Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum applied sciences with optically interfaced solid-state spins. Nat. Photonics 12, 516–527 (2018).
Doherty, M. W. et al. The nitrogen–emptiness color centre in diamond. Phys. Rep. 528, 1–45 (2013).
Li, L. et al. Coherent spin management of a nanocavity-enhanced qubit in diamond. Nat. Commun. 6, 6173 (2015).
Bogdanov, S. I. et al. Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy facilities coupled to nanopatch antennas. Nano Lett. 18, 4837–4842 (2018).
Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Materials platforms for spin-based photonic quantum applied sciences. Nat. Rev. Mater. 3, 38–51 (2018).
Riedel, D. et al. Deterministic enhancement of coherent photon technology from a nitrogen–emptiness heart in ultrapure diamond. Phys. Rev. X 7, 031040 (2017).
Janitz, E., Bhaskar, M. Ok. & Childress, L. Cavity quantum electrodynamics with shade facilities in diamond. Optica 7, 1232–1252 (2020).
Najafi, F. et al. On-chip detection of non-classical gentle by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Strong optical delay traces with topological safety. Nat. Phys. 7, 907–912 (2011).
Mansha, S. & Chong, Y. D. Strong edge states in amorphous gyromagnetic photonic lattices. Phys. Rev. B 96, 121405 (2017).
Xiao, M. & Fan, S. Photonic Chern insulator by homogenization of an array of particles. Phys. Rev. B 96, 100202 (2017).
Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time-and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).
Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).
Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).
Yang, Y. et al. Visualization of a unidirectional electromagnetic waveguide utilizing topological photonic crystals manufactured from dielectric supplies. Phys. Rev. Lett. 120, 217401 (2018).
He, C. et al. Tunable one-way cross-waveguide splitter primarily based on gyromagnetic photonic crystal. Appl. Phys. Lett. 96, 111111 (2010).
Ringel, M., Pletyukhov, M. & Gritsev, V. Topologically protected strongly correlated states of photons. N. J. Phys. 16, 113030 (2014).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, 1231 (2018).
Yoon, I. et al. Profiling the evanescent area of nanofiber waveguides utilizing self-assembled polymer coatings. Nanoscale 5, 552 (2013).
Sundaramurthy, A., Kino, G. S., Conley, N. R., Fromm, D. P. & Moerner, W. E. Towards nanometer-scale optical photolithography: using the near-field of bowtie optical nanoantennas. Nano Lett. 6, 355 (2006).
Ampem-Lassen, E. et al. Nano-manipulation of diamond-based single photon sources. Choose. Categorical 17, 11287 (2009).
Drezet, A. et al. Close to-field microscopy with a scanning nitrogen–emptiness shade heart in a diamond nanocrystal: a short evaluate. Micron 70, 55–63 (2015).
Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nat. Nanotechnol. 8, 175 (2013).
Cuche, A. et al. Close to-field optical microscopy with a nanodiamond-based single-photon tip. Choose. Exp. 17, 19969 (2009).
Krachmalnicoff, V. et al. In direction of a full characterization of a plasmonic nanostructure with a fluorescent near-field probe. Choose. Exp. 21, 11536 (2013).
Gross, I. et al. Actual-space imaging of non-collinear antiferro- magnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).
Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 11, 700–705 (2016).
Tetienne, J.-P. et al. Nanoscale imaging and management of domain-wall hopping with a nitrogen–emptiness heart microscope. Science 344, 1366–1369 (2014).
Thiel, L. et al. Quantitative nanoscale vortex imaging utilizing a cryogenic quantum magnetometer. Nat. Nanotechnol. 11, 677–681 (2016).
Zhou, T. X. et al. A magnon scattering platform. Proc. Natl Acad. Sci. USA 118, e2019473118 (2021).
Rugar, D. et al. Proton magnetic resonance imaging utilizing a nitrogen–emptiness spin sensor. Nat. Nanotechnol. 10, 120–124 (2015).
Laraoui, A. et al. Imaging thermal conductivity with nanoscale decision utilizing a scanning spin probe. Nat. Commun. 6, 8954 (2015).
Wu, L. H. & Hu, X. Scheme for attaining a topological photonic crystal through the use of dielectric materials. Phys. Rev. Lett. 114, 223901 (2015).
Barik, S., Miyake, H., DeGottardi, W., Waks, E. & Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. N. J. Phys. 18, 113013 (2016).
Auffèves, A., Gérard, J.-M. & Poizat, J.-P. Pure emitter dephasing: a useful resource for superior solid-state single-photon sources. Phys. Rev. A 79, 053838 (2009).
Naesby, A., Suhr, T., Kristensen, P. T. & Mork, J. Affect of pure dephasing on emission spectra from single photon sources. Phys. Rev. A 78, 045802 (2008).
Albrecht, R., Bommer, A., Deutsch, C., Reichel, J. & Becher, C. Coupling of a single nitrogen–emptiness heart in diamond to a fiber-based microcavity. Phys. Rev. Lett. 110, 243602 (2013).
Kan, Y. et al. Metasurface-enabled technology of circularly polarized single photons. Adv. Mater. 32, 1907832 (2020).
Grange, T. et al. Cavity-funneled technology of indistinguishable single photons from strongly dissipative quantum emitters. Phys. Rev. Lett. 114, 193601 (2015).
Bachelot, R. & Douillard, L. in Advances in Close to-Subject Optics (ed. Gordon, R.) 244 (Springer, 2023); https://doi.org/10.1007/978-3-031-34742-9_4
Arora, S. et al. Breakdown of spin-to-helicity locking on the nanoscale in topological photonic crystal edge states. Phys. Rev. Lett. 128, 203903 (2022).
Rotenberg, N. & Kuipers, L. Mapping nanoscale gentle fields. Nat. Photonics 8, 919–926 (2014).
Novotny, L. & Hecht, B. Ideas of Nano-optics (Cambridge Univ. Press, 2012).
Olmon, R. L. et al. Dedication of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector community analyzer. Phys. Rev. Lett. 105, 167403 (2010).
Yanagimoto, S., Yamamoto, N., Sannomiya, T. & Akiba, Ok. Purcell impact of nitrogen–emptiness facilities in nanodiamond coupled to propagating and localized floor plasmons revealed by photon-correlation cathodoluminescence. Phys. Rev. B 103, 205418 (2021).
Peng, S. et al. Probing the band construction of topological silicon photonic lattices within the seen spectrum. Phys. Rev. Lett. 122, 117401 (2019).
Coenen, T., van de Groep, J. & Polman, A. Resonant modes of single silicon nanocavities excited by electron irradiation. ACS Nano 7, 1689–1698 (2013).
Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of sunshine. Nat. Mater. 11, 781–787 (2012).
Polman, A., Kociak, M. & García de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019).
Londero, E., Thiering, G., Razinkovas, L., Gali, A. & Alkauskas, A. Vibrational modes of negatively charged silicon-vacancy facilities in diamond from ab initio calculations. Phys. Rev. B 98, 035306 (2018).
Kianinia, M., Xu, Z.-Q., Toth, M. & Aharonovich, I. Quantum emitters in 2D supplies: emitter engineering, photophysics, and integration in photonic nanostructures. Appl. Phys. Rev. 9, 011306 (2022).
Nelz, R. et al. Close to-field power switch between a luminescent 2D materials and shade facilities in diamond. Adv. Quant. Technol. 3, 1900088 (2020).
Gardiner, C. & Zoller, P. Quantum Noise (Springer, 2004).
Johansson, J. R., Nation, P. D. & Nori, F. QuTiP 2: a Python framework for the dynamics of open quantum programs. Comput. Phys. Commun. 184, 1234–1240 (2012).
