15.9 C
Canberra
Wednesday, October 22, 2025

Convergence of nanotechnology and CRISPR-based diagnostics


  • van Dongen, J. E. & Segerink, L. I. Constructing the way forward for medical diagnostics: an evaluation of potential advantages and present obstacles in CRISPR/Cas diagnostics. ACS Synth. Biol. 14, 323–331 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lubbers, B. R. et al. The brand new EU regulation on in vitro diagnostic medical gadgets: Implications and preparatory actions for diagnostic laboratories. HemaSphere 5, e568 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, T. & Chen, X. Nano for CRISPR. ACS Nano 16, 8505–8506 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chowdhry, R. et al. Enhancing CRISPR/Cas techniques with nanotechnology. Traits Biotechnol. 41, 1549–1564 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, E. S. et al. Extremely environment friendly on-chip photothermal cell lysis for nucleic acid extraction utilizing localized plasmonic heating of strongly absorbing Au nanoislands. ACS Appl. Mater. Interfaces 15, 34323–34331 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcuccio, F. et al. Single-cell nanobiopsy permits multigenerational longitudinal transcriptomics of most cancers cells. Sci. Adv. 10, 515 (2024).

    Article 

    Google Scholar
     

  • Yang, B., Kong, J. & Fang, X. Programmable CRISPR-Cas9 microneedle patch for long-term seize and real-time monitoring of common cell-free DNA. Nat. Commun. 13, 3999 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, S. et al. Extraction of viral nucleic acids with carbon nanotubes will increase SARS-CoV-2 quantitative reverse transcription polymerase chain response detection sensitivity. ACS Nano 15, 10309–10317 (2021). This research proposed high-yield seize of viral RNA from 50% human saliva utilizing ssDNA hooked up to carbon nanotubes, thereby bypassing business kits and biofluid purification steps.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogers, J. F. M. et al. Brilliant fluorescent nucleic acid detection with CRISPR-Cas12a and poly(thymine) templated copper nanoparticles. Biol. Strategies Protoc. 6, bpaa020 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Music, J. et al. Elution-free DNA detection utilizing CRISPR/Cas9-mediated light-up aptamer transcription: towards all-in-one DNA purification and detection tube. Biosens. Bioelectron. 225, 115085 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, W. et al. A CRISPR–Cas9-triggered strand displacement amplification technique for ultrasensitive DNA detection. Nat. Commun. 9, 5012 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohsenin, H. et al. Sign-amplifying biohybrid materials circuits for CRISPR/Cas-based single-stranded RNA detection. Adv. Mater. Technol. 10, 2400981 (2024).

  • Zhang, S., Xu, D., Li, F. & Wang, J. CRISPR-based non-nucleic acid detection. Traits Biotechnol. https://doi.org/10.1016/J.TIBTECH.2025.04.012 (2025).

  • Liu, Z. et al. Dedication of adenosine by CRISPR-Cas12a system based mostly on duplexed aptamer and molecular beacon reporter linked to gold nanoparticles. Microchim. Acta 190, 173 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Controllable meeting of a quantum dot-based aptasensor guided by CRISPR/Cas12a for direct measurement of circulating tumor cells in human blood. Nano Lett. 24, 2360–2368 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Making use of CRISPR/Cas system as a sign enhancer for DNAzyme-based lead ion detection. Anal. Chim. Acta https://doi.org/10.1016/j.aca.2021.339356 (2021).

  • Wu, Z., Solar, D. W., Pu, H. & Wei, Q. A novel fluorescence biosensor based mostly on CRISPR/Cas12a built-in MXenes for detecting Aflatoxin B1. Talanta 252, 123773 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, L. et al. CRISPR-Cas-amplified urinary biomarkers for multiplexed and transportable most cancers diagnostics. Nat. Nanotechnol. 18, 798–807 (2023). This research introduced a non-invasive, multiplexed strategy for most cancers detection and monitoring, combining peptide-conjugated artificial or organic nanocarriers with a novel DNA barcoding system.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandit, S., Duchow, M., Chao, W., Capasso, A. & Samanta, D. DNA-barcoded plasmonic nanostructures for activity-based protease sensing. Angew. Chem. Int. Ed. 63, e202310964 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Welch, N. L. et al. Multiplexed CRISPR-based microfluidic platform for medical testing of respiratory viruses and identification of SARS-CoV-2 variants. Nat. Med. 28, 1083–1094 (2022). This research proposed a extremely multiplexed microfluidic platform for the fast detection of SARS-CoV-2 variants with a classification accuracy corresponding to sequencing.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, T. et al. An ultralocalized Cas13a assay permits common and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano 15, 1167–1178 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. CRISPR-powered optothermal nanotweezers: various bio-nanoparticle manipulation and single nucleotide identification. Mild. Sci. Appl. 12, 273 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, A. et al. RNA-activated CRISPR/Cas12a nanorobots working in dwelling cells. J. Am. Chem. Soc. https://doi.org/10.1021/JACS.4C02354 (2024). This research introduced Cas12a-based nanorobots for the real-time detection of microRNAs in dwelling cells, paving the way in which for superior intracellular monitoring and therapeutic functions.

  • Yuan, C. et al. Common and naked-eye gene detection platform based mostly on the clustered repeatedly interspaced quick palindromic repeats/Cas12a/13a system. Anal. Chem. 92, 4029–4037 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • López-Valls, M. et al. CASCADE: bare eye-detection of SARS-CoV-2 utilizing Cas13a and gold nanoparticles. Anal. Chim. Acta 1205, 339749 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broughton, J. P. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0513-4 (2020).

  • MacGregor, S. R. et al. Improvement of CRISPR/Cas13a-based assays for the prognosis of Schistosomiasis. EBioMedicine 94, 104730 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X., Yang, Y., Cao, J., Qi, Z. & Li, G. Level‐of‐care CRISPR/Cas biosensing know-how: a promising device for stopping the doable COVID‐19 resurgence attributable to contaminated chilly‐chain meals and packaging. Meals Entrance. 4, 207–232 (2023).

    Article 

    Google Scholar
     

  • Moon, J. et al. Colorimetric detection of SARS-CoV-2 and drug-resistant pH1N1 utilizing CRISPR/dCas9. ACS Sens. 5, 4017–4026 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samanta, D., Ebrahimi, S. B., Ramani, N. & Mirkin, C. A. Enhancing CRISPR-Cas-mediated detection of nucleic acid and non-nucleic acid targets utilizing enzyme-labeled reporters. J. Am. Chem. Soc. 144, 16310–16315 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, D., Ni, D. S., Fang, M., Shi, Z. & Xu, Z. Microfluidic ruler-readout and CRISPR Cas12a-responded hydrogel-integrated paper-based analytical gadgets (μReaCH-PAD) for seen quantitative point-of-care testing of invasive fungi. Anal. Chem. 93, 16965–16973 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnston, M. et al. Multiplexed biosensor for point-of-care COVID-19 monitoring: CRISPR-powered unamplified RNA diagnostics and protein-based therapeutic drug administration. Mater. At the moment 61, 129–138 (2022). This research launched a CRISPR-powered, amplification-free know-how for monitoring viral RNA alongside antibiotic concentrations, providing a delicate answer for pandemic response.

    Article 
    CAS 

    Google Scholar
     

  • Tao, X. et al. Delicate and on-site detection of Staphylococcus aureus based mostly on CRISPR/Cas 13a-assisted chemiluminescence resonance vitality switch. Anal. Chem. 96, 9270–9277 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shamsabadi, A., Haghighi, T., Carvalho, S., Frenette, L. C. & Stevens, M. M. The nanozyme revolution: enhancing the efficiency of medical biosensing platforms. Adv. Mater. 36, 2300184 (2024). This evaluation explored the potential of nanozymes to enhance medical biosensing platforms by bettering sign amplification and enhancing detection limits.

    Article 
    CAS 

    Google Scholar
     

  • Broto, M. et al. Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs. Nat. Nanotechnol. 17, 1120–1126 (2022). This research launched CrisprZyme, a nanozyme-linked immunosorbent assay that allows preamplification-free, quantitative detection of non-coding RNAs in each plate- and paper-based assay codecs.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arshad, F., Abdillah, A. N., Shivanand, P. & Ahmed, M. U. CeO2 nanozyme mediated RPA/CRISPR-Cas12a dual-mode biosensor for detection of invA gene in Salmonella. Biosens. Bioelectron. 247, 115940 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • An, P. et al. CRISPR/Cas12a bio-assay built-in with metal-organic framework based mostly enhanced fluorescent labels for ultrasensitive detection of circulating tumor DNA. Sens. Actuat. B 383, 133623 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hong, S. et al. A non-FRET DNA reporter that modifications fluorescence color upon nuclease digestion. Nat. Nanotechnol. 19, 810–817 (2024). This research launched a low-cost, DNA-templated, Ag-nanocluster-based reporter for nucleic acid detection that modifications color upon CRISPR digestion.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, X. et al. Exploring the trans-cleavage exercise of CRISPR/Cas12a on gold nanoparticles for secure and delicate biosensing. Anal. Chem. 93, 4967–4974 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, T. et al. Designing a CRISPR/Cas12a- and Au-nanobeacon-based diagnostic biosensor enabling direct, fast, and delicate miRNA detection. Anal. Chem. 94, 6566–6573 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inexperienced, C. M. et al. Quantum dot-based molecular beacons for quantitative detection of nucleic acids with CRISPR/Cas(N) nucleases. ACS Nano 16, 20693–20704 (2022). This research introduced fluorescently labelled DNA or RNA hairpins conjugated to ZnS-coated quantum dots that kind ratiometric reporters for FRET-based detection of DNA and RNA.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. SARS-CoV-2 detection utilizing quantum dot fluorescence immunochromatography mixed with isothermal amplification and CRISPR/Cas13a. Biosens. Bioelectron. 202, 113978 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. Y. et al. A boosting upconversion luminescent resonance vitality switch and biomimetic periodic chip built-in CRISPR/Cas12a biosensor for purposeful DNA regulated transduction of non-nucleic acid targets. Biosens. Bioelectron. 169, 112650 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan, L. et al. Ultrasensitive miRNA detection based mostly on magnetic upconversion nanoparticle enhancement and CRISPR/Cas13a-driven sign amplification. Anal. Chem. 95, 17708–17715 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giesselmann, P. et al. Evaluation of quick tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 37, 1478–1481 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilpatrick, T. et al. Focused nanopore sequencing with Cas9-guided adapter ligation. Nat. Biotechnol. 38, 433–438 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald, T. L. et al. Cas9 focused enrichment of cell parts utilizing nanopore sequencing. Nat. Commun. 12, 3586 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. A label-free photoelectrochemical biosensor based mostly on CRISPR/Cas12a system responsive deoxyribonucleic acid hydrogel and ‘click on’ chemistry. ACS Sens. 7, 3153–3160 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ban, D. Okay. et al. A single multiomics transistor for digital detection of SARS-Cov2 variants antigen and viral rna with out amplification. Adv. Mater. Technol. 8, 2201945 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Unamplified system for delicate and typing detection of ASFV by the cascade platform that CRISPR-Cas12a mixed with graphene field-effect transistor. Biosens. Bioelectron. 240, 115637 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balderston, S. et al. Discrimination of single-point mutations in unamplified genomic DNA through Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 5, 713–725 (2021). This research expands on using graphene and Cas9-based FET biosensors for fast, amplification-free detection of single-point mutations in genomic DNA.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Mxene coupled with CRISPR-Cas12a for evaluation of endotoxin and micro organism. Anal. Chem. 93, 4676–4681 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Duan, H. et al. A CRISPR-Cas12a powered electrochemical sensor based mostly on gold nanoparticles and MXene composite for enhanced nucleic acid detection. Sens. Actuat. B 380, 133342 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J., Zhu, Y. & Miao, P. Nano-impact electrochemical biosensing based mostly on a CRISPR-responsive DNA hydrogel. Nano Lett. 23, 11099–11104 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ates, H. C. et al. Finish-to-end design of wearable sensors. Nat. Rev. Mater. 15, 887–907 (2022).

    Article 

    Google Scholar
     

  • Nguyen, P. Q. et al. Wearable supplies with embedded artificial biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrews, J. P. M. et al. First-in-human managed inhalation of skinny graphene oxide nanosheets to check acute cardiorespiratory responses. Nat. Nanotechnol. 19, 705–714 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zargartalebi, H. et al. Energetic-reset protein sensors allow steady in vivo monitoring of irritation. Science 386, 1146–1153 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, Y. et al. Nanopore-based enzyme-linked immunosorbent assay for most cancers biomarker detection. Nat. Nanotechnol. https://doi.org/10.1038/s41565-025-01918-z (2025).

  • McGenity, C. et al. Synthetic intelligence in digital pathology: a scientific evaluation and meta-analysis of diagnostic take a look at accuracy. npj Digit. Med. 7, 114 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. et al. Interactions of micro organism with monolithic lateral silicon nanospikes inside a microfluidic channel. Entrance. Chem. 7, 483 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles