11.2 C
Canberra
Saturday, October 25, 2025

Emission of nitrogen–emptiness centres in diamond formed by topological photonic waveguide modes


  • Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum applied sciences with optically interfaced solid-state spins. Nat. Photonics 12, 516–527 (2018).


    Google Scholar
     

  • Doherty, M. W. et al. The nitrogen–emptiness color centre in diamond. Phys. Rep. 528, 1–45 (2013).

    CAS 

    Google Scholar
     

  • Li, L. et al. Coherent spin management of a nanocavity-enhanced qubit in diamond. Nat. Commun. 6, 6173 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Bogdanov, S. I. et al. Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy facilities coupled to nanopatch antennas. Nano Lett. 18, 4837–4842 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Materials platforms for spin-based photonic quantum applied sciences. Nat. Rev. Mater. 3, 38–51 (2018).


    Google Scholar
     

  • Riedel, D. et al. Deterministic enhancement of coherent photon technology from a nitrogen–emptiness heart in ultrapure diamond. Phys. Rev. X 7, 031040 (2017).


    Google Scholar
     

  • Janitz, E., Bhaskar, M. Ok. & Childress, L. Cavity quantum electrodynamics with shade facilities in diamond. Optica 7, 1232–1252 (2020).


    Google Scholar
     

  • Najafi, F. et al. On-chip detection of non-classical gentle by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    CAS 

    Google Scholar
     

  • Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Strong optical delay traces with topological safety. Nat. Phys. 7, 907–912 (2011).


    Google Scholar
     

  • Mansha, S. & Chong, Y. D. Strong edge states in amorphous gyromagnetic photonic lattices. Phys. Rev. B 96, 121405 (2017).


    Google Scholar
     

  • Xiao, M. & Fan, S. Photonic Chern insulator by homogenization of an array of particles. Phys. Rev. B 96, 100202 (2017).


    Google Scholar
     

  • Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time-and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).


    Google Scholar
     

  • Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).


    Google Scholar
     

  • Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Visualization of a unidirectional electromagnetic waveguide utilizing topological photonic crystals manufactured from dielectric supplies. Phys. Rev. Lett. 120, 217401 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • He, C. et al. Tunable one-way cross-waveguide splitter primarily based on gyromagnetic photonic crystal. Appl. Phys. Lett. 96, 111111 (2010).


    Google Scholar
     

  • Ringel, M., Pletyukhov, M. & Gritsev, V. Topologically protected strongly correlated states of photons. N. J. Phys. 16, 113030 (2014).


    Google Scholar
     

  • Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, 1231 (2018).

    CAS 

    Google Scholar
     

  • Yoon, I. et al. Profiling the evanescent area of nanofiber waveguides utilizing self-assembled polymer coatings. Nanoscale 5, 552 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Sundaramurthy, A., Kino, G. S., Conley, N. R., Fromm, D. P. & Moerner, W. E. Towards nanometer-scale optical photolithography: using the near-field of bowtie optical nanoantennas. Nano Lett. 6, 355 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ampem-Lassen, E. et al. Nano-manipulation of diamond-based single photon sources. Choose. Categorical 17, 11287 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Drezet, A. et al. Close to-field microscopy with a scanning nitrogen–emptiness shade heart in a diamond nanocrystal: a short evaluate. Micron 70, 55–63 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nat. Nanotechnol. 8, 175 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Cuche, A. et al. Close to-field optical microscopy with a nanodiamond-based single-photon tip. Choose. Exp. 17, 19969 (2009).

    CAS 

    Google Scholar
     

  • Krachmalnicoff, V. et al. In direction of a full characterization of a plasmonic nanostructure with a fluorescent near-field probe. Choose. Exp. 21, 11536 (2013).

    CAS 

    Google Scholar
     

  • Gross, I. et al. Actual-space imaging of non-collinear antiferro- magnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).


    Google Scholar
     

  • Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 11, 700–705 (2016).


    Google Scholar
     

  • Tetienne, J.-P. et al. Nanoscale imaging and management of domain-wall hopping with a nitrogen–emptiness heart microscope. Science 344, 1366–1369 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Thiel, L. et al. Quantitative nanoscale vortex imaging utilizing a cryogenic quantum magnetometer. Nat. Nanotechnol. 11, 677–681 (2016).


    Google Scholar
     

  • Zhou, T. X. et al. A magnon scattering platform. Proc. Natl Acad. Sci. USA 118, e2019473118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rugar, D. et al. Proton magnetic resonance imaging utilizing a nitrogen–emptiness spin sensor. Nat. Nanotechnol. 10, 120–124 (2015).


    Google Scholar
     

  • Laraoui, A. et al. Imaging thermal conductivity with nanoscale decision utilizing a scanning spin probe. Nat. Commun. 6, 8954 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, L. H. & Hu, X. Scheme for attaining a topological photonic crystal through the use of dielectric materials. Phys. Rev. Lett. 114, 223901 (2015).

    PubMed 

    Google Scholar
     

  • Barik, S., Miyake, H., DeGottardi, W., Waks, E. & Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. N. J. Phys. 18, 113013 (2016).


    Google Scholar
     

  • Auffèves, A., Gérard, J.-M. & Poizat, J.-P. Pure emitter dephasing: a useful resource for superior solid-state single-photon sources. Phys. Rev. A 79, 053838 (2009).


    Google Scholar
     

  • Naesby, A., Suhr, T., Kristensen, P. T. & Mork, J. Affect of pure dephasing on emission spectra from single photon sources. Phys. Rev. A 78, 045802 (2008).


    Google Scholar
     

  • Albrecht, R., Bommer, A., Deutsch, C., Reichel, J. & Becher, C. Coupling of a single nitrogen–emptiness heart in diamond to a fiber-based microcavity. Phys. Rev. Lett. 110, 243602 (2013).

    PubMed 

    Google Scholar
     

  • Kan, Y. et al. Metasurface-enabled technology of circularly polarized single photons. Adv. Mater. 32, 1907832 (2020).

    CAS 

    Google Scholar
     

  • Grange, T. et al. Cavity-funneled technology of indistinguishable single photons from strongly dissipative quantum emitters. Phys. Rev. Lett. 114, 193601 (2015).

    PubMed 

    Google Scholar
     

  • Bachelot, R. & Douillard, L. in Advances in Close to-Subject Optics (ed. Gordon, R.) 244 (Springer, 2023); https://doi.org/10.1007/978-3-031-34742-9_4

  • Arora, S. et al. Breakdown of spin-to-helicity locking on the nanoscale in topological photonic crystal edge states. Phys. Rev. Lett. 128, 203903 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Rotenberg, N. & Kuipers, L. Mapping nanoscale gentle fields. Nat. Photonics 8, 919–926 (2014).


    Google Scholar
     

  • Novotny, L. & Hecht, B. Ideas of Nano-optics (Cambridge Univ. Press, 2012).

  • Olmon, R. L. et al. Dedication of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector community analyzer. Phys. Rev. Lett. 105, 167403 (2010).

    PubMed 

    Google Scholar
     

  • Yanagimoto, S., Yamamoto, N., Sannomiya, T. & Akiba, Ok. Purcell impact of nitrogen–emptiness facilities in nanodiamond coupled to propagating and localized floor plasmons revealed by photon-correlation cathodoluminescence. Phys. Rev. B 103, 205418 (2021).

    CAS 

    Google Scholar
     

  • Peng, S. et al. Probing the band construction of topological silicon photonic lattices within the seen spectrum. Phys. Rev. Lett. 122, 117401 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Coenen, T., van de Groep, J. & Polman, A. Resonant modes of single silicon nanocavities excited by electron irradiation. ACS Nano 7, 1689–1698 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of sunshine. Nat. Mater. 11, 781–787 (2012).


    Google Scholar
     

  • Polman, A., Kociak, M. & García de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019).

    PubMed 

    Google Scholar
     

  • Londero, E., Thiering, G., Razinkovas, L., Gali, A. & Alkauskas, A. Vibrational modes of negatively charged silicon-vacancy facilities in diamond from ab initio calculations. Phys. Rev. B 98, 035306 (2018).

    CAS 

    Google Scholar
     

  • Kianinia, M., Xu, Z.-Q., Toth, M. & Aharonovich, I. Quantum emitters in 2D supplies: emitter engineering, photophysics, and integration in photonic nanostructures. Appl. Phys. Rev. 9, 011306 (2022).

    CAS 

    Google Scholar
     

  • Nelz, R. et al. Close to-field power switch between a luminescent 2D materials and shade facilities in diamond. Adv. Quant. Technol. 3, 1900088 (2020).

    CAS 

    Google Scholar
     

  • Gardiner, C. & Zoller, P. Quantum Noise (Springer, 2004).

  • Johansson, J. R., Nation, P. D. & Nori, F. QuTiP 2: a Python framework for the dynamics of open quantum programs. Comput. Phys. Commun. 184, 1234–1240 (2012).


    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles