Northup, T. E. & Blatt, R. Quantum info switch utilizing photons. Nat. Photon. 8, 356–363 (2014).
Wehner, S., Elkouss, D. & Hanson, R. Quantum web: a imaginative and prescient for the street forward. Science 362, eaam9288 (2018).
Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Imaging with quantum states of sunshine. Nat. Rev. Phys. 1, 367–380 (2019).
Zhong, H.-S. et al. Quantum computational benefit utilizing photons. Science 370, 1460–1463 (2020).
Madsen, L. S. et al. Quantum computational benefit with a programmable photonic processor. Nature 606, 75–81 (2022).
Aslam, N. et al. Quantum sensors for biomedical functions. Nat. Rev. Phys. 5, 157–169 (2023).
Walmsley, I. A. Quantum optics: science and expertise in a brand new gentle. Science 348, 525–530 (2015).
Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon 8, 685–694 (2014).
Reshef, O., De Leon, I., Alam, M. Z. & Boyd, R. W. Nonlinear optical results in epsilon-near-zero media. Nat. Rev. Mater. 4, 535–551 (2019).
Kinsey, N., DeVault, C., Boltasseva, A. & Shalaev, V. M. Close to-zero-index supplies for photonics. Nat. Rev. Mater. 4, 742–760 (2019).
Yoshiki, W. & Tanabe, T. All-optical switching utilizing Kerr impact in a silica toroid microcavity. Decide. Categorical 22, 24332 (2014).
Raja, A. S., et al. Ultrafast optical circuit switching for knowledge facilities utilizing built-in soliton microcombs. Nat. Commun. 12, 5867 (2021).
Almeida, V. R. et al. All-optical swap on a silicon chip. OSA Traits Decide. Photonics Ser. 96A, 1179–1181 (2004).
Reiserer, A., Ritter, S. & Rempe, G. Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013).
Dayan, B. et al. Regulated by one atom. Science 319, 22–25 (2008).
Shomroni, I. et al. All-optical routing of single photons by a one-atom swap managed by a single photon. Science 345, 903–906 (2014).
Aoki, T. et al. Statement of sturdy coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006).
Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).
Reithmaier, J. P. et al. Sturdy coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004).
Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).
Solar, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon swap and transistor enabled by a solid-state quantum reminiscence. Science 361, 57–60 (2018).
Javadi, A. et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015).
Bhaskar, M. Ok. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).
Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).
Lee, C. et al. Big nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235 (2021).
Zhang, J., MacDonald, Ok. F. & Zheludev, N. I. Controlling light-with-light with out nonlinearity. Mild Sci. Appl. 1, e18 (2012).
Roger, T. et al. Coherent good absorption in deeply subwavelength movies within the single-photon regime. Nat. Commun. 6, 7031 (2015).
Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).
Soref, R. & Bennett, B. Electrooptical results in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).
Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).
Jellison, G. E. & Burke, H. H. The temperature dependence of the refractive index of silicon at elevated temperatures at a number of laser wavelengths. J. Appl. Phys. 60, 841–843 (1986).
Li, H. H. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Knowledge 9, 561–658 (1980).
Kindereit, U. Fundamentals and future functions of laser voltage probing. In Proc. IEEE Worldwide Reliability Physics Symposium (ed. Kaplar, R.) 3F.1.1–3F.1.11 (IEEE, 2014).
Ganesh, U. Laser voltage probing (LVP) – Its worth and the race towards scaling. Microelectron. Reliab. 64, 294–298 (2016).
Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Invited assessment article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).
Stringer, L. F. Thyristor DC methods for non-ferrous sizzling line. IEEE Ind. Static Energy Management 6, 10 (1965).
McKay, Ok. G. Avalanche breakdown in silicon. Phys. Rev. 94, 877–884 (1954).
Haitz, R. H., Goetzberger, A., Scarlett, R. M. & Shockley, W. Avalanche results in silicon p-n junctions. J. Appl. Phys. 34, 983 (1963).
Capasso, F. Physics of avalanche photodiodes. Semicond. Semimet. 22, 1–172 (1985).
Logan, R. A., Chynoweth, A. G. & Cohen, B. G. Avalanche breakdown in gallium arsenide p-n junctions. Phys. Rev. 128, 2518–2523 (1962).
Cova, S., Longoni, A. & Andreoni, A. In the direction of picosecond decision with single-photon avalanche diodes. Rev. Sci. Instrum. 52, 408–412 (1981).
Xu, Q. & Lipson, M. Service-induced optical bistability in silicon ring resonators. Decide. Lett. 31, 341 (2006).
Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).
Lin, Y. et al. Monolithically built-in, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light built-in photonics platform. Nat. Commun. 13, 6362 (2022).
Hu, J. et al. Diffractive optical computing in free area. Nat. Commun. 15, 1525 (2024).
Zhao, Y., Yang, Y. & Solar, H.-B. Nonlinear meta-optics in the direction of functions. PhotoniX 2, 3 (2021).
Abdollahramezani, S., Hemmatyar, O. & Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 9, 4075–4095 (2020).
Sakaguchi, A. et al. Nonlinear feedforward enabling quantum computation. Nat. Commun. 14, 3817 (2023).
Tutorial: excessive velocity fiber modulator fundamentals. AeroDiode http://www.aerodiode.com/fiber-modulator-basics (2025).
Cheng, Z. et al. On-chip silicon electro-optical modulator with ultra-high extinction ratio for fiber-optic distributed acoustic sensing. Nat. Commun. 14, 7409 (2023).
Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).
Gardes, F. Y., Reed, G. T., Emerson, N. G. & Png, C. E. A sub-micron depletion-type photonic modulator in silicon on insulator. Decide. Categorical 13, 8845 (2005).
Clerici, M. et al. Controlling hybrid nonlinearities in clear conducting oxides by way of two-colour excitation. Nat. Commun. 8, 15829 (2017).
Lee, S. et al. Excessive acquire, low noise 1550 nm GaAsSb/AlGaAsSb avalanche photodiodes. Optica 10, 147 (2023).
Vahala, Ok. J. Optical microcavities. Nature 424, 839–846 (2003).
Bogdanov, S. I., Boltasseva, A. & Shalaev, V. M. Overcoming quantum decoherence with plasmonics. Science 364, 532–533 (2019).
Dharanipathy, U. P., Minkov, M., Tonin, M., Savona, V. & Houdré, R. Excessive-Q silicon photonic crystal cavity for enhanced optical nonlinearities. Appl. Phys. Lett. 105, 101101 (2014).
Albrechtsen, M. et al. Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nat. Commun. 13, 6281 (2022).
Sychev, D. V. Supplementary information to ‘All-optical modulation with single photons utilizing electron avalanche’. figshare https://doi.org/10.6084/m9.figshare.30209770 (2025).
