batching is organized for by torch
’s dataloader
class. We instantiate one for the coaching information, and instantly once more confirm the result:
batch_size <- 32
train_dl <- train_ds %>% dataloader(batch_size = batch_size, shuffle = TRUE)
size(train_dl)
b <- train_dl %>% dataloader_make_iter() %>% dataloader_next()
b
$x
torch_tensor
(1,.,.) =
0.4805
0.3125
[...] ### strains eliminated by me
-1.1756
-0.9981
... [the output was truncated (use n=-1 to disable)]
[ CPUFloatType{32,336,1} ]
$y
torch_tensor
0.1890
0.5405
[...] ### strains eliminated by me
2.4015
0.7891
... [the output was truncated (use n=-1 to disable)]
[ CPUFloatType{32,1} ]
We see the added batch dimension in entrance, leading to total form (batch_size, n_timesteps, num_features)
. That is the format anticipated by the mannequin, or extra exactly, by its preliminary RNN layer.
Earlier than we go on, let’s rapidly create dataset
s and dataloader
s for validation and check information, as effectively.
valid_ds <- elec_dataset(elec_valid, n_timesteps, sample_frac = 0.5)
valid_dl <- valid_ds %>% dataloader(batch_size = batch_size)
test_ds <- elec_dataset(elec_test, n_timesteps)
test_dl <- test_ds %>% dataloader(batch_size = 1)
The mannequin consists of an RNN – of kind GRU or LSTM, as per the consumer’s selection – and an output layer. The RNN does many of the work; the single-neuron linear layer that outputs the prediction compresses its vector enter to a single worth.
Right here, first, is the mannequin definition.
mannequin <- nn_module(
initialize = operate(kind, input_size, hidden_size, num_layers = 1, dropout = 0) {
self$kind <- kind
self$num_layers <- num_layers
self$rnn <- if (self$kind == "gru") {
nn_gru(
input_size = input_size,
hidden_size = hidden_size,
num_layers = num_layers,
dropout = dropout,
batch_first = TRUE
)
} else {
nn_lstm(
input_size = input_size,
hidden_size = hidden_size,
num_layers = num_layers,
dropout = dropout,
batch_first = TRUE
)
}
self$output <- nn_linear(hidden_size, 1)
},
ahead = operate(x) {
# record of [output, hidden]
# we use the output, which is of measurement (batch_size, n_timesteps, hidden_size)
x <- self$rnn(x)[[1]]
# from the output, we solely need the ultimate timestep
# form now's (batch_size, hidden_size)
x <- x[ , dim(x)[2], ]
# feed this to a single output neuron
# remaining form then is (batch_size, 1)
x %>% self$output()
}
)
Most significantly, that is what occurs in ahead()
.
-
The RNN returns an inventory. The record holds two tensors, an output, and a synopsis of hidden states. We discard the state tensor, and preserve the output solely. The excellence between state and output, or somewhat, the way in which it’s mirrored in what a
torch
RNN returns, deserves to be inspected extra intently. We’ll do this in a second. -
Of the output tensor, we’re thinking about solely the ultimate time-step, although.
-
Solely this one, thus, is handed to the output layer.
-
Lastly, the stated output layer’s output is returned.
Now, a bit extra on states vs. outputs. Think about Fig. 1, from Goodfellow, Bengio, and Courville (2016).
Let’s fake there are three time steps solely, similar to (t-1), (t), and (t+1). The enter sequence, accordingly, consists of (x_{t-1}), (x_{t}), and (x_{t+1}).
At every (t), a hidden state is generated, and so is an output. Usually, if our aim is to foretell (y_{t+2}), that’s, the very subsequent statement, we need to take into consideration the whole enter sequence. Put in another way, we need to have run via the whole equipment of state updates. The logical factor to do would thus be to decide on (o_{t+1}), for both direct return from ahead()
or for additional processing.
Certainly, return (o_{t+1}) is what a Keras LSTM or GRU would do by default. Not so its torch
counterparts. In torch
, the output tensor includes all of (o). Because of this, in step two above, we choose the only time step we’re thinking about – particularly, the final one.
In later posts, we’ll make use of greater than the final time step. Typically, we’ll use the sequence of hidden states (the (h)s) as an alternative of the outputs (the (o)s). So it’s possible you’ll really feel like asking, what if we used (h_{t+1}) right here as an alternative of (o_{t+1})? The reply is: With a GRU, this may not make a distinction, as these two are similar. With LSTM although, it will, as LSTM retains a second, particularly, the “cell,” state.
On to initialize()
. For ease of experimentation, we instantiate both a GRU or an LSTM based mostly on consumer enter. Two issues are value noting:
-
We go
batch_first = TRUE
when creating the RNNs. That is required withtorch
RNNs once we need to constantly have batch gadgets stacked within the first dimension. And we do need that; it’s arguably much less complicated than a change of dimension semantics for one sub-type of module. -
num_layers
can be utilized to construct a stacked RNN, similar to what you’d get in Keras when chaining two GRUs/LSTMs (the primary one created withreturn_sequences = TRUE
). This parameter, too, we’ve included for fast experimentation.
Let’s instantiate a mannequin for coaching. Will probably be a single-layer GRU with thirty-two models.
# coaching RNNs on the GPU presently prints a warning that will muddle
# the console
# see https://github.com/mlverse/torch/points/461
# alternatively, use
# gadget <- "cpu"
gadget <- torch_device(if (cuda_is_available()) "cuda" else "cpu")
web <- mannequin("gru", 1, 32)
web <- web$to(gadget = gadget)
In spite of everything these RNN specifics, the coaching course of is totally commonplace.
optimizer <- optim_adam(web$parameters, lr = 0.001)
num_epochs <- 30
train_batch <- operate(b) {
optimizer$zero_grad()
output <- web(b$x$to(gadget = gadget))
goal <- b$y$to(gadget = gadget)
loss <- nnf_mse_loss(output, goal)
loss$backward()
optimizer$step()
loss$merchandise()
}
valid_batch <- operate(b) {
output <- web(b$x$to(gadget = gadget))
goal <- b$y$to(gadget = gadget)
loss <- nnf_mse_loss(output, goal)
loss$merchandise()
}
for (epoch in 1:num_epochs) {
web$practice()
train_loss <- c()
coro::loop(for (b in train_dl) {
loss <-train_batch(b)
train_loss <- c(train_loss, loss)
})
cat(sprintf("nEpoch %d, coaching: loss: %3.5f n", epoch, imply(train_loss)))
web$eval()
valid_loss <- c()
coro::loop(for (b in valid_dl) {
loss <- valid_batch(b)
valid_loss <- c(valid_loss, loss)
})
cat(sprintf("nEpoch %d, validation: loss: %3.5f n", epoch, imply(valid_loss)))
}
Epoch 1, coaching: loss: 0.21908
Epoch 1, validation: loss: 0.05125
Epoch 2, coaching: loss: 0.03245
Epoch 2, validation: loss: 0.03391
Epoch 3, coaching: loss: 0.02346
Epoch 3, validation: loss: 0.02321
Epoch 4, coaching: loss: 0.01823
Epoch 4, validation: loss: 0.01838
Epoch 5, coaching: loss: 0.01522
Epoch 5, validation: loss: 0.01560
Epoch 6, coaching: loss: 0.01315
Epoch 6, validation: loss: 0.01374
Epoch 7, coaching: loss: 0.01205
Epoch 7, validation: loss: 0.01200
Epoch 8, coaching: loss: 0.01155
Epoch 8, validation: loss: 0.01157
Epoch 9, coaching: loss: 0.01118
Epoch 9, validation: loss: 0.01096
Epoch 10, coaching: loss: 0.01070
Epoch 10, validation: loss: 0.01132
Epoch 11, coaching: loss: 0.01003
Epoch 11, validation: loss: 0.01150
Epoch 12, coaching: loss: 0.00943
Epoch 12, validation: loss: 0.01106
Epoch 13, coaching: loss: 0.00922
Epoch 13, validation: loss: 0.01069
Epoch 14, coaching: loss: 0.00862
Epoch 14, validation: loss: 0.01125
Epoch 15, coaching: loss: 0.00842
Epoch 15, validation: loss: 0.01095
Epoch 16, coaching: loss: 0.00820
Epoch 16, validation: loss: 0.00975
Epoch 17, coaching: loss: 0.00802
Epoch 17, validation: loss: 0.01120
Epoch 18, coaching: loss: 0.00781
Epoch 18, validation: loss: 0.00990
Epoch 19, coaching: loss: 0.00757
Epoch 19, validation: loss: 0.01017
Epoch 20, coaching: loss: 0.00735
Epoch 20, validation: loss: 0.00932
Epoch 21, coaching: loss: 0.00723
Epoch 21, validation: loss: 0.00901
Epoch 22, coaching: loss: 0.00708
Epoch 22, validation: loss: 0.00890
Epoch 23, coaching: loss: 0.00676
Epoch 23, validation: loss: 0.00914
Epoch 24, coaching: loss: 0.00666
Epoch 24, validation: loss: 0.00922
Epoch 25, coaching: loss: 0.00644
Epoch 25, validation: loss: 0.00869
Epoch 26, coaching: loss: 0.00620
Epoch 26, validation: loss: 0.00902
Epoch 27, coaching: loss: 0.00588
Epoch 27, validation: loss: 0.00896
Epoch 28, coaching: loss: 0.00563
Epoch 28, validation: loss: 0.00886
Epoch 29, coaching: loss: 0.00547
Epoch 29, validation: loss: 0.00895
Epoch 30, coaching: loss: 0.00523
Epoch 30, validation: loss: 0.00935
Loss decreases rapidly, and we don’t appear to be overfitting on the validation set.
Numbers are fairly summary, although. So, we’ll use the check set to see how the forecast really appears to be like.
Right here is the forecast for January, 2014, thirty minutes at a time.
web$eval()
preds <- rep(NA, n_timesteps)
coro::loop(for (b in test_dl) {
output <- web(b$x$to(gadget = gadget))
preds <- c(preds, output %>% as.numeric())
})
vic_elec_jan_2014 <- vic_elec %>%
filter(yr(Date) == 2014, month(Date) == 1) %>%
choose(Demand)
preds_ts <- vic_elec_jan_2014 %>%
add_column(forecast = preds * train_sd + train_mean) %>%
pivot_longer(-Time) %>%
update_tsibble(key = identify)
preds_ts %>%
autoplot() +
scale_colour_manual(values = c("#08c5d1", "#00353f")) +
theme_minimal()

Determine 6: One-step-ahead predictions for January, 2014.
Total, the forecast is great, however it’s fascinating to see how the forecast “regularizes” probably the most excessive peaks. This sort of “regression to the imply” will probably be seen way more strongly in later setups, once we attempt to forecast additional into the longer term.
Can we use our present structure for multi-step prediction? We are able to.
One factor we are able to do is feed again the present prediction, that’s, append it to the enter sequence as quickly as it’s accessible. Successfully thus, for every batch merchandise, we acquire a sequence of predictions in a loop.
We’ll attempt to forecast 336 time steps, that’s, a whole week.
n_forecast <- 2 * 24 * 7
test_preds <- vector(mode = "record", size = size(test_dl))
i <- 1
coro::loop(for (b in test_dl) {
enter <- b$x
output <- web(enter$to(gadget = gadget))
preds <- as.numeric(output)
for(j in 2:n_forecast) {
enter <- torch_cat(record(enter[ , 2:length(input), ], output$view(c(1, 1, 1))), dim = 2)
output <- web(enter$to(gadget = gadget))
preds <- c(preds, as.numeric(output))
}
test_preds[[i]] <- preds
i <<- i + 1
})
For visualization, let’s decide three non-overlapping sequences.
test_pred1 <- test_preds[[1]]
test_pred1 <- c(rep(NA, n_timesteps), test_pred1, rep(NA, nrow(vic_elec_jan_2014) - n_timesteps - n_forecast))
test_pred2 <- test_preds[[408]]
test_pred2 <- c(rep(NA, n_timesteps + 407), test_pred2, rep(NA, nrow(vic_elec_jan_2014) - 407 - n_timesteps - n_forecast))
test_pred3 <- test_preds[[817]]
test_pred3 <- c(rep(NA, nrow(vic_elec_jan_2014) - n_forecast), test_pred3)
preds_ts <- vic_elec %>%
filter(yr(Date) == 2014, month(Date) == 1) %>%
choose(Demand) %>%
add_column(
iterative_ex_1 = test_pred1 * train_sd + train_mean,
iterative_ex_2 = test_pred2 * train_sd + train_mean,
iterative_ex_3 = test_pred3 * train_sd + train_mean) %>%
pivot_longer(-Time) %>%
update_tsibble(key = identify)
preds_ts %>%
autoplot() +
scale_colour_manual(values = c("#08c5d1", "#00353f", "#ffbf66", "#d46f4d")) +
theme_minimal()

Determine 7: Multi-step predictions for January, 2014, obtained in a loop.
Even with this very fundamental forecasting approach, the diurnal rhythm is preserved, albeit in a strongly smoothed type. There even is an obvious day-of-week periodicity within the forecast. We do see, nonetheless, very sturdy regression to the imply, even in loop situations the place the community was “primed” with a better enter sequence.
Hopefully this put up offered a helpful introduction to time sequence forecasting with torch
. Evidently, we picked a difficult time sequence – difficult, that’s, for a minimum of two causes:
-
To appropriately issue within the development, exterior data is required: exterior data in type of a temperature forecast, which, “in actuality,” can be simply obtainable.
-
Along with the extremely necessary development part, the information are characterised by a number of ranges of seasonality.
Of those, the latter is much less of an issue for the methods we’re working with right here. If we discovered that some degree of seasonality went undetected, we may attempt to adapt the present configuration in numerous uncomplicated methods:
-
Use an LSTM as an alternative of a GRU. In concept, LSTM ought to higher be capable of seize further lower-frequency parts attributable to its secondary storage, the cell state.
-
Stack a number of layers of GRU/LSTM. In concept, this could permit for studying a hierarchy of temporal options, analogously to what we see in a convolutional neural community.
To handle the previous impediment, greater modifications to the structure can be wanted. We might try to try this in a later, “bonus,” put up. However within the upcoming installments, we’ll first dive into often-used methods for sequence prediction, additionally porting to numerical time sequence issues which are generally carried out in pure language processing.
Thanks for studying!
Photograph by Nick Dunn on Unsplash
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Studying. MIT Press.