Pardi, N. & Krammer, F. mRNA vaccines for infectious illnesses — advances, challenges and alternatives. Nat. Rev. Drug Discov. 23, 838–861 (2024).
COVID-19, vaccinations (damaged down by producer). Our World in Knowledge https://ourworldindata.org/grapher/covid-vaccine-doses-by-manufacturer (accessed 25 Might 2025).
Warne, N. et al. Delivering 3 billion doses of Comirnaty in 2021. Nat. Biotechnol. 41, 183–188 (2023).
Chaudhary, N., Weissman, D. & Whitehead, Okay. A. mRNA vaccines for infectious illnesses: rules, supply and medical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).
Gupta, A., Rudra, A., Reed, Okay., Langer, R. & Anderson, D. G. Superior applied sciences for the event of infectious illness vaccines. Nat. Rev. Drug Discov. https://doi.org/10.1038/s41573-024-01041-z (2024).
Rosa, S. S., Prazeres, D. M. F., Azevedo, A. M. & Marques, M. P. C. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 39, 2190–2200 (2021).
Roozen, G. V. T., Roukens, A. H. E. & Roestenberg, M. COVID-19 vaccine dose sparing: methods to enhance vaccine fairness and pandemic preparedness. Lancet Glob. Well being 10, e570–e573 (2022).
Yassini, P. et al. Interim evaluation of a part 1 randomized medical trial on the protection and immunogenicity of the mRNA-1283 SARS-CoV-2 vaccine in adults. Hum. Vaccin. Immunother. 19, 2190690 (2023).
Verbeke, R., Hogan, M. J., Loré, Okay. & Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 55, 1993–2005 (2022).
Hassett, Okay. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019).
Public evaluation report authorisation for momentary provide COVID-19 mRNA vaccine BNT162b2 (BNT162b2 RNA) focus for resolution for injection. MHRA https://belongings.publishing.service.gov.uk/media/63529601e90e07768265c115/COVID-19_mRNA_Vaccine_BNT162b2__UKPAR___PFIZER_BIONTECH_ext_of_indication_11.6.2021.pdf (accessed 25 Might 2025).
Oda, Y. et al. Immunogenicity and security of a booster dose of a self-amplifying RNA COVID-19 vaccine (ARCT-154) versus BNT162b2 mRNA COVID-19 vaccine: a double-blind, multicentre, randomised, managed, part 3, non-inferiority trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(23)00650-3 (2024).
Sabnis, S. et al. A novel amino lipid collection for mRNA supply: improved endosomal escape and sustained pharmacology and security in non-human primates. Mol. Ther. 26, 1509–1519 (2018).
Miao, L. et al. Supply of mRNA vaccines with heterocyclic lipids will increase anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).
Li, B. et al. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01082-6 (2023).
Zhang, Y. et al. STING agonist-derived LNP-mRNA vaccine enhances protecting immunity towards SARS-CoV-2. Nano Lett. 23, 2593–2600 (2023).
Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles increase the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).
Yan, J. et al. Nanomaterials-mediated co-stimulation of toll-like receptors and CD40 for antitumor immunity. Adv. Mater. 34, 2207486 (2022).
Pulendran, B., S. Arunachalam, P. & O’Hagan, D. T. Rising ideas within the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454–475 (2021).
Goldman, R. L. et al. Understanding construction exercise relationships of Good HEPES lipids for lipid nanoparticle mRNA vaccine purposes. Biomaterials 301, 122243 (2023).
Fenton, O. S. et al. Bioinspired alkenyl amino alcohol ionizable lipid supplies for extremely potent in vivo mRNA supply. Adv. Mater. 28, 2939–2943 (2016).
Akinc, A. et al. A combinatorial library of lipid-like supplies for supply of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).
Love, Okay. T. et al. Lipid-like supplies for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).
Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA supply in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).
Whitehead, Okay. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA supply exercise. Nat. Commun. 5, 4277 (2014).
Chen, J. et al. Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA supply with minimized off-target results. Proc. Natl Acad. Sci. USA 120, e2309472120 (2023).
Tilstra, G. et al. Iterative design of ionizable lipids for intramuscular mRNA supply. J. Am. Chem. Soc. 145, 2294–2304 (2023).
Han, X. et al. Optimization of the exercise and biodegradability of ionizable lipids for mRNA supply through directed chemical evolution. Nat. Biomed. Eng. 8, 1412–1424 (2024).
Li, B. et al. Results of native structural transformation of lipid-like compounds on supply of messenger RNA. Sci. Rep. 6, 22137 (2016).
Miller, J. B., Kos, P., Tieu, V., Zhou, Okay. & Siegwart, D. J. Improvement of cationic quaternary ammonium sulfonamide amino lipids for nucleic acid supply. ACS Appl. Mater. Interfaces 10, 2302–2311 (2018).
Cornebise, M. et al. Discovery of a novel amino lipid that improves lipid nanoparticle efficiency by means of particular interactions with mRNA. Adv. Funct. Mater. 32, 2106727 (2022).
Fukami, T. & Yokoi, T. The rising position of human esterases. Drug Metab. Pharmacokinet. 27, 466–477 (2012).
Brotzel, F., Ying, C. C. & Mayr, H. Nucleophilicities of main and secondary amines in water. J. Org. Chem. 72, 3679–3688 (2007).
Heyes, J., Palmer, L., Bremner, Okay. & MacLachlan, I. Cationic lipid saturation influences intracellular supply of encapsulated nucleic acids. J. Management. Launch 107, 276–287 (2005).
Semple, S. C. et al. Rational design of cationic lipids for siRNA supply. Nat. Biotechnol. 28, 172–176 (2010).
Kauffman, Okay. J. et al. Optimization of lipid nanoparticle formulations for mRNA supply in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).
Whitehead, Okay. A. et al. In vitro–in vivo translation of lipid nanoparticles for hepatocellular siRNA supply. ACS Nano 6, 6922–6929 (2012).
Jayaraman, M. et al. Maximizing the efficiency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51, 8529–8533 (2012).
Finn, J. D. et al. A single administration of CRISPR–Cas9 lipid nanoparticles achieves sturdy and protracted in vivo genome modifying. Cell Rep. 22, 2227–2235 (2018).
Maier, M. A. et al. Biodegradable lipids enabling quickly eradicated lipid nanoparticles for systemic supply of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013).
Ndeupen, S. et al. The mRNA-LNP platform’s lipid nanoparticle element utilized in preclinical vaccine research is extremely inflammatory. iScience 24, 103479 (2021).
Hassett, Okay. J. et al. mRNA vaccine trafficking and ensuing protein expression after intramuscular administration. Mol. Ther. Nucleic Acids 35, 102083 (2024).
Trougakos, I. P. et al. Opposed results of COVID-19 mRNA vaccines: the spike speculation. Developments Mol. Med. 28, 542–554 (2022).
Efe, C. et al. Liver damage after SARS-CoV-2 vaccination: options of immune-mediated hepatitis, position of corticosteroid remedy and final result. Hepatology 76, 1576–1586 (2022).
Pateev, I., Seregina, Okay., Ivanov, R. & Reshetnikov, V. Biodistribution of RNA vaccines and of their merchandise: proof from human and animal research. Biomedicines 12, 59 (2023).
Zhang, D. et al. Simplified quantification technique for in vivo SPECT/CT imaging of asialoglycoprotein receptor with 99mTc-p(VLA-co-VNI) to evaluate and stage hepatic fibrosis in mice. Sci. Rep. 6, 25377 (2016).
Welsher, Okay., Sherlock, S. P. & Dai, H. Deep-tissue anatomical imaging of mice utilizing carbon nanotube fluorophores within the second near-infrared window. Proc. Natl Acad. Sci. USA 108, 8943–8948 (2011).
Broudic, Okay. et al. Nonclinical security analysis of a novel ionizable lipid for mRNA supply. Toxicol. Appl. Pharm. 451, 116143 (2022).
Corbett, Okay. S. et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567–571 (2020).
Pecetta, S. & Rappuoli, R. mRNA, the start of a brand new influenza vaccine sport. Proc. Natl Acad. Sci. USA 119, e2217533119 (2022).
Russell, C. A. et al. Seasonal influenza vaccine efficiency and the potential advantages of mRNA vaccines. Hum. Vaccin. Immunother. 20, 2336357 (2024).
Fink, A. L., Engle, Okay., Ursin, R. L., Tang, W.-Y. & Klein, S. L. Organic intercourse impacts vaccine efficacy and safety towards influenza in mice. Proc. Natl Acad. Sci. USA 115, 12477–12482 (2018).
Watanabe, H., Numata, Okay., Ito, T., Takagi, Okay. & Matsukawa, A. Innate immune response in th1- and th2-dominant mouse strains. Shock 22, 460–466 (2004).
Plotkin, S. A. Correlates of safety induced by vaccination. Clin. Vaccin. Immunol. 17, 1055–1065 (2010).
Khoury, D. S. et al. Neutralizing antibody ranges are extremely predictive of immune safety from symptomatic SARS-CoV-2 an infection. Nat. Med. 27, 1205–1211 (2021).
Liu, H. et al. Construction-based programming of lymph-node concentrating on in molecular vaccines. Nature 507, 519–522 (2014).
Fenton, O. S. et al. Customizable lipid nanoparticle supplies for the supply of siRNAs and mRNAs. Angew. Chem. Int. Ed. 57, 13582–13586 (2018).
Liang, F. et al. Environment friendly concentrating on and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol. Ther. 25, 2635–2647 (2017).
Haensler, J. & Szoka, F. C. Polyamidoamine cascade polymers mediate environment friendly transfection of cells in tradition. Bioconjug. Chem. 4, 372–379 (1993).
Bus, T., Traeger, A. & Schubert, U. S. The good escape: how cationic polyplexes overcome the endosomal barrier. J. Mater. Chem. B 6, 6904–6918 (2018).
Freeman, E. C., Weiland, L. M. & Meng, W. S. Modeling the proton sponge speculation: inspecting proton sponge effectiveness for enhancing intracellular gene supply by means of multiscale modeling. J. Biomater. Sci. Polym. Ed. 24, 398–416 (2013).
Nguyen, J. & Szoka, F. C. Nucleic acid supply: the lacking items of the puzzle?. Acc. Chem. Res. 45, 1153–1162 (2012).
Patel, S. et al. Transient replace on endocytosis of nanomedicines. Adv. Drug Deliv. Rev. 144, 90–111 (2019).
Hafez, I. M., Maurer, N. & Cullis, P. R. On the mechanism whereby cationic lipids promote intracellular supply of polynucleic acids. Gene Ther. 8, 1188–1196 (2001).
Finger, S., Schwieger, C., Arouri, A., Kerth, A. & Blume, A. Interplay of linear polyamines with negatively charged phospholipids: the impact of polyamine cost distance. Biol. Chem. 395, 769–778 (2014).
Aty, H. A. et al. Machine studying platform for figuring out experimental lipid part behaviour from small angle X-ray scattering patterns by pre-training on artificial information. Digit. Discov. 1, 98–107 (2022).
Li, B. et al. Accelerating ionizable lipid discovery for mRNA supply utilizing machine studying and combinatorial chemistry. Nat. Mater. 23, 1002–1008 (2024).
Witten, J. et al. Synthetic intelligence-guided design of lipid nanoparticles for pulmonary gene remedy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02490-y (2024).
Finest, R. B. et al. Optimization of the additive CHARMM all-atom protein drive discipline concentrating on improved sampling of the spine φ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Concept Comput. 8, 3257–3273 (2012).
Mackerell, A. D. Empirical drive fields for organic macromolecules: overview and points. J. Comput. Chem. 25, 1584–1604 (2004).
Venable, R. M., Brown, F. L. H. & Pastor, R. W. Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem. Phys. Lipids 192, 60–74 (2015).
Leonard, A. N., Wang, E., Monje-Galvan, V. & Klauda, J. B. Growing and testing of lipid drive fields with purposes to modeling mobile membranes. Chem. Rev. 119, 6227–6269 (2019).
Klauda, J. B. et al. Replace of the CHARMM all-atom additive drive discipline for lipids: validation on six lipid sorts. J. Phys. Chem. B 114, 7830–7843 (2010).
Brooks, B. R. et al. CHARMM: A program for macromolecular power, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).
Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).
Hwang, W. et al. CHARMM at 45: enhancements in accessibility, performance, and velocity. J. Phys. Chem. B 128, 9976–10042 (2024).
Smith, P., Ziolek, R. M., Gazzarrini, E., Owen, D. M. & Lorenz, C. D. On the interplay of hyaluronic acid with synovial fluid lipid membranes. Phys. Chem. Chem. Phys. 21, 9845–9857 (2019).
