10.4 C
Canberra
Friday, September 20, 2024

Coupled nanopores for single-molecule detection


  • Xue, L. et al. Stable-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Manrao, E. A. et al. Studying DNA at single-nucleotide decision with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danda, G. & Drndić, M. Two-dimensional nanopores and nanoporous membranes for ion and molecule transport. Curr. Opin. Biotechnol. 55, 124–133 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Healy, Ok., Schiedt, B., Morrison, I. P. & Morrison, A. P. Stable-state nanopore applied sciences for nanopore-based DNA evaluation. Nanomedicine 2, 875–897 (2007).

  • Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dekker, C. Stable-state nanopores. Nat. Nanotechnol. 2, 209–215 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deamer, D. W. & Akeson, M. Nanopores and nucleic acids: prospects for ultrarapid sequencing. Developments Biotechnol. 18, 147–151 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Ok., Gularek, F., Liu, B., Weinhold, E. & Keyser, U. F. Electrical DNA sequence mapping utilizing oligodeoxynucleotide labels and nanopores. ACS Nano 15, 2679–2685 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Ok. et al. Dynamics of pushed polymer transport by a nanopore. Nat. Phys. 17, 1043–1049 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Niedzwiecki, D. J. et al. Gadgets for nanoscale guiding of DNA by a 2D nanopore. ACS Sens. 6, 2534–2545 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cadinu, P. et al. Double barrel nanopores as a brand new software for controlling single-molecule transport. Nano Lett. 18, 2738–2745 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rand, A. et al. Digital mapping of a bacterial genome with twin solid-state nanopores and energetic single-molecule management. ACS Nano 16, 5258–5273 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pud, S. et al. Mechanical trapping of DNA in a double-nanopore system. Nano Lett. 16, 8021–8028 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, Y.-C., Chen, J., Lin, C.-Y. & Drndić, M. Engineering adjustable two-pore gadgets for parallel ion transport and DNA translocations. J. Chem. Phys. 154, 105102 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedone, D., Langecker, M., Abstreiter, G. & Rant, U. A pore–cavity–pore gadget to lure and examine single nanoparticles and DNA molecules in a femtoliter compartment: confined diffusion and slender escape. Nano Lett. 11, 1561–1567 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langecker, M., Pedone, D., Simmel, F. C. & Rant, U. Electrophoretic time-of-flight measurements of single DNA molecules with two stacked nanopores. Nano Lett. 11, 5002–5007 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X., Skanata, M. M. & Stein, D. Entropic cages for trapping DNA close to a nanopore. Nat. Commun. 6, 6222 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Service provider, C. A. et al. DNA translocation by graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masih Das, P. et al. Atomic-scale patterning in two-dimensional van der Waals superlattices. Nanotechnology 31, 105302 (2019).

    PubMed 

    Google Scholar
     

  • Rodríguez-Manzo, J. A., Puster, M., Nicolaï, A., Meunier, V. & Drndić, M. DNA translocation in nanometer thick silicon nanopores. ACS Nano 9, 6555–6564 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Chien, C.-C., Shekar, S., Niedzwiecki, D. J., Shepard, Ok. L. & Drndić, M. Single-stranded DNA translocation recordings by solid-state nanopores on glass chips at 10 MHz measurement bandwidth. ACS Nano 13, 10545–10554 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischbein, M. D. & Drndić, M. Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 93, 113107 (2008).

    Article 

    Google Scholar
     

  • Thiruraman, J. P., Masih Das, P. & Drndić, M. Stochastic ionic transport in single atomic zero-dimensional pores. ACS Nano 14, 11831–11845 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masih Das, P. et al. Managed sculpture of black phosphorus nanoribbons. ACS Nano 10, 5687–5695 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Briggs, Ok. et al. DNA translocations by nanopores underneath nanoscale preconfinement. Nano Lett. 18, 660–668 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alibakhshi, M. A. et al. Scaled‐up synthesis of freestanding molybdenum disulfide membranes for nanopore sensing. Adv. Mater. 35, 2207089 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lin, C.-Y. et al. Modulation of cost density and cost polarity of nanopore wall by salt gradient and voltage. ACS Nano 13, 9868–9879 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wanunu, M. et al. Fast digital detection of probe-specific microRNAs utilizing skinny nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kowalczyk, S. W., Tuijtel, M. W., Donkers, S. P. & Dekker, C. Unraveling single-stranded DNA in a solid-state nanopore. Nano Lett. 10, 1414–1420 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brinkers, S., Dietrich, H. R. C., De Groote, F. H., Younger, I. T. & Rieger, B. The persistence size of double stranded DNA decided utilizing darkish area tethered particle movement. J. Chem. Phys. 130, 215105 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Bell, N. A. W., Chen, Ok., Ghosal, S., Ricci, M. & Keyser, U. F. Uneven dynamics of DNA coming into and exiting a strongly confining nanopore. Nat. Commun. 8, 380 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carson, S., Wilson, J., Aksimentiev, A. & Wanunu, M. Easy DNA transport by a narrowed pore geometry. Biophys. J. 107, 2381–2393 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, Y.-C., Masih Das, P., Monos, D. S. & Drndić, M. Lifetime and stability of silicon nitride nanopores and nanopore arrays for ionic measurements. ACS Nano 14, 6715–6728 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shekar, S. et al. Measurement of DNA translocation dynamics in a solid-state nanopore at 100 ns temporal decision. Nano Lett. 16, 4483–4489 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, C.-Y. et al. Ultrafast polymer dynamics by a nanopore. Nano Lett. 22, 8719–8727 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venta, Ok. et al. Differentiation of brief, single-stranded DNA homopolymers in solid-state nanopores. ACS Nano 7, 4629–4636 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parkin, W. M. et al. Raman shifts in electron-irradiated monolayer MoS2. ACS Nano 10, 4134–4142 (2016).

  • Mlack, J. T. et al. Switch of monolayer TMD WS2 and Raman examine of substrate results. Sci. Rep. 7, 43037 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balan, A. et al. Bettering signal-to-noise efficiency for DNA translocation in solid-state nanopores at MHz bandwidths. Nano Lett. 14, 7215–7220 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles