Mao, Y. et al. Ambient electrocatalytic synthesis of urea by co-reduction of NO3− and CO2 over graphene-supported In2O3. Chin. Chem. Lett. 35, 108540 (2024).
Zhang, S. et al. Excessive-efficiency electrosynthesis of urea over bacterial cellulose regulated Pd–Cu bimetallic catalyst. EES Catal. 1, 45–53 (2023).
Li, J., Zhang, Y., Kuruvinashetti, Okay. & Kornienko, N. Building of C–N bonds from small-molecule precursors by means of heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).
Zhu, X., Zhou, X., Jing, Y. & Li, Y. Electrochemical synthesis of urea on MBenes. Nat. Commun. 12, 4080 (2021).
Zhang, S. et al. Atomically dispersed bimetallic Fe–Co electrocatalysts for inexperienced manufacturing of ammonia. Nat. Maintain. 6, 169–179 (2022).
Yin, H.-Q. et al. Electrochemical urea synthesis by co-reduction of CO2 and nitrate with FeII-FeIIIOOH@BiVO4 heterostructures. J. Vitality Chem. 84, 385–393 (2023).
Liu, X., Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Mechanism of C–N bonds formation in electrocatalytic urea manufacturing revealed by ab initio molecular dynamics simulation. Nat. Commun. 13, 5471 (2022).
Zhao, Y. et al. Environment friendly urea electrosynthesis from carbon dioxide and nitrate by way of alternating Cu–W bimetallic C–N coupling websites. Nat. Commun. 14, 4491 (2023).
Xu, M. et al. Kinetically matched C–N coupling towards environment friendly urea electrosynthesis enabled on copper single-atom alloy. Nat. Commun. 14, 6994 (2023).
Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea underneath ambient situations. Nat. Chem. 12, 717–724 (2020).
Zhang, X. et al. Electrocatalytic urea synthesis with 63.5% Faradaic effectivity and 100% N‐selectivity by way of one‐step C–N coupling. Angew. Chem. Int. Ed. 62, e202305447 (2023).
Yuan, M. et al. Unveiling electrochemical urea synthesis by co‐activation of CO2 and N2 with Mott–Schottky heterostructure catalysts. Angew. Chem. Int. Ed. 133, 11005–11013 (2021).
Yuan, M. et al. Extremely selective electroreduction of N2 and CO2 to urea over synthetic pissed off Lewis pairs. Vitality Environ. Sci. 14, 6605–6615 (2021).
Chen, X. et al. Environment friendly C–N coupling within the direct synthesis of urea from CO2 and N2 by amorphous SbxBi1−xOy clusters. Proc. Natl Acad. Sci. USA 120, e2306841120 (2023).
Paul, S., Sarkar, S., Adalder, A., Banerjee, A. & Ghorai, U. Okay. Twin steel site-mediated environment friendly C–N coupling towards electrochemical urea synthesis. J. Mater. Chem. A 11, 13249–13254 (2023).
Jiao, D. et al. Boosting the effectivity of urea synthesis by way of cooperative electroreduction of N2 and CO2 on MoP. J. Mater. Chem. A 11, 232–240 (2023).
Yuan, M. et al. Electrochemical C–N coupling with perovskite hybrids towards environment friendly urea synthesis. Chem. Sci. 12, 6048–6058 (2021).
Yuan, M. et al. Synthetic pissed off Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem. Catal. 2, 309–320 (2022).
Mukherjee, J. et al. Understanding the positioning‐selective electrocatalytic co‐discount mechanism for inexperienced urea synthesis utilizing copper phthalocyanine nanotubes. Adv. Funct. Mater. 32, 2200882 (2022).
Yuan, M. et al. Engineering floor atomic structure of NiTe nanocrystals towards environment friendly electrochemical N2 fixation. Adv. Funct. Mater. 30, 2004208 (2020).
Yuan, M. et al. Host–visitor molecular interplay promoted urea electrosynthesis over a exactly designed conductive steel–natural framework. Vitality Environ. Sci. 15, 2084–2095 (2022).
Zhu, P. et al. Steady carbon seize in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).
Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 options as much as 20% by weight utilizing a stable electrolyte. Science 366, 226–231 (2019).
Kim, J. Y. ‘T.’, Sellers, C., Hao, S., Senftle, T. P. & Wang, H. Completely different distributions of multi-carbon merchandise in CO2 and CO electroreduction underneath sensible response situations. Nat. Catal. 6, 1115–1124 (2023).
Zhu, P. & Wang, H. Excessive-purity and high-concentration liquid fuels by means of CO2 electroreduction. Nat. Catal. 4, 943–951 (2021).
Romiluyi, O., Danilovic, N., Bell, A. T. & Weber, A. Z. Membrane‐electrode meeting design parameters for optimum CO2 discount. Electrochem. Sci. Adv. 3, e2100186 (2023).
Fu, X. et al. Steady-flow electrosynthesis of ammonia by nitrogen discount and hydrogen oxidation. Science 379, 707–712 (2023).
Tune, X. et al. One-step formation of urea from carbon dioxide and nitrogen utilizing water microdroplets. J. Am. Chem. Soc. 145, 25910–25916 (2023).
Bell, A. T. A novel technique for ionomer coating of Ag nanoparticles used for the electrochemical discount of CO2 to CO in a membrane electrode meeting. Natl Sci. Rev. 11, nwad232 (2024).
Xia, C. et al. Steady manufacturing of pure liquid gasoline options by way of electrocatalytic CO2 discount utilizing solid-electrolyte gadgets. Nat. Vitality 4, 776–785 (2019).
Fan, L., Xia, C., Zhu, P., Lu, Y. & Wang, H. Electrochemical CO2 discount to high-concentration pure formic acid options in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).
Zhu, H.-L. et al. Repeatedly producing extremely concentrated and pure acetic acid aqueous answer by way of direct electroreduction of CO2. J. Am. Chem. Soc. 146, 1144–1152 (2024).
Abdul-Baki, A. A., Teasdale, J. R., Korcak, R., Chitwood, D. J. & Huettel, R. N. Recent-market tomato manufacturing in a low-input different system utilizing cover-crop mulch. HortScience 31, 65–69 (1996).
Kumar, V., Mills, D. J., Anderson, J. D. & Mattoo, A. Okay. An alternate agriculture system is outlined by a definite expression profile of choose gene transcripts and proteins. Proc. Natl Acad. Sci. USA 101, 10535–10540 (2004).
Zhu, P. et al. Direct and steady technology of pure acetic acid options by way of electrocatalytic carbon monoxide discount. Proc. Natl Acad. Sci. USA 118, e2010868118 (2021).
Kim, E. J. et al. Cooperative carbon seize and steam regeneration with tetraamine-appended steel–natural frameworks. Science 369, 392–396 (2020).
Schmitt, T. et al. Price and Efficiency Baseline for Fossil Vitality Vegetation Quantity 1: Bituminous Coal and Pure Gasoline to Electrical energy (US Division of Vitality, 2022); https://www.osti.gov/biblio/1893822; https://doi.org/10.2172/1893822
Skúlason, E. et al. A theoretical analysis of potential transition steel electro-catalysts for N2 discount. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012).
Resasco, J. & Bell, A. T. Electrocatalytic CO2 discount to fuels: progress and alternatives. Traits Chem. 2, 825–836 (2020).
Tăbăcaru, A. et al. Nickel(ii) and copper(i, ii)-based steel–natural frameworks incorporating an prolonged tris-pyrazolate linker. CrystEngComm 17, 4992–5001 (2015).
Lv, C. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Maintain. 4, 868–876 (2021).
Huang, J. et al. Single‐product faradaic effectivity for electrocatalytic of CO2 to CO at present density bigger than 1.2 A cm−2 in impartial aqueous answer by a single‐atom nanozyme. Angew. Chem. Int. Ed. 61, e202210985 (2022).
Kar, T., Scheiner, S., Roy, A. Okay. & Bettinger, H. F. Uncommon low-vibrational C=O mode of COOH can distinguish between carboxylated zigzag and armchair single-wall carbon nanotubes. J. Phys. Chem. C 116, 26072–26083 (2012).
Giubertoni, G., Sofronov, O. O. & Bakker, H. J. Commentary of distinct carboxylic acid conformers in aqueous answer. J. Phys. Chem. Lett. 10, 3217–3222 (2019).
Zhan, P. et al. Environment friendly electrosynthesis of urea over single‐atom alloy with digital steel help interplay. Angew. Chem. Int. Ed. 63, e202409019 (2024).
Qiu, W. et al. Overcoming electrostatic interplay by way of pulsed electroreduction for reinforcing the electrocatalytic urea synthesis. Angew. Chem. Int. Ed. 63, e202402684 (2024).
Ramadhany, P. et al. Triggering C‒N coupling on steel oxide nanocomposite for the electrochemical discount of CO2 and NOx− to formamide. Adv. Vitality Mater. 14, 2401786 (2024).
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: information evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k: atomistic simulations of condensed matter techniques. WIREs Comput. Mol. Sci. 4, 15–25 (2014).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Grimme, S. Semiempirical GGA‐sort density purposeful constructed with an extended‐vary dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).
VandeVondele, J. & Hutter, J. Gaussian foundation units for correct calculations on molecular techniques in gasoline and condensed phases. J. Chem. Phys. 127, 114105 (2007).