6.1 C
Canberra
Friday, October 24, 2025

Ångström-resolution imaging of cell-surface glycans


  • Flynn, R. A. et al. Small RNAs are modified with N-glycans and displayed on the floor of dwelling cells. Cell 184, 3109–3124.e3122 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarbell, J. M. & Cancel, L. M. The glycocalyx and its significance in human drugs. J. Intern. Med. 280, 97–113 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Möckl, L. The rising position of the mammalian glycocalyx in practical membrane group and immune system regulation. Entrance. Cell Dev. Biol. 8, 253 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles within the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Smith, B. A. H. & Bertozzi, C. R. The medical impression of glycobiology: focusing on selectins, Siglecs and mammalian glycans. Nat. Rev. Drug Discov. 20, 217–243 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipowsky, H. H. The endothelial glycocalyx as a barrier to leukocyte adhesion and its mediation by extracellular proteases. Ann. Biomed. Eng. 40, 840–848 (2012).

    PubMed 

    Google Scholar
     

  • Paszek, M. J. et al. The most cancers glycocalyx mechanically primes integrin-mediated progress and survival. Nature 511, 319–325 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crouch, L. I. et al. The position of glycans in well being and illness: regulators of the interplay between intestine microbiota and host immune system. Semin. Immunol. 73, 101891 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Pinho, S. S., Alves, I., Gaifem, J. & Rabinovich, G. A. Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and an infection. Cell. Mol. Immunol. 20, 1101–1113 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinho, S. S. & Reis, C. A. Glycosylation in most cancers: mechanisms and medical implications. Nat. Rev. Most cancers 15, 540–555 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Bagdonaite, I. et al. Glycoproteomics. Nat. Rev. Strategies Primers 2, 48 (2022).

    CAS 

    Google Scholar
     

  • Wu, X. et al. Imaging single glycans. Nature 582, 375–378 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Arkill, Okay. P. et al. 3D reconstruction of the glycocalyx construction in mammalian capillaries utilizing electron tomography. Microcirculation 19, 343–351 (2012).

    PubMed 

    Google Scholar
     

  • Möckl, L. et al. Quantitative super-resolution microscopy of the mammalian glycocalyx. Dev. Cell 50, 57–72.e56 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDowell, C. T., Lu, X., Mehta, A. S., Angel, P. M. & Drake, R. R. Functions and continued evolution of glycan imaging mass spectrometry. Mass Spectrom. Rev. 42, 674–705 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Anggara, Okay. et al. Direct statement of glycans bonded to proteins and lipids on the single-molecule degree. Science 382, 219–223 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebong, E. E., Macaluso, F. P., Spray, D. C. & Tarbell, J. M. Imaging the endothelial glycocalyx in vitro by speedy freezing/freeze substitution transmission electron microscopy. Arterioscler. Thromb. Vasc. Biol. 31, 1908–1915 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chevalier, L. et al. Electron microscopy method for the visualization of the epithelial and endothelial glycocalyx. Morphologie 101, 55–63 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Kappler, Okay. & Hennet, T. Emergence and significance of carbohydrate-specific antibodies. Genes Immun. 21, 224–239 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanley, P. Genetics of glycosylation in mammalian growth and illness. Nat. Rev. Genet. 25, 715–729 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Cummings, R. D. et al. in Necessities of Glycobiology (eds Varki, A. et al.) 645–662 (Chilly Spring Harbor Laboratory Press, 2022).

  • Laughlin, S. T., Baskin, J. M., Amacher, S. L. & Bertozzi, C. R. In vivo imaging of membrane-associated glycans in creating zebrafish. Science 320, 664–667 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letschert, S. et al. Tremendous-resolution imaging of plasma membrane glycans. Angew. Chem. Int. Ed. Engl. 53, 10921–10924 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in well being and illness. Nat. Rev. Nephrol. 15, 346–366 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aebi, M., Bernasconi, R., Clerc, S. & Molinari, M. N-Glycan buildings: recognition and processing within the ER. Tendencies Biochem. Sci. 35, 74–82 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Strategies 3, 793–795 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mateos-Gil, P., Letschert, S., Doose, S. & Sauer, M. Tremendous-resolution imaging of plasma membrane proteins with click on chemistry. Entrance. Cell Dev. Biol. 4, 98 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riera, R. et al. Single-molecule imaging of glycan–lectin interactions on cells with Glyco-PAINT. Nat. Chem. Biol. 17, 1281–1288 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Helmerich, D. A. et al. Photoswitching fingerprint evaluation bypasses the 10-nm decision barrier. Nat. Strategies 19, 986–994 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reinhardt, S. C. M. et al. Angstrom-resolution fluorescence microscopy. Nature 617, 711–716 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laughlin, S. T. & Bertozzi, C. R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization through Staudinger ligation. Nat. Protoc. 2, 2930–2944 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Scinto, S. L. et al. Bioorthogonal chemistry. Nat. Rev. Strategies Primers 1, 30 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Axelrod, D., Thompson, N. L. & Burghardt, T. P. Complete inside reflection fluorescent microscopy. J. Microsc. 129, 19–28 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with standard fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 6172–6176 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Sahl, S. J. et al. Direct optical measurement of intramolecular distances with angstrom precision. Science 386, 180–187 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for locating clusters in giant spatial databases with noise. In Proc. Second Worldwide Convention on Data Discovery and Information Mining 226–231 (AAAI, 1996).

  • Suzuki, N., Abe, T., Hanzawa, Okay. & Natsuka, S. Towards strong N-glycomics of assorted tissue samples that will include glycans with unknown or surprising buildings. Sci. Rep. 11, 6334 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sumer-Bayraktar, Z. et al. N-Glycans modulate the perform of human corticosteroid-binding globulin. Mol. Cell. Proteomics 10, M111.009100 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schjoldager, Okay. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. International view of human protein glycosylation pathways and capabilities. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schnaar, R. L. Glycobiology simplified: various roles of glycan recognition in irritation. J. Leukoc. Biol. 99, 825–838 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shurer, C. R. et al. Bodily ideas of membrane form regulation by the glycocalyx. Cell 177, 1757–1770.e1721 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raba, G. & Luis, A. S. Mucin utilization by intestine microbiota: current advances on characterization of key enzymes. Essays Biochem. 67, 345–353 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chin-Hun Kuo, J., Gandhi, J. G., Zia, R. N. & Paszek, M. J. Bodily biology of the most cancers cell glycocalyx. Nat. Phys. 14, 658–669 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakshminarayanan, A., Richard, M. & Davis, B. G. Learning glycobiology on the single-molecule degree. Nat. Rev. Chem. 2, 148–159 (2018).

    CAS 

    Google Scholar
     

  • Almahayni, Okay. & Mockl, L. Setting the stage for common pharmacological focusing on of the glycocalyx. Curr. Prime. Membr. 91, 61–88 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Dobie, C. & Skropeta, D. Insights into the position of sialylation in most cancers development and metastasis. Br. J. Most cancers 124, 76–90 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Bordron, A. et al. Hyposialylation have to be thought of to develop future therapies in autoimmune ailments. Int. J. Mol. Sci. 22, 3402 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unterauer, E. M. et al. Spatial proteomics in neurons at single-protein decision. Cell 187, 1785–1800.e1716 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Jungmann, R. et al. Multiplexed 3D mobile super-resolution imaging with DNA-PAINT and Trade-PAINT. Nat. Strategies 11, 313–318 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budiarta, M., Streit, M. & Beliu, G. Web site-specific protein labeling methods for super-resolution microscopy. Curr. Opin. Chem. Biol. 80, 102445 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Hudak, J. E., Canham, S. M. & Bertozzi, C. R. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 10, 69–75 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Neelamegham, S. et al. Updates to the image nomenclature for glycans pointers. Glycobiology 29, 620–624 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strauss, S. & Jungmann, R. As much as 100-fold speed-up and multiplexing in optimized DNA-PAINT. Nat. Strategies 17, 789–791 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halpern, A. R., Howard, M. D. & Vaughan, J. C. Level by level: an introductory information to pattern preparation for single-molecule, super-resolution fluorescence microscopy. Curr. Protoc. Chem. Biol. 7, 103–120 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Edelstein, A. D. et al. Superior strategies of microscope management utilizing muManager software program. J. Biol. Strategies 1, e10 (2014).

    PubMed 

    Google Scholar
     

  • Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Tremendous-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Ma, H., Chen, M., Nguyen, P. & Liu, Y. Towards drift-free high-throughput nanoscopy by adaptive intersection maximization. Sci. Adv. 10, eadm7765 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: elementary algorithms for scientific computing in Python. Nat. Strategies 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bentley, J. L. Multidimensional binary search timber used for associative looking. Commun. ACM 18, 509–517 (1975).


    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Jungmann, R. Glyco-RESI information. Zenodo https://doi.org/10.5281/zenodo.14826252 (2025).

  • Masullo, L. A. github.com/lumasullo/glycans-resi. GitHub https://github.com/lumasullo/glycans-resi (2025).

  • Ives, C. M. et al. Restoring protein glycosylation with GlycoShape. Nat. Strategies 21, 2117–2127 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles