14.8 C
Canberra
Thursday, October 30, 2025

Current advances in theranostic nanomaterials for overcoming traumatic mind damage | Journal of Nanobiotechnology


  • Ng SY, Lee AYW. Traumatic mind accidents: pathophysiology and potential therapeutic targets. Entrance Cell Neurosci. 2019;13:528.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werner C, Engelhard Ok. Pathophysiology of traumatic mind damage. Br J Anaesth. 2007;99:4–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khellaf A, Khan DZ, Helmy A. Current advances in traumatic mind damage. J Neurol. 2019;266:2878–89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai L, Gong Q, Qi L, Xu T, Suo Q, Li X, Wang W, Jing Y, Yang D, Xu Z, et al. ACT001 attenuates microglia-mediated neuroinflammation after traumatic mind damage through inhibiting AKT/NFκB/NLRP3 pathway. Cell Commun Sign. 2022;20:56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdul-Muneer P, Chandra N, Haorah J. Interactions of oxidative stress and neurovascular irritation within the pathogenesis of traumatic mind damage. Mol Neurobiol. 2015;51:966–79.

    Article 
    CAS 

    Google Scholar
     

  • Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM, et al. Enhance in blood–mind barrier permeability, oxidative stress, and activated microglia in a rat mannequin of blast-induced traumatic mind damage. J Neurosci Res. 2010;88:3530–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blennow Ok, Brody DL, Kochanek PM, Levin H, McKee A, Ribbers GM, et al. Traumatic mind accidents. Nat Rev Dis Primers. 2016;2:1–19.

    Article 

    Google Scholar
     

  • Maas AI, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, et al. Traumatic mind damage: progress and challenges in prevention, medical care, and analysis. Lancet Neurol. 2022;21:1004–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballabh P, Braun A, Nedergaard M. The blood–mind barrier: an outline: construction, regulation, and medical implications. Neurobiol Dis. 2004;16:1–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–mind barrier: construction, regulation and drug supply. Sign Transduct Goal Ther. 2023;8:217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma X, Zhao Y, Liang X-J. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res. 2011;44:1114–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim Y, Kim J, An JM, Park C-Ok, Kim D. All-nontoxic fluorescent probe for biothiols and its medical functions for real-time glioblastoma visualization. ACS Sens. 2023;8:1723–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Um H, Kim NH, Kim D. Potential Alzheimer’s illness therapeutic nano-platform: discovery of amyloid-beta plaque disaggregating agent and brain-targeted supply system utilizing porous silicon nanoparticles. Bioact Mater. 2023;24:497–506.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang RH, Jang J-E, Huh E, Kang SJ, Ahn D-R, Kang JS, et al. A mind tumor-homing tetra-peptide delivers a nano-therapeutic for simpler remedy of a mouse mannequin of glioblastoma. Nanoscale Horiz. 2020;5:1213–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brahmi M, Bakirhan NK. Improvements in traumatic mind damage diagnostics: electrochemical impedance spectroscopy main the way in which. J Appl Electrochem. 2024;55:1–17.

    Article 

    Google Scholar
     

  • Dhull A, Zhang Z, Sharma R, Dar AI, Rani A, Wei J, Gopalakrishnan S, Ghannam A, Hahn V, Pulukuri AJ, et al. Discovery of 2-deoxy glucose surfaced blended layer dendrimer: a sensible neuron focused systemic drug supply system for mind illnesses. Theranostics. 2024;14:3221–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McHugh EA, Liopo AV, Mendoza Ok, Robertson CS, Wu G, Wang Z, Chen W, Beckham JL, Derry PJ, Kent TA, Tour JM. Oxidized activated charcoal nanozymes: synthesis, and optimization for in vitro and in vivo bioactivity for traumatic mind damage. Adv Mater. 2024;36:e2211239.

    Article 
    PubMed 

    Google Scholar
     

  • Robbins EM, Wong B, Pwint MY, Salavatian S, Mahajan A, Cui XT. Bettering sensitivity and longevity of in vivo glutamate sensors with electrodeposited nanopt. ACS Appl Mater Interfaces. 2024;16:40570–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubby MF, Fonder C, Uchayash S, Liang X, Sakaguchi DS, Que L. Evaluation of the behaviors of an in vitro mind mannequin on-chip underneath shockwave impacts. ACS Appl Mater Interfaces. 2024;16:33246–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim Y, An JM, Kim J, Chowdhury T, Yu HJ, Kim Ok-M, Kang H, Park C-Ok, Joung JF, Park S. Pyridine-NBD: A homocysteine-selective fluorescent probe for glioblastoma (GBM) analysis based mostly on a blood check. Anal Chim Acta. 2022;1202:339678.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singha S, Kim D, Rao AS, Wang T, Kim KH, Lee Ok-H, et al. Two-photon probes based mostly on arylsulfonyl azides: fluorescence detection and imaging of biothiols. Dyes Pigments. 2013;99:308–15.

    Article 
    CAS 

    Google Scholar
     

  • Zuidema JM, Kumeria T, Kim D, Kang J, Wang J, Hollett G, Zhang X, Roberts DS, Chan N, Dowling C. Oriented nanofibrous polymer scaffolds containing protein-loaded porous silicon generated by spray nebulization. Adv Mater. 2018;30:1706785.

    Article 

    Google Scholar
     

  • Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J. A trial of intracranial-pressure monitoring in traumatic mind damage. N Engl J Med. 2012;367:2471–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan B, Anderson DB, Chen L, Feng S, Zhou H. International, regional and nationwide burden of traumatic mind damage and spinal wire damage, 1990–2019: a scientific evaluation for the worldwide burden of illness research 2019. BMJ Open. 2023;13:e075049.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • James SL, Theadom A, Ellenbogen RG, Bannick MS, Montjoy-Venning W, Lucchesi LR, et al. International, regional, and nationwide burden of traumatic mind damage and spinal wire damage, 1990–2016: a scientific evaluation for the worldwide burden of illness research 2016. Lancet Neurol. 2019;18:56–87.

    Article 

    Google Scholar
     

  • Stein MB, Kessler RC, Heeringa SG, Jain S, Campbell-Sills L, Colpe LJ, et al. Potential longitudinal analysis of the impact of deployment-acquired traumatic mind damage on posttraumatic stress and associated problems: outcomes from the military research to evaluate danger and resilience in servicemembers (Military STARRS). Am J Psychiatry. 2015;172:1101–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson BD. Sports activities-related subconcussive head trauma. Concussions Athletics: Mind Behav. 2021;249–69.

  • Bruns J Jr, Hauser WA. The epidemiology of traumatic mind damage: a evaluate. Epilepsia. 2003;44:2–10.

    Article 
    PubMed 

    Google Scholar
     

  • Fernandes FAO. Biomechanical evaluation of helmeted head impacts: novel supplies and geometries. Universidade de Aveiro (Portugal); 2019.

  • Johnson WD, Griswold DP. Traumatic mind damage: a world problem. Lancet Neurol. 2017;16:949–50.

    Article 
    PubMed 

    Google Scholar
     

  • Roozenbeek B, Maas AI, Menon DK. Altering patterns within the epidemiology of traumatic mind damage. Nat Rev Neurol. 2013;9:231–6.

    Article 
    PubMed 

    Google Scholar
     

  • Harvey LA, Shut JC. Traumatic mind damage in older adults: traits, causes and penalties. Harm. 2012;43:1821–6.

    Article 
    PubMed 

    Google Scholar
     

  • Thompson HJ, McCormick WC, Kagan SH. Traumatic mind damage in older adults: epidemiology, outcomes, and future implications. J Am Geriatr Soc. 2006;54:1590–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toth L, Czigler A, Horvath P, Kornyei B, Szarka N, Schwarcz A, Ungvari Z, Buki A, Toth P. Traumatic mind injury-induced cerebral microbleeds within the aged. Geroscience. 2021;43:125–36.

    Article 
    PubMed 

    Google Scholar
     

  • Reger MA, Brenner LA, du Pont A. Traumatic mind damage and veteran mortality after the conflict in Afghanistan. JAMA Netw Open. 2022;5:e2148158-2148158.

    Article 

    Google Scholar
     

  • Stein DG, Geddes RI, Sribnick EA. Current developments in medical trials for the remedy of traumatic mind damage. Handb Clin Neurol. 2015;127:433–51.

    Article 
    PubMed 

    Google Scholar
     

  • DePalma RG, Hoffman SW. Fight blast associated traumatic mind damage (TBI): decade of recognition; promise of progress. Behav Mind Res. 2018;340:102–5.

    Article 
    PubMed 

    Google Scholar
     

  • Duckworth JL, Grimes J, Ling GS. Pathophysiology of battlefield related traumatic mind damage. Pathophysiology. 2013;20:23–30.

    Article 
    PubMed 

    Google Scholar
     

  • Marklund N. Blast-Induced Mind Harm. Administration of Extreme Traumatic Mind Harm: Proof, Tips, and Pitfalls 2020:109–113.

  • Aravind A, Ravula AR, Chandra N, Pfister BJ. Behavioral deficits in animal fashions of blast traumatic mind damage. Entrance Neurol. 2020;11:990.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bugay V, Bozdemir E, Vigil FA, Chun SH, Holstein DM, Elliott WR, et al. A mouse mannequin of repetitive blast traumatic mind damage reveals post-trauma seizures and elevated neuronal excitability. J Neurotrauma. 2020;37:248–61.

    Article 
    PubMed 

    Google Scholar
     

  • Tomura S, Seno S, Kawauchi S, Miyazaki H, Sato S, Kobayashi Y, et al. A novel mouse mannequin of delicate traumatic mind damage utilizing laser-induced shock waves. Neurosci Lett. 2020;721:134827.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kandell RM, Kudryashev JA, Kwon EJ. Focusing on the extracellular matrix in traumatic mind damage will increase sign era from an activity-based nanosensor. ACS Nano. 2021;15:20504–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kandell RM, Wu JR, Kwon EJ. Reprogramming clots for in vivo chemical focusing on in traumatic mind damage. Adv Mater. 2024;2301738.

  • Nikolian VC, Dekker SE, Bambakidis T, Higgins GA, Dennahy IS, Georgoff PE, et al. Enchancment of blood-brain barrier integrity in traumatic mind damage and hemorrhagic shock following remedy with valproic acid and recent frozen plasma. Crit Care Med. 2018;46:e59-66.

    Article 
    PubMed 

    Google Scholar
     

  • Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic mind damage. J Cereb Blood Circulation Metab. 2017;37:2320–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkler EA, Minter D, Yue JK, Manley GT. Cerebral edema in traumatic mind damage: pathophysiology and potential therapeutic targets. Neurosurg Clin N Am. 2016;27:473–88.

    Article 
    PubMed 

    Google Scholar
     

  • Maas AI, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, et al. Traumatic mind damage: built-in approaches to enhance prevention, medical care, and analysis. Lancet Neurol. 2017;16:987–1048.

    Article 
    PubMed 

    Google Scholar
     

  • Meyfroidt G, Bouzat P, Casaer MP, Chesnut R, Hamada SR, Helbok R, Hutchinson P, Maas AI, Manley G, Menon DK. Administration of average to extreme traumatic mind damage: an replace for the intensivist. Intensive Care Med. 2022;48:649–66.

    Article 
    PubMed 

    Google Scholar
     

  • van Erp IA, Michailidou I, van Essen TA, van der Jagt M, Moojen W, Peul WC, Baas F, Fluiter Ok. Tackling neuroinflammation after traumatic mind damage: complement Inhibition as a remedy for secondary damage. Neurotherapeutics. 2023;20:284–303.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Huang X, Dangle D, Jin J, Li S, Zhu Y, et al. Focusing on pyroptosis with nanoparticles to alleviate neuroinflammatory for stopping secondary harm following traumatic mind damage. Sci Adv. 2024;10:eadj4260.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bharadwaj VN, Nguyen DT, Kodibagkar VD, Stabenfeldt SE. Nanoparticle-based therapeutics for mind damage. Adv Healthc Mater. 2018;7:1700668.

    Article 

    Google Scholar
     

  • Mohammed FS, Omay SB, Sheth KN, Zhou J. Nanoparticle-based drug supply for the remedy of traumatic mind damage. Knowledgeable Opin Drug Deliv. 2023;20:55–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva GA. Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surg Neurol. 2005;63:301–6.

    Article 
    PubMed 

    Google Scholar
     

  • Siklos M, BenAissa M, Thatcher GR. Cysteine proteases as therapeutic targets: does selectivity matter? A scientific evaluate of calpain and cathepsin inhibitors. Acta Pharm Sin B. 2015;5(6):506–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saatman KE, Creed J, Raghupathi R. Calpain as a therapeutic goal in traumatic mind damage. Neurotherapeutics. 2010;7:31–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cagmat EB, Guingab-Cagmat JD, Vakulenko AV, Hayes RL, Anagli J. Potential use of calpain inhibitors as mind damage remedy. 2015.

  • Kudryashev JA, Waggoner LE, Leng HT, Mininni NH, Kwon EJ. An activity-based nanosensor for traumatic mind damage. ACS Sens. 2020;5:686–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baudry M, Luo YL, Bi X. Calpain-2 inhibitors as remedy for traumatic mind damage. Neurotherapeutics. 2023;20:1592–602.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schoch KM, Von Reyn CR, Bian J, Telling GC, Meaney DF, Saatman KE. Mind injury-induced proteolysis is decreased in a novel calpastatin‐overexpressing transgenic mouse. J Neurochem. 2013;125:909–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bains M, Cebak JE, Gilmer LK, Barnes CC, Thompson SN, Geddes JW, et al. Pharmacological evaluation of the cortical neuronal cytoskeletal protecting efficacy of the calpain inhibitor SNJ-1945 in a mouse traumatic mind damage mannequin. J Neurochem. 2013;125:125–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andriessen TM, Jacobs B, Vos PE. Scientific traits and pathophysiological mechanisms of focal and diffuse traumatic mind damage. J Cell Mol Med. 2010;14:2381–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czogalla A, Sikorski A. Spectrin and calpain: a ‘goal’and a ‘sniper’within the pathology of neuronal cells. Cell Mol Life Sci. 2005;62:1913–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gan ZS, Stein SC, Swanson R, Guan S, Garcia L, Mehta D, Smith DH. Blood biomarkers for traumatic mind damage: a quantitative evaluation of diagnostic and prognostic accuracy. Entrance Neurol. 2019;10:446.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamakubo T, Kannagi R, Murachi T, Matus A. Distribution of calpains I and II in rat mind. J Neurosci. 1986;6:3103–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siman R, Giovannone N, Hanten G, Wilde EA, McCauley SR, Hunter JV, Li X, Levin HS, Smith DH. Proof that the blood biomarker SNTF predicts mind imaging adjustments and chronic cognitive dysfunction in delicate TBI sufferers. Entrance Neurol. 2013;4:190.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, et al. An replace on diagnostic and prognostic biomarkers for traumatic mind damage. Knowledgeable Rev Mol Diagn. 2018;18:165–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan X-X, Jeromin A. Spectrin breakdown merchandise (SBDPs) as potential biomarkers for neurodegenerative illnesses. Curr Transl Geriatr Exp Gerontol Rep. 2012;1:85–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madias MI, Stessman LN, Warlof SJ, Kudryashev JA, Kwon EJ. Spatial measurement and inhibition of calpain exercise in traumatic mind damage with an activity-based nanotheranostic platform. ACS Nano. 2024;18:25565–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Z, Han Y, Huang X, Ma H, Zhang X, Music J, Dong J, Li S, Yu R, Liu H. A novel focused nanoparticle for traumatic mind damage remedy: mixed impact of ROS depletion and calcium overload Inhibition. Adv Healthc Mater. 2022;11:2102256.

    Article 
    CAS 

    Google Scholar
     

  • Shohami E, Kohen R. The position of reactive oxygen species within the pathogenesis of traumatic mind damage. Oxidative Stress Free Radical Harm Neurol 2011; 99–118.

  • Kowaltowski AJ, Vercesi AE. Mitochondrial harm induced by situations of oxidative stress. Free Radic Biol Med. 1999;26:463–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewén A, Matz P, Chan PH. Free radical pathways in CNS damage. J Neurotrauma. 2000;17:871–90.

    Article 
    PubMed 

    Google Scholar
     

  • Mecocci P, Beal MF, Cecchetti R, Polidori MC, Cherubini A, Chionne F, Avellini L, Romano G, Senin U. Mitochondrial membrane fluidity and oxidative harm to mitochondrial DNA in aged and AD human mind. Mol Chem Neuropathol. 1997;31:53–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pandya JD, Musyaju S, Modi HR, Cao Y, Flerlage WJ, Huynh L, Kociuba B, Visavadiya NP, Kobeissy F, Wang Ok. Complete analysis of mitochondrial redox profile, calcium dynamics, membrane integrity and apoptosis markers in a preclinical mannequin of extreme penetrating traumatic mind damage. Free Radic Biol Med. 2023;198:44–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Li Z, Fan X, Jiang C, Wang J, Rastegar-Kashkooli Y, Wang TJ, Wang J, Wang M, Cheng N, et al. Nanozymes: potential therapies for reactive oxygen species overproduction and irritation in ischemic stroke and traumatic mind damage. ACS Nano. 2024;18:16450–67. https://doi.org/10.1021/acsnano.4c03425

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood–mind barrier breakdown as a therapeutic goal in traumatic mind damage. Nat Rev Neurol. 2010;6:393–403.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bharadwaj VN, Lifshitz J, Adelson PD, Kodibagkar VD, Stabenfeldt SE. Temporal evaluation of nanoparticle accumulation after experimental mind damage: impact of particle measurement. Sci Rep. 2016;6:29988.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyd BJ, Galle A, Daglas M, Rosenfeld JV, Medcalf R. Traumatic mind damage opens blood–mind barrier to stealth liposomes through an enhanced permeability and retention (EPR)-like impact. J Drug Goal. 2015;23:847–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waggoner LE, Kang J, Zuidema JM, Vijayakumar S, Hurtado AA, Sailor MJ, et al. Porous silicon nanoparticles focused to the extracellular matrix for therapeutic protein supply in traumatic mind damage. Bioconjug Chem. 2022;33:1685–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waggoner LE, Madias MI, Hurtado AA, Kwon EJ. Pharmacokinetic evaluation of peptide-modified nanoparticles with engineered physicochemical properties in a mouse mannequin of traumatic mind damage. AAPS J. 2021;23:100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo D, Magsam AW, Kelly AM, Stayton PS, Kievit FM, Convertine AJ. Core-cross-linked nanoparticles cut back neuroinflammation and enhance final result in a mouse mannequin of traumatic mind damage. ACS Nano. 2017;11:8600–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cernak I, Savic J, Ignjatovic D, Jevtic M. Blast damage from explosive munitions. J Trauma Acute Care Surg. 1999;47:96–103.

    Article 
    CAS 

    Google Scholar
     

  • Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. A managed cortical impression mannequin of traumatic mind damage within the rat. J Neurosci Strategies. 1991;39:253–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duhaime A-C. Giant animal fashions of traumatic damage to the immature mind. Dev Neurosci. 2006;28:380–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duhaime A-C, Margulies SS, Durham SR, O’Rourke MM, Golden JA, Marwaha S, et al. Maturation-dependent response of the piglet mind to scaled cortical impression. J Neurosurg. 2000;93:455–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutchke J, Anderson R, Sandoz B, Finnie J, Manavis J, Nishimoto T, Morris T, Wells A, Turner R, Vink R. A biomechanical mannequin of traumatic contusional damage produced by managed cerebrocortical indentation in sheep. In IRCOBI Convention Proceedings. 2016: 354–368.

  • King C, Robinson T, Dixon CE, Rao GR, Larnard D, Nemoto CEM. Mind temperature profiles throughout epidural cooling with the chillerpad in a monkey mannequin of traumatic mind damage. J Neurotrauma. 2010;27:1895–903.

    Article 
    PubMed 

    Google Scholar
     

  • Leung LY, Larimore Z, Holmes L, Cartagena C, Mountney A, Deng-Bryant Y, Schmid Ok, Shear D, Tortella F. The WRAIR projectile concussive impression mannequin of delicate traumatic mind damage: re-design, testing and preclinical validation. Ann Biomed Eng. 2014;42:1618–30.

    Article 
    PubMed 

    Google Scholar
     

  • Lighthall JW. Managed cortical impression: a brand new experimental mind damage mannequin. J Neurotrauma. 1988;5:1–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Namjoshi DR, Cheng WH, McInnes KA, Martens KM, Carr M, Wilkinson A, et al. Merging pathology with biomechanics utilizing CHIMERA (Closed-Head impression mannequin of engineered rotational Acceleration): a novel, surgery-free mannequin of traumatic mind damage. Mol Neurodegener. 2014;9:1–18.

    Article 

    Google Scholar
     

  • Romine J, Gao X, Chen J. Managed cortical impression mannequin for traumatic mind damage. J Visualized Experiments: JoVE 2014;51781.

  • Williams AJ, Hartings JA, Lu X-CM, Rolli ML, Dave JR, Tortella FC. Characterization of a brand new rat mannequin of penetrating ballistic mind damage. J Neurotrauma. 2005;22:313–31.

    Article 
    PubMed 

    Google Scholar
     

  • Laurer HL, Lenzlinger PM, McIntosh TK. Fashions of traumatic mind damage. Eur J Trauma. 2000;26:95–110.

    Article 

    Google Scholar
     

  • Lisi I, Moro F, Mazzone E, Marklund N, Pischiutta F, Kobeissy F, Mao X, Corrigan F, Helmy A, Nasrallah F. Exploiting blood-based biomarkers to align preclinical fashions with human traumatic mind damage. Mind. 2025;148:1062–80.

    Article 
    PubMed 

    Google Scholar
     

  • Petersen A, Soderstrom M, Saha B, Sharma P. Animal fashions of traumatic mind damage: a evaluate of pathophysiology to biomarkers and coverings. Exp Mind Res. 2021;239:2939–50.

    Article 
    PubMed 

    Google Scholar
     

  • Adelson PD, Ragheb J, Muizelaar JP, Kanev P, Brockmeyer D, Beers SR, Brown SD, Cassidy LD, Chang Y, Levin H. Part II medical trial of average hypothermia after extreme traumatic mind damage in youngsters. Neurosurgery. 2005;56:740–54.

    Article 
    PubMed 

    Google Scholar
     

  • Adelson PD, Wisniewski SR, Beca J, Brown SD, Bell M, Muizelaar JP, et al. Comparability of hypothermia and normothermia after extreme traumatic mind damage in youngsters (Cool Youngsters): a section 3, randomised managed trial. Lancet Neurol. 2013;12:546–53.

    Article 
    PubMed 

    Google Scholar
     

  • Beca J, McSharry B, Erickson S, Yung M, Schibler A, Slater A, et al. Hypothermia for traumatic mind damage in youngsters—a section II randomized managed trial. Crit Care Med. 2015;43:1458–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Collaborators CT. Impact of intravenous corticosteroids on demise inside 14 days in 10 008 adults with clinically vital head damage (MRC crash trial): randomised placebo-controlled trial. Lancet. 2004;364:1321–8.

    Article 

    Google Scholar
     

  • Robertson CS, McCarthy JJ, Miller ER, Levin H, McCauley SR, Swank PR. Part II medical trial of atorvastatin in delicate traumatic mind damage. J Neurotrauma. 2017;34:1394–401.

    Article 
    PubMed 

    Google Scholar
     

  • Skolnick BE, Maas AI, Narayan RK, Van Der Hoop RG, MacAllister T, Ward JD, et al. A medical trial of progesterone for extreme traumatic mind damage. N Engl J Med. 2014;371:2467–76.

    Article 
    PubMed 

    Google Scholar
     

  • Wright DW, Kellermann AL, Hertzberg VS, Clark PL, Frankel M, Goldstein FC, Salomone JP, Dent LL, Harris OA. Ander DS: defend: a randomized medical trial of progesterone for acute traumatic mind damage. Ann Emerg Med. 2007;49:391–402. e392.

    Article 
    PubMed 

    Google Scholar
     

  • Wright DW, Yeatts SD, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M, Goldstein FC, Caveney AF, Howlett-Smith H, Bengelink EM. Very early administration of progesterone for acute traumatic mind damage. N Engl J Med. 2014;371:2457–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bramlett HM, Dietrich WD. Lengthy-term penalties of traumatic mind damage: present standing of potential mechanisms of damage and neurological outcomes. J Neurotrauma. 2015;32:1834–48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maas AI, Stocchetti N, Bullock R. Average and extreme traumatic mind damage in adults. Lancet Neurol. 2008;7(8):728–41.

    Article 
    PubMed 

    Google Scholar
     

  • Nowak M, Helgeson ME, Mitragotri S. Supply of nanoparticles and macromolecules throughout the blood–mind barrier. Adv Ther. 2020;3:1900073.

    Article 

    Google Scholar
     

  • Diaz MD, Kandell RM, Wu JR, Chen A, Christman KL, Kwon EJ. Infusible extracellular matrix biomaterial promotes vascular integrity and modulates the inflammatory response in acute traumatic mind damage. Adv Healthc Mater. 2023;12:2300782.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kudryashev JA, Madias MI, Kandell RM, Lin QX, Kwon EJ. An activity-Primarily based nanosensor for Minimally‐Invasive measurement of protease exercise in traumatic mind damage. Adv Funct Mater. 2023;33:2300218.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lagraoui M, Sukumar G, Latoche JR, Maynard SK, Dalgard CL, Schaefer BC. Salsalate remedy following traumatic mind damage reduces irritation and promotes a neuroprotective and neurogenic transcriptional response with concomitant practical restoration. Mind Behav Immun. 2017;61:96–109.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB. Transcranial amelioration of irritation and cell demise after mind damage. Nature. 2014;505:223–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma R, Kambhampati SP, Zhang Z, Sharma A, Chen S, Duh EI, et al. Dendrimer mediated focused supply of sinomenine for the remedy of acute neuroinflammation in traumatic mind damage. J Managed Launch. 2020;323:361–75.

    Article 
    CAS 

    Google Scholar
     

  • Zhu Y, Wang H, Fang J, Dai W, Zhou J, Wang X, Zhou M. SS-31 offers neuroprotection by reversing mitochondrial dysfunction after traumatic mind damage. Oxidative Medication and Mobile Longevity 2018, 2018:4783602.

  • Mann AP, Scodeller P, Hussain S, Joo J, Kwon E, Braun GB, Mölder T, She Z-G, Kotamraju VR, Ranscht B. A peptide for focused, systemic supply of imaging and therapeutic compounds into acute mind accidents. Nat Commun. 2016;7:11980.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruoslahti E. Molecular ZIP codes in focused drug supply. Proc Natl Acad Sci U S A. 2022;119:e2200183119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mu X, He H, Wang J, Lengthy W, Li Q, Liu H, Gao Y, Ouyang L, Ren Q, Solar S, et al. Carbogenic nanozyme with ultrahigh reactive nitrogen species selectivity for traumatic mind damage. Nano Lett. 2019;19:4527–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waggoner LE, Miyasaki KF, Kwon EJ. Evaluation of PEG-lipid anchor size on lipid nanoparticle pharmacokinetics and exercise in a mouse mannequin of traumatic mind damage. Biomater Sci. 2023;11:4238–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han S, Yoo W, Carton O, Joo J, Kwon EJ. Pegylated multimeric RNA nanoparticles for siRNA supply in traumatic mind damage. Small. 2025;21:2405806.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kandell RM, Wu JR, Kwon EJ. Reprograming clots for in vivo chemical focusing on in traumatic mind damage. Adv Mater. 2024;36:2301738.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles