21.9 C
Canberra
Tuesday, February 10, 2026

Enzymatic microbubble robots | Nature Nanotechnology


  • Nelson, B. J. & Pané, S. Delivering medicine with microrobots. Science 382, 1120–1122 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almeida, H., Traverso, G., Sarmento, B. & das Neves, J. Nanoscale anisotropy for biomedical purposes. Nat. Rev. Bioeng. 2, 609–625 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Okay., Guo, J., Liang, Z. & Fan, D. Synthetic micro/nanomachines for bioapplications: biochemical supply and diagnostic sensing. Adv. Funct. Mater. 28, 1705867 (2018).

    Article 

    Google Scholar
     

  • Li, J., de Ávila, B. E.-F., Gao, W., Zhang, L. & Wang, J. Micro/nanorobots for biomedicine: supply, surgical procedure, sensing, and cleansing. Sci. Robotic. 2, eaam6431 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elnaggar, A., Kang, S., Tian, M., Han, B. & Keshavarz, M. Cutting-edge in actuation of micro/nanorobots for biomedical purposes. Small Sci. 4, 2300211 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simo, C. et al. Urease-powered nanobots for radionuclide bladder most cancers remedy. Nat. Nanotechnol. 19, 554–564 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Twin-responsive biohybrid neutrobots for energetic goal supply. Sci. Robotic. 6, 9519eaaz (2021).

    Article 

    Google Scholar
     

  • Yoo, J., Tang, S. & Gao, W. Micro- and nanorobots for biomedical purposes within the mind. Nat. Rev. Bioeng. 1, 308–310 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z. et al. A swarm of slippery micropropellers penetrates the vitreous physique of the attention. Sci. Adv. 4, eaat4388 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Microrobots for focused supply and remedy in digestive system. ACS Nano 17, 27–50 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Z. et al. Oral mitochondrial transplantation utilizing nanomotors to deal with ischaemic coronary heart illness. Nat. Nanotechnol. 19, 1375–1385 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, M. et al. Web site-selective superassembly of biomimetic nanorobots enabling deep penetration into tumor with stiff stroma. Nat. Commun. 14, 4628 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X. et al. Self-adaptive magnetic liquid metallic microrobots able to crossing organic obstacles and wi-fi neuromodulation. ACS Nano 18, 29558–29571 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Legislation, J. et al. Microrobotic swarms for selective embolization. Sci. Adv. 8, eabm5752 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Go, G. et al. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization remedy of liver most cancers. Sci. Adv. 8, eabq8545 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Campo Fonseca, A. et al. Ultrasound trapping and navigation of microrobots within the mouse mind vasculature. Nat. Commun. 14, 5889 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. Superior supplies for micro/nanorobotics. Chem. Soc. Rev. 53, 9190–9253 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, F., Tu, Y. & Wilson, D. A. Micro/nanomotors in the direction of in vivo software: cell, tissue and biofluid. Chem. Soc. Rev. 46, 5289–5310 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yong, J., Mellick, A. S., Whitelock, J., Wang, J. & Liang, Okay. A biomolecular toolbox for precision nanomotors. Adv. Mater. 35, e2205746 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, T.-Y., Gu, H. & Nelson, B. J. More and more clever micromachines. Annu. Rev. Management Robotic. Auton. Syst. 5, 279–310 (2022).

    Article 

    Google Scholar
     

  • Legislation, J. et al. Micro/nanorobotic swarms: from fundamentals to functionalities. ACS Nano 17, 12971–12999 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mujtaba, J. et al. Micro-bio-chemo-mechanical-systems: micromotors, microfluidics, and nanozymes for biomedical purposes. Adv. Mater. 33, e2007465 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, S. et al. Photoactivated nanomotors through aggregation induced emission for enhanced phototherapy. Nat. Commun. 12, 2077 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, H. et al. Clever metallic micro/nanomotors: from propulsion to software. Nano At this time 52, 101939 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tang, S. et al. Enzyme-powered janus platelet cell robots for energetic and focused drug supply. Sci. Robotic. 5, eaba6137 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Medina-Sanchez, M., Schwarz, L., Meyer, A. Okay., Hebenstreit, F. & Schmidt, O. G. Mobile cargo supply: towards assisted fertilization by sperm-carrying micromotors. Nano Lett. 16, 555–561 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Go, G. et al. Human adipose–derived mesenchymal stem cell–primarily based medical microrobot system for knee cartilage regeneration in vivo. Sci. Robotic. 5, eaay6626 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Felfoul, O. et al. Magneto-aerotactic micro organism ship drug-containing nanoliposomes to tumour hypoxic areas. Nat. Nanotechnol. 11, 941–947 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alapan, Y. et al. Tender erythrocyte-based bacterial microswimmers for cargo supply. Sci. Robotic. 3, eaar4423 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, F. et al. Nanoparticle-modified microrobots for in vivo antibiotic supply to deal with acute bacterial pneumonia. Nat. Mater. 21, 1324–1332 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, X. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided remedy. Sci. Robotic. 2, eaaq1155 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ceylan, H. et al. 3D printed customized magnetic micromachines from affected person blood–derived biomaterials. Sci. Adv. 7, eabh0273 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, S. et al. Bacterial outer membrane vesicle nanorobot. Proc. Natl Acad. Sci. USA 121, e2403460121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. Biomembrane-functionalized micromotors: biocompatible energetic gadgets for numerous biomedical purposes. Adv. Mater. 34, e2107177 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, G. et al. Cell-based clever micro/nanorobots for exact regulation and energetic biotherapy. Matter 6, 4158–4194 (2023).

    Article 

    Google Scholar
     

  • Wang, B., Kostarelos, Okay., Nelson, B. J. & Zhang, L. Tendencies in micro-/nanorobotics: supplies growth, actuation, localization, and system integration for biomedical purposes. Adv. Mater. 33, 2002047 (2020).

    Article 

    Google Scholar
     

  • Gao, C. et al. Biomedical micro-/nanomotors: from overcoming organic obstacles to in vivo imaging. Adv. Mater. 33, 2000512 (2020).

    Article 

    Google Scholar
     

  • Singh, A. Okay., Awasthi, R. & Malviya, R. Bioinspired microrobots: alternatives and challenges in focused most cancers remedy. J. Management. Launch 354, 439–452 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, M., Li, T., Chen, H., Mao, C. & Shen, J. Biosafety, functionalities, and purposes of biomedical micro/nanomotors. Angew. Chem. Int. Ed. 60, 13158–13176 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hortelao, A. C. et al. Swarming habits and in vivo monitoring of enzymatic nanomotors throughout the bladder. Sci. Robotic. 6, eabd2823 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, B. et al. Twin-bioengine self-adaptive micro/nanorobots utilizing enzyme actuation and macrophage relay for gastrointestinal irritation remedy. Sci. Adv. 9, eadc8978 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dasgupta, A. et al. Nonspherical ultrasound microbubbles. Proc. Natl Acad. Sci. USA 120, e2218847120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, F., Wang, W.-H., Tan, Y.-J. & Bruening, M. L. Facile trypsin immobilization in polymeric membranes for fast, environment friendly protein digestion. Anal. Chem. 82, 10045–10051 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, X., Wang, X., Hahn, Okay. & Sanchez, S. Movement management of urea-powered biocompatible hole microcapsules. ACS Nano 10, 3597–3605 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W., Duan, W., Ahmed, S., Mallouk, T. E. & Sen, A. Small energy: autonomous nano- and micromotors propelled by self-generated gradients. Nano At this time 8, 531–554 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Mulvana, H., Eckersley, R. J., Tang, M.-X., Pankhurst, Q. & Stride, E. Theoretical and experimental characterisation of magnetic microbubbles. Ultrasound Med. Biol. 38, 864–875 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Crake, C. et al. Enhancement and passive acoustic mapping of cavitation from fluorescently tagged magnetic resonance-visible magnetic microbubbles in vivo. Ultrasound Med. Biol. 42, 3022–3036 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Chertok, B. & Langer, R. Circulating magnetic microbubbles for localized real-time management of drug supply by ultrasonography-guided magnetic focusing on and ultrasound. Theranostics 8, 341 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beguin, E. et al. Magnetic microbubble mediated chemo-sonodynamic remedy utilizing a mixed magnetic-acoustic machine. J. Management. Launch 317, 23–33 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gusliakova, O. I. et al. Magnetically navigated microbubbles coated with albumin/polyarginine and superparamagnetic iron oxide nanoparticles. Biomater. Adv. 158, 213759 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Owen, J. et al. Magnetic focusing on of microbubbles in opposition to physiologically related movement circumstances. Interface Focus 5, 20150001 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H. et al. Microbubbles used for distinction enhanced ultrasound and theragnosis: a overview of ideas to purposes. Biomed. Eng. Lett. 7, 59–69 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maas, M., Todenhöfer, T. & Black, P. C. Urine biomarkers in bladder most cancers—present standing and future views. Nat. Rev. Urol. 20, 597–614 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kaufman, D. S., Shipley, W. U. & Feldman, A. S. Bladder most cancers. Lancet 374, 239–249 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Douglass, L. & Schoenberg, M. The way forward for intravesical drug supply for non-muscle invasive bladder most cancers. Bladder Most cancers 2, 285–292 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Somasundar, A. et al. Constructive and unfavourable chemotaxis of enzyme-coated liposome motors. Nat. Nanotechnol. 14, 1129–1134 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keenan, T. M. & Folch, A. Biomolecular gradients in cell tradition programs. Lab Chip 8, 34–57 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ralph, S. J. & Reynolds, M. J. Intratumoral pro-oxidants promote most cancers immunotherapy by recruiting and reprogramming neutrophils to remove tumors. Most cancers Immunol. Immunother. 72, 527–542 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szatrowski, T. P. & Nathan, C. F. Manufacturing of huge quantities of hydrogen peroxide by human tumor cells. Most cancers Res. 51, 794–798 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Bar-Zion, A. et al. Acoustically triggered mechanotherapy utilizing genetically encoded fuel vesicles. Nat. Nanotechnol. 16, 1403–1412 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiu, W. et al. Ultrasound-responsive catalytic microbubbles improve biofilm elimination and immune activation to deal with power lung infections. Sci. Adv. 9, eade5446 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. et al. A overview of bioeffects induced by targeted ultrasound mixed with microbubbles on the neurovascular unit. J. Cereb. Blood Circulate Metab. 42, 3–26 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Şen, T., Tüfekçioğlu, O. & Koza, Y. Mechanical index. Anat. J. Cardiol. 15, 334 (2015).

    Article 

    Google Scholar
     

  • Lakshmanan, A. et al. Preparation of biogenic fuel vesicle nanostructures to be used as distinction brokers for ultrasound and MRI. Nat. Protoc. 12, 2050–2080 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Criado-Hidalgo, E. Keller-Miksis dynamic mannequin simulations of CBRs. Zenodo https://doi.org/10.5281/zenodo.17717384 (2025).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles