Stepanov, B. & Gribkovskii, V. Concept of Luminescence (Iliffe, 1968).
Gribkovskii, V. in Luminescence of Solids 1–43 (Springer, 1998).
Vaskin, A., Kolkowski, R., Koenderink, A. F. & Staude, I. Gentle-emitting metasurfaces. Nanophotonics 8, 1151–1198 (2019).
Yang, H. et al. Orchestrating spontaneous emission with metasurfaces: latest advances in engineering thermal, luminescent, and quantum emissions. Adv. Decide. Mater. 13, 2402755 (2025).
Muniain, U., Esteban, R., Aizpurua, J. & Greffet, J.-J. Unified therapy of sunshine emission by inelastic tunneling: interplay of electrons and photons past the hole. Phys. Rev. X 14, 021017 (2024). This paper presents the idea of plasmon emission from inelastic tunnelling. The equivalence between the radiation from fluctuating currents and the Fermi golden rule method is derived explicitly.
Sivan, Y. & Dubi, Y. Concept of ‘scorching’ photoluminescence from drude metals. ACS Nano 15, 8724–8732 (2021). The speculation of PL from metals is mentioned, together with non-equilibrium electrons and holes.
Baffou, G. Anti-Stokes thermometry in nanoplasmonics. ACS Nano 15, 5785–5792 (2021).
Roques-Carmes, C. et al. A framework for scintillation in nanophotonics. Science 375, eabm9293 (2022). A principle of scintillation is proposed utilizing equation (8) and the Inexperienced tensor formalism.
Bowman, A. R. et al. Quantum-mechanical results in photoluminescence from skinny crystalline gold movies. Gentle Sci. Appl. 13, 91 (2024).
Loirette-Pelous, A. & Greffet, J.-J. Concept of photoluminescence by metallic buildings. ACS Nano 18, 31823 (2024). A principle of PL from metallic nanoparticles is offered, together with a derivation of equation (10).
Karnieli, A. et al. Modeling quantum optical phenomena utilizing transition currents. Appl. Phys. Rev. 11, 031305 (2024). The authors focus on mild emission from transition currents and functions to quantum results.
Bailly, E. et al. 2D silver-nanoplatelets metasurface for vibrant directional photoluminescence, designed with the native Kirchhoff’s regulation. ACS Nano 18, 4903–4910 (2024).
Kirchhoff, G. On the relation between the radiating and absorbing powers of various our bodies for mild and warmth. Lond. Edin. Dublin Phil. Magazine. J. Sci. 20, 1–21 (1860). This paper presents the unique derivation of Kirchhoff’s regulation.
Rytov, S. M., Kravtsov, Y. A. & Tatarskii, V. I. Rules of Statistical Radiophysics Vol. 3 (Springer, 1989). This e book offers a radical introduction to fluctuational electrodynamics.
Landau, L., Lifshitz, E. M. & Pitaevskii, L. Statistical Physics Half I (Pergamon, 1980).
Li, W. & Fan, S. Nanophotonic management of thermal radiation for power functions. Decide. Specific 26, 15995 (2018).
Baranov, D. et al. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019).
Li, Y. et al. Reworking warmth switch with thermal metamaterials and units. Nat. Rev. Mater. 6, 488–507 (2021).
Picardi, M., Nimje, Okay. & Papadakis, G. Dynamic modulation of thermal emission—a tutorial. J. Appl. Phys. 133, 111101 (2023).
Vazquez-Lozano, J. E. & Liberal, I. Overview on the scientific and technological breakthroughs in thermal emission engineering. ACS Appl. Decide. Mater. 2, 898 (2024).
Chu, Q. et al. Controlling thermal emission with metasurfaces and its functions. Nanophotonics 13, 1279–1301 (2024).
Lamoreaux, S. Okay. The Casimir drive: background, experiments, and functions. Rep. Progr. Phys. 68, 201 (2004).
Henkel, C., Joulain, Okay., Mulet, J.-P. & Greffet, J.-J. Radiative forces on small particles in thermal close to fields. J. Decide. A4, S109 (2002).
Henkel, C., Joulain, Okay., Mulet, J.-P. & Greffet, J.-J. Coupled floor polaritons and the Casimir drive. Phys. Rev. A 69, 023803 (2004).
Joulain, Okay., Mulet, J.-P., Marquier, F., Carminati, R. & Greffet, J.-J. Floor electromagnetic waves thermally excited: radiative warmth switch, coherence properties and Casimir forces revisited within the close to subject. Surf. Sci. Rep. 57, 59–112 (2004).
Henry, C. & Kazarinov, F. Quantum noise in photonics. Rev. Mod. Phys. 68, 801 (1996). This paper affords a radical quantum therapy of sunshine emission from semiconductors, together with an in depth derivation of the fluctuation–dissipation relation for pumped semiconductors.
Greffet, J.-J., Bouchon, P., Brucoli, G. & Marquier, F. Gentle emission by nonequilibrium our bodies: native Kirchhoff regulation. Phys. Rev. X 8, 021008 (2018). The authors present a derivation of an area Kirchhoff regulation that’s relevant to our bodies with arbitrary shapes and inhomogeneous temperatures and chemical potentials.
Benisty, H., Greffet, J.-J. & Lalanne, P. Introduction to Nanophotonics (Oxford Univ. Press, 2022).
Greffet, J.-J. et al. Coherent emission of sunshine by thermal sources. Nature 416, 61–64 (2002).
Zhou, M. et al. Self-focused thermal emission and holography realized by mesoscopic thermal emitters. ACS Photon. 8, 497–504 (2021).
Costantini, D. et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. Appl. 4, 014023 (2015).
Overvig, A., Yu, N. & Alù, A. Chiral quasi-bound states within the continuum. Phys. Rev. Lett. 126, 073001 (2021).
Celanovic, I., Perreault, D. & Kassakian, J. Resonant-cavity enhanced thermal emission. Phys. Rev. B 72, 075127 (2005).
Fan, Z., Hwang, T. & Lin, S. A. Directional thermal emission and show utilizing pixelated non-imaging micro-optics. Nat. Commun. 15, 4544 (2024).
Puscasu, I. & Schaich, W. L. Slender-band, tunable infrared emission from arrays of microstrip patches. Appl. Phys. Lett. 92, 233102 (2008).
Liu, X. et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011).
Bouchon, P., Koechlin, C., Pardo, F., Haïdar, R. & Pelouard, J.-L. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Decide. Lett. 37, 1038–1040 (2012).
Blanchard, C. et al. Metallo-dielectric metasurfaces for thermal emission with managed spectral bandwidth and angular aperture. Decide. Mat. Specific 12, 1–12 (2022).
Cui, Y. et al. Ultrabroadband mild absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12, 1443–1447 (2012).
Cattoni, A. et al. λ3/1000 plasmonic nanocavities for biosensing fabricated by delicate UV nanoimprint lithography. Nano Lett. 11, 3557–3563 (2011).
Dahan, N. et al. Enhanced coherency of thermal emission: past the limitation imposed by delocalized floor waves. Phys. Rev. B 76, 045427 (2007).
Lu, G. et al. Engineering the spectral and spatial dispersion of thermal emission by way of polariton-phonon robust coupling. Nano Lett. 21, 1831–1838 (2021).
Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nat. Photon. 3, 658–661 (2009).
Wojszvzyk, L. et al. An incandescent metasurface for quasimonochromatic polarized mid-wave infrared emission modulated past 10 MHz. Nat. Commun. 12, 1492 (2021).
Wadsworth, S. L., Clem, P. G., Branson, E. D. & Boreman, G. D. Broadband circularly-polarized infrared emission from multilayer metamaterials. Decide. Mater. Specific 1, 466–479 (2011).
Dahan, N., Gorodetski, Y., Frischwasser, Okay., Kleiner, V. & Hasman, E. Geometric doppler impact: spin-split dispersion of thermal radiation. Phys. Rev. Lett. 105, 136402 (2010).
Nguyen, A. et al. Massive round dichroism within the emission from an incandescent metasurface. Optica 10, 232–238 (2023).
Wang, X. et al. Statement of nonvanishing optical helicity in thermal radiation from symmetry-broken metasurfaces. Sci. Adv. 9, eade4203 (2023).
Miyazaki, H. T. et al. Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing. Sci. Technol. Adv. Mater. 16, 035005 (2015).
Inoue, T., Zoysa, M. D., Asano, T. & Noda, S. Realization of dynamic thermal emission management. Nat. Mater. 13, 928–931 (2014).
Liu, X. & Madilla, W. Reconfigurable room temperature metamaterial infrared emitter. Optica 4, 430 (2017).
Shi, C., Mahlmeister, N. H., Luxmoore, I. J. & Nash, G. R. Metamaterial-based graphene thermal emitter. Nano Res. 11, 3567–3573 (2018).
Kang, D., Inoue, T., Asano, T. & Noda, S. Electrical modulation of narrowband GaN/AlGaN quantum-well photonic crystal thermal emitters in mid-wavelength infrared. ACS Photon. 6, 1565–1571 (2017).
Brar, V. W. et al. Digital modulation of infrared radiation in graphene plasmonic resonators. Nat. Commun. 6, 7032 (2015).
Papadakis, G. T., Zhao, B., Buddhiraju, S. & Fan, S. Gate-tunable near-field warmth switch. ACS Photon. 6, 709–719 (2019).
Thomas, N. H., Sherrott, M. C., Broulliet, J., Atwater, H. A. & Minnich, A. J. Digital modulation of near-field radiative switch in graphene subject impact heterostructures. Nano Lett. 19, 3898–3904 (2019).
Cao, T., Zhang, L., Simpson, R. E. & Cryan, M. J. Mid-infrared tunable polarization-independent excellent absorber utilizing a phase-change metamaterial. J. Decide. Soc. Am. B 30, 1580–1585 (2013).
Qu, Y., Li, Q., Cai, L. & Qiu, M. Polarization switching of thermal emissions primarily based on plasmonic buildings incorporating phase-changing materials Ge2Sb2Te5. Decide. Mater. Specific 8, 2312–2320 (2018).
Fan, D., Li, Q. & Dai, P. Temperature-dependent emissivity property in La0.7Sr0.3MnO3 movies. Acta Astronaut. 121, 144–152 (2016).
Li, P. et al. Reversible optical switching of extremely confined phonon–polaritons with an ultrathin phase-change materials. Nat. Mater. 15, 870–875 (2016).
Polder, D. & van Hove, M. Concept of radiative warmth switch between carefully spaced our bodies. Phys. Rev. B 4, 3303 (1971).
Würfel, P. The chemical potential of radiation. J. Phys. C 15, 3967 (1982). This paper introduces the idea of the photon chemical potential and the generalized Kirchhoff’s regulation for pumped semiconductors.
Feuerbacher, B. & Würfel, P. Verification of a generalised Planck regulation by investigation of the emission from GaAs luminescent diodes. J. Phys. Condens. Matter 2, 3803 (1990).
Inexperienced, M., Zhao, J., Wang, A., Reece, P. & Gal, M. Environment friendly silicon light-emitting diodes. Nature 412, 805–808 (2001).
Le-Van, Q., Le Roux, X., Aassime, A. & Degiron, A. Electrically pushed optical metamaterials. Nat. Commun. 7, 12017 (2016).
Monin, H. et al. Controlling mild emission by a thermalized ensemble of colloidal quantum dots with a metasurface. Decide. Specific 31, 4851–4861 (2023).
Coldren, L. A., Corzine, S. W. & Mashanovitch, M. L. Diode Lasers and Photonic Built-in Circuits (Wiley, 2012).
Törmä, P. & Barnes, W. L. Sturdy coupling between floor plasmon polaritons and emitters: a overview. Rep. Progr. Phys. 78, 013901 (2014).
George, J. et al. Extremely-strong coupling of molecular supplies: spectroscopy and dynamics. Faraday Focus on. 178, 281 (2015).
Aberra-Guebrou, S. et al. Coherent emission from a disordered natural semiconductor induced by robust coupling with floor plasmon. Phys. Rev. Lett. 108, 066401 (2012).
Bailly, E., Hugonin, J.-P., Vest, B. & Greffet, J.-J. Spatial coherence of sunshine emitted by thermalized ensembles of emitters coupled to floor waves. Phys. Rev. Res. 3, L032040 (2021).
Perez de la Vega, C. R. et al. Plasmon-mediated power switch between two programs out of equilibrium. ACS Photon. 10, 1169–1176 (2023).
Garcia de Abajo, F. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).
Chen, H.-L. et al. Quantitative evaluation of service density by cathodoluminescence. I. GaAs skinny movies and modeling. Phys. Rev. Appl. 15, 024006 (2021).
Loirette-Pelous, A. & Greffet, J.-J. On the applicability of Kirchhoff’s regulation to the lasing regime. Optica 11, 1621 (2024).
Lambe, J. & McCarthy, S. L. Gentle emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923–925 (1976).
Laks, B. & Mills, D. L. Photon emission from barely roughened tunnel junctions. Phys. Rev. B 20, 4962–4980 (1979).
Laks, B. & Mills, D. L. Gentle emission from tunnel junctions: the position of the quick floor polariton. Phys. Rev. B 22, 5723–5729 (1980).
Hone, D., Mühlschlegel, B. & Scalapino, D. J. Concept of sunshine emission from small particle tunnel junctions. Appl. Phys. Lett. 33, 203–204 (1978).
Kirtley, J., Theis, T. N. & Tsang, J. C. Gentle emission from tunnel junctions on gratings. Phys. Rev. B 24, 5650–5663 (1981).
Kirtley, J. R., Theis, T. N., Tsang, J. C. & DiMaria, D. J. Sizzling-electron image of sunshine emission from tunnel junctions. Phys. Rev. B 27, 4601–4611 (1983).
Persson, B. N. J. & Baratoff, A. Concept of photon emission in electron tunneling to metallic particles. Phys. Rev. Lett. 68, 3224–3227 (1992).
Mooradian, A. Photoluminescence of metals. Phys. Rev. Lett. 22, 185 (1969).
Boyd, G., Yu, Z. & Shen, Y. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 33, 7923 (1986).
Apell, P., Monreal, R. & Lundqvist, S. Photoluminescence of noble metals. Phys. Scripta 38, 174 (1988).
Wilcoxon, J., Martin, J., Parsapour, F., Wiedenman, B. & Kelley, D. Photoluminescence from nanosize gold clusters. J. Chem. Phys. 108, 9137–9143 (1998).
Mohamed, M. B., Volkov, V., Hyperlink, S. & El-Sayed, M. A. The lightning gold nanorods: fluorescence enhancement of over one million in comparison with the gold steel. Chem. Phys. Lett. 317, 517–523 (2000).
Huang, T. & Murray, R. W. Seen luminescence of water-soluble monolayer-protected gold clusters. J. Phys. Chem. B 105, 12498–12502 (2001).
Beversluis, M. R., Bouhelier, A. & Novotny, L. Continuum era from single gold nanostructures by near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003).
Wu, X. et al. Excessive-photoluminescence-yield gold nanocubes: for cell imaging and photothermal remedy. ACS Nano 4, 113–120 (2010).
Tcherniak, A. et al. One-photon plasmon luminescence and its utility to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods. J. Phys. Chem. C 115, 15938–15949 (2011).
Hu, H., Duan, H., Yang, J. Okay. & Shen, Z. X. Plasmon-modulated photoluminescence of particular person gold nanostructures. ACS Nano 6, 10147–10155 (2012).
Yorulmaz, M., Khatua, S., Zijlstra, P., Gaiduk, A. & Orrit, M. Luminescence quantum yield of single gold nanorods. Nano Lett. 12, 4385–4391 (2012).
He, Y. et al. Floor enhanced anti-Stokes one-photon luminescence from single gold nanorods. Nanoscale 7, 577–582 (2015).
Hugall, J. T. & Baumberg, J. J. Demonstrating photoluminescence from Au is digital inelastic mild scattering of a plasmonic steel: the origin of SERS backgrounds. Nano Lett. 15, 2600–2604 (2015).
Xie, X. & Cahill, D. G. Thermometry of plasmonic nanostructures by anti-Stokes digital Raman scattering. Appl. Phys. Lett. 109, 183104 (2016).
Lin, Okay.-Q. et al. Intraband hot-electron photoluminescence from single silver nanorods. ACS Photon. 3, 1248–1255 (2016).
Carattino, A., Caldarola, M. & Orrit, M. Gold nanoparticles as absolute nanothermometers. Nano Lett. 18, 874–880 (2018).
Barella, M. et al. In situ photothermal response of single gold nanoparticles by hyperspectral imaging anti-Stokes thermometry. ACS Nano 15, 2458–2467 (2020).
Cai, Y.-Y., Tauzin, L. J., Ostovar, B., Lee, S. & Hyperlink, S. Gentle emission from plasmonic nanostructures. J. Chem. Phys. 155, 060901 (2021).
Shahbazyan, T. V. Purcell issue for plasmon-enhanced steel photoluminescence. J. Phys. Chem. C 127, 5898–5903 (2023).
Dubi, Y. & Sivan, Y. ‘Sizzling’ electrons in metallic nanostructures-non-thermal carriers or heating? Gentle Sci. Appl. 8, 89 (2019).
Min, S. et al. Finish-to-end design of multicolor scintillators for enhanced power decision in X-ray imaging. Gentle Sci. Appl. 14, 158 (2025).
Kurman, Y. et al. Purcell-enhanced X-ray scintillation. Sci. Adv. 10, eadq6325 (2024).
Martin-Monier, L. et al. Massive-scale self-assembled nanophotonic scintillators for X-ray imaging. Nat. Commun. 16, 5750 (2025).
Shultzman, A., Segal, O., Kurman, Y., Roques-Carmes, C. & Kaminer, I. Enhanced imaging utilizing inverse design of nanophotonic scintillators. Adv. Decide. Mater. 11, 220318 (2023).
Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).
Dung, D. et al. Variable potentials for thermalized mild and matched condensates. Nat. Photon. 11, 565–569 (2017).
Loirette-Pelous, A. & Greffet, J.-J. Photon Bose–Einstein condensation and lasing in semiconductor cavities. Laser Photon. Rev. 17, 2300366 (2023).
Barland, S., Azam, P., Lippi, G., Nyman, R. & Kaiser, R. Photon thermalisation and a condensation part transition in an electrically pumped semiconductor microresonator. Decide. Specific 29, 8368 (2021).
Schofield, R. et al. Bose–Einstein condensation of sunshine in a semiconductor quantum effectively microcavity. Nat. Photon. 18, 1083–1089 (2024).
Pieczarka, M. et al. Bose–Einstein condensation of photons in a vertical-cavity surface-emitting laser. Nat. Photon. 18, 1090–1096 (2024).
Shayegan, Okay. J., Zhao, B., Kim, Y., Fan, S. & Atwater, H. A. Nonreciprocal infrared absorption by way of resonant magneto-optical coupling to inas. Sci. Adv. 8, eabm4308 (2022).
Shayegan, Okay. J., Biswas, S., Zhao, B., Fan, S. & Atwater, H. A. Direct remark of the violation of Kirchhoff’s regulation of thermal radiation. Nat. Photon. 17, 891–896 (2023).
Lengthy, O. et al. Nonreciprocal scintillation utilizing one-dimensional magneto-optical photonic crystals. Phys. Rev. Appl. 22, 054062 (2024).
Lagrée, M. et al. Efficient-density-matrix method for intersubband plasmons coupled to a cavity subject: electrical extraction and injection of intersubband polaritons. Phys. Rev. Appl. 21, 034002 (2024).
Yang, W. et al. A graphene Zener-Klein transistor cooled by a hyperbolic substrate. Nat. Nanotechnol. 13, 47–52 (2018).
Karabchevsky, A., Mosayyebi, A. & Kavokin, A. Tuning the chemiluminescence of a luminol move utilizing plasmonic nanoparticles. Gentle Sci. Appl. 5, e16164 (2016).
Vazquez-Lozano, J. E. & Liberal, I. Incandescent temporal metamaterials. Nat. Commun. 18, 4606 (2023).
Cohen-Tannoudji, C., Dupont-Roc, J., Grinberg, G. & Thickstun, P. Atom-Photon Interactions: Fundamental Processes and Purposes (Wiley, 1992).
Muniz, Y., da Rosa, F. S. S., Farina, C., Szilard, D. & Kort-Kamp, W. J. M. Quantum two-photon emission in a photonic cavity. Phys. Rev. A 100, 023818 (2019).
Rivera, N., Rosolen, G., Joannopoulos, J. D., Kaminer, I. & Soljačić, M. Making two-photon processes dominate one-photon processes utilizing mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA 114, 13607–13612 (2017).
Leon, C. C. et al. Photon superbunching from a generic tunnel junction. Sci. Adv. 5, eaav4986 (2019).
Sivan, Y. et al. Crossover from nonthermal to thermal photoluminescence from metals excited by ultrashort mild pulses. ACS Nano 17, 11439–11453 (2023).
Cai, Y.-Y. et al. Photoluminescence of gold nanorods: Purcell impact enhanced emission from scorching carriers. ACS Nano 12, 976–985 (2018).
Cai, Y.-Y. et al. Anti-Stokes emission from scorching carriers in gold nanorods. Nano Lett. 19, 1067–1073 (2019).
Giuliani, L. G. & Vignale, G. Quantum Concept of the Electron Liquid (Cambridge Univ. Press, 2005).
Vogel, W. & Welsch, D. Quantum Optics (Wiley, 2006).
Loudon, R. The Quantum Concept of Gentle (Oxford Univ. Press, 2000).
Kira, M. & Koch, S. W. Semiconductor Quantum Optics (Cambridge Univ. Press, 2011).
Haug, H. & Koch, S. W. Quantum Concept of the Optical and Digital Properties of Semiconductors (World Scientific, 1990).
Siegman, A. Lasers (College Science Books, 1986).
