20 C
Canberra
Wednesday, January 28, 2026

A unified mannequin for mild emission from solids


  • Stepanov, B. & Gribkovskii, V. Concept of Luminescence (Iliffe, 1968).

  • Gribkovskii, V. in Luminescence of Solids 1–43 (Springer, 1998).

  • Vaskin, A., Kolkowski, R., Koenderink, A. F. & Staude, I. Gentle-emitting metasurfaces. Nanophotonics 8, 1151–1198 (2019).

    Article 

    Google Scholar
     

  • Yang, H. et al. Orchestrating spontaneous emission with metasurfaces: latest advances in engineering thermal, luminescent, and quantum emissions. Adv. Decide. Mater. 13, 2402755 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Muniain, U., Esteban, R., Aizpurua, J. & Greffet, J.-J. Unified therapy of sunshine emission by inelastic tunneling: interplay of electrons and photons past the hole. Phys. Rev. X 14, 021017 (2024). This paper presents the idea of plasmon emission from inelastic tunnelling. The equivalence between the radiation from fluctuating currents and the Fermi golden rule method is derived explicitly.

    CAS 

    Google Scholar
     

  • Sivan, Y. & Dubi, Y. Concept of ‘scorching’ photoluminescence from drude metals. ACS Nano 15, 8724–8732 (2021). The speculation of PL from metals is mentioned, together with non-equilibrium electrons and holes.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baffou, G. Anti-Stokes thermometry in nanoplasmonics. ACS Nano 15, 5785–5792 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roques-Carmes, C. et al. A framework for scintillation in nanophotonics. Science 375, eabm9293 (2022). A principle of scintillation is proposed utilizing equation (8) and the Inexperienced tensor formalism.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bowman, A. R. et al. Quantum-mechanical results in photoluminescence from skinny crystalline gold movies. Gentle Sci. Appl. 13, 91 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loirette-Pelous, A. & Greffet, J.-J. Concept of photoluminescence by metallic buildings. ACS Nano 18, 31823 (2024). A principle of PL from metallic nanoparticles is offered, together with a derivation of equation (10).

  • Karnieli, A. et al. Modeling quantum optical phenomena utilizing transition currents. Appl. Phys. Rev. 11, 031305 (2024). The authors focus on mild emission from transition currents and functions to quantum results.

    Article 
    CAS 

    Google Scholar
     

  • Bailly, E. et al. 2D silver-nanoplatelets metasurface for vibrant directional photoluminescence, designed with the native Kirchhoff’s regulation. ACS Nano 18, 4903–4910 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirchhoff, G. On the relation between the radiating and absorbing powers of various our bodies for mild and warmth. Lond. Edin. Dublin Phil. Magazine. J. Sci. 20, 1–21 (1860). This paper presents the unique derivation of Kirchhoff’s regulation.

    Article 

    Google Scholar
     

  • Rytov, S. M., Kravtsov, Y. A. & Tatarskii, V. I. Rules of Statistical Radiophysics Vol. 3 (Springer, 1989). This e book offers a radical introduction to fluctuational electrodynamics.

  • Landau, L., Lifshitz, E. M. & Pitaevskii, L. Statistical Physics Half I (Pergamon, 1980).

  • Li, W. & Fan, S. Nanophotonic management of thermal radiation for power functions. Decide. Specific 26, 15995 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baranov, D. et al. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Reworking warmth switch with thermal metamaterials and units. Nat. Rev. Mater. 6, 488–507 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Picardi, M., Nimje, Okay. & Papadakis, G. Dynamic modulation of thermal emission—a tutorial. J. Appl. Phys. 133, 111101 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Vazquez-Lozano, J. E. & Liberal, I. Overview on the scientific and technological breakthroughs in thermal emission engineering. ACS Appl. Decide. Mater. 2, 898 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, Q. et al. Controlling thermal emission with metasurfaces and its functions. Nanophotonics 13, 1279–1301 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamoreaux, S. Okay. The Casimir drive: background, experiments, and functions. Rep. Progr. Phys. 68, 201 (2004).

    Article 

    Google Scholar
     

  • Henkel, C., Joulain, Okay., Mulet, J.-P. & Greffet, J.-J. Radiative forces on small particles in thermal close to fields. J. Decide. A4, S109 (2002).


    Google Scholar
     

  • Henkel, C., Joulain, Okay., Mulet, J.-P. & Greffet, J.-J. Coupled floor polaritons and the Casimir drive. Phys. Rev. A 69, 023803 (2004).

    Article 

    Google Scholar
     

  • Joulain, Okay., Mulet, J.-P., Marquier, F., Carminati, R. & Greffet, J.-J. Floor electromagnetic waves thermally excited: radiative warmth switch, coherence properties and Casimir forces revisited within the close to subject. Surf. Sci. Rep. 57, 59–112 (2004).

    Article 

    Google Scholar
     

  • Henry, C. & Kazarinov, F. Quantum noise in photonics. Rev. Mod. Phys. 68, 801 (1996). This paper affords a radical quantum therapy of sunshine emission from semiconductors, together with an in depth derivation of the fluctuation–dissipation relation for pumped semiconductors.

    Article 
    CAS 

    Google Scholar
     

  • Greffet, J.-J., Bouchon, P., Brucoli, G. & Marquier, F. Gentle emission by nonequilibrium our bodies: native Kirchhoff regulation. Phys. Rev. X 8, 021008 (2018). The authors present a derivation of an area Kirchhoff regulation that’s relevant to our bodies with arbitrary shapes and inhomogeneous temperatures and chemical potentials.

    CAS 

    Google Scholar
     

  • Benisty, H., Greffet, J.-J. & Lalanne, P. Introduction to Nanophotonics (Oxford Univ. Press, 2022).

  • Greffet, J.-J. et al. Coherent emission of sunshine by thermal sources. Nature 416, 61–64 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, M. et al. Self-focused thermal emission and holography realized by mesoscopic thermal emitters. ACS Photon. 8, 497–504 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Costantini, D. et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. Appl. 4, 014023 (2015).

    Article 

    Google Scholar
     

  • Overvig, A., Yu, N. & Alù, A. Chiral quasi-bound states within the continuum. Phys. Rev. Lett. 126, 073001 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Celanovic, I., Perreault, D. & Kassakian, J. Resonant-cavity enhanced thermal emission. Phys. Rev. B 72, 075127 (2005).

    Article 

    Google Scholar
     

  • Fan, Z., Hwang, T. & Lin, S. A. Directional thermal emission and show utilizing pixelated non-imaging micro-optics. Nat. Commun. 15, 4544 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puscasu, I. & Schaich, W. L. Slender-band, tunable infrared emission from arrays of microstrip patches. Appl. Phys. Lett. 92, 233102 (2008).

    Article 

    Google Scholar
     

  • Liu, X. et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Bouchon, P., Koechlin, C., Pardo, F., Haïdar, R. & Pelouard, J.-L. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Decide. Lett. 37, 1038–1040 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanchard, C. et al. Metallo-dielectric metasurfaces for thermal emission with managed spectral bandwidth and angular aperture. Decide. Mat. Specific 12, 1–12 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cui, Y. et al. Ultrabroadband mild absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12, 1443–1447 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cattoni, A. et al. λ3/1000 plasmonic nanocavities for biosensing fabricated by delicate UV nanoimprint lithography. Nano Lett. 11, 3557–3563 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dahan, N. et al. Enhanced coherency of thermal emission: past the limitation imposed by delocalized floor waves. Phys. Rev. B 76, 045427 (2007).

    Article 

    Google Scholar
     

  • Lu, G. et al. Engineering the spectral and spatial dispersion of thermal emission by way of polariton-phonon robust coupling. Nano Lett. 21, 1831–1838 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nat. Photon. 3, 658–661 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wojszvzyk, L. et al. An incandescent metasurface for quasimonochromatic polarized mid-wave infrared emission modulated past 10 MHz. Nat. Commun. 12, 1492 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadsworth, S. L., Clem, P. G., Branson, E. D. & Boreman, G. D. Broadband circularly-polarized infrared emission from multilayer metamaterials. Decide. Mater. Specific 1, 466–479 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Dahan, N., Gorodetski, Y., Frischwasser, Okay., Kleiner, V. & Hasman, E. Geometric doppler impact: spin-split dispersion of thermal radiation. Phys. Rev. Lett. 105, 136402 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen, A. et al. Massive round dichroism within the emission from an incandescent metasurface. Optica 10, 232–238 (2023).

    Article 

    Google Scholar
     

  • Wang, X. et al. Statement of nonvanishing optical helicity in thermal radiation from symmetry-broken metasurfaces. Sci. Adv. 9, eade4203 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyazaki, H. T. et al. Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing. Sci. Technol. Adv. Mater. 16, 035005 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inoue, T., Zoysa, M. D., Asano, T. & Noda, S. Realization of dynamic thermal emission management. Nat. Mater. 13, 928–931 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. & Madilla, W. Reconfigurable room temperature metamaterial infrared emitter. Optica 4, 430 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shi, C., Mahlmeister, N. H., Luxmoore, I. J. & Nash, G. R. Metamaterial-based graphene thermal emitter. Nano Res. 11, 3567–3573 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kang, D., Inoue, T., Asano, T. & Noda, S. Electrical modulation of narrowband GaN/AlGaN quantum-well photonic crystal thermal emitters in mid-wavelength infrared. ACS Photon. 6, 1565–1571 (2017).

    Article 

    Google Scholar
     

  • Brar, V. W. et al. Digital modulation of infrared radiation in graphene plasmonic resonators. Nat. Commun. 6, 7032 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papadakis, G. T., Zhao, B., Buddhiraju, S. & Fan, S. Gate-tunable near-field warmth switch. ACS Photon. 6, 709–719 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, N. H., Sherrott, M. C., Broulliet, J., Atwater, H. A. & Minnich, A. J. Digital modulation of near-field radiative switch in graphene subject impact heterostructures. Nano Lett. 19, 3898–3904 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, T., Zhang, L., Simpson, R. E. & Cryan, M. J. Mid-infrared tunable polarization-independent excellent absorber utilizing a phase-change metamaterial. J. Decide. Soc. Am. B 30, 1580–1585 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Qu, Y., Li, Q., Cai, L. & Qiu, M. Polarization switching of thermal emissions primarily based on plasmonic buildings incorporating phase-changing materials Ge2Sb2Te5. Decide. Mater. Specific 8, 2312–2320 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fan, D., Li, Q. & Dai, P. Temperature-dependent emissivity property in La0.7Sr0.3MnO3 movies. Acta Astronaut. 121, 144–152 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, P. et al. Reversible optical switching of extremely confined phonon–polaritons with an ultrathin phase-change materials. Nat. Mater. 15, 870–875 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polder, D. & van Hove, M. Concept of radiative warmth switch between carefully spaced our bodies. Phys. Rev. B 4, 3303 (1971).

    Article 

    Google Scholar
     

  • Würfel, P. The chemical potential of radiation. J. Phys. C 15, 3967 (1982). This paper introduces the idea of the photon chemical potential and the generalized Kirchhoff’s regulation for pumped semiconductors.

    Article 

    Google Scholar
     

  • Feuerbacher, B. & Würfel, P. Verification of a generalised Planck regulation by investigation of the emission from GaAs luminescent diodes. J. Phys. Condens. Matter 2, 3803 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Inexperienced, M., Zhao, J., Wang, A., Reece, P. & Gal, M. Environment friendly silicon light-emitting diodes. Nature 412, 805–808 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le-Van, Q., Le Roux, X., Aassime, A. & Degiron, A. Electrically pushed optical metamaterials. Nat. Commun. 7, 12017 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monin, H. et al. Controlling mild emission by a thermalized ensemble of colloidal quantum dots with a metasurface. Decide. Specific 31, 4851–4861 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coldren, L. A., Corzine, S. W. & Mashanovitch, M. L. Diode Lasers and Photonic Built-in Circuits (Wiley, 2012).

  • Törmä, P. & Barnes, W. L. Sturdy coupling between floor plasmon polaritons and emitters: a overview. Rep. Progr. Phys. 78, 013901 (2014).

    Article 

    Google Scholar
     

  • George, J. et al. Extremely-strong coupling of molecular supplies: spectroscopy and dynamics. Faraday Focus on. 178, 281 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aberra-Guebrou, S. et al. Coherent emission from a disordered natural semiconductor induced by robust coupling with floor plasmon. Phys. Rev. Lett. 108, 066401 (2012).

    Article 

    Google Scholar
     

  • Bailly, E., Hugonin, J.-P., Vest, B. & Greffet, J.-J. Spatial coherence of sunshine emitted by thermalized ensembles of emitters coupled to floor waves. Phys. Rev. Res. 3, L032040 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Perez de la Vega, C. R. et al. Plasmon-mediated power switch between two programs out of equilibrium. ACS Photon. 10, 1169–1176 (2023).

    CAS 

    Google Scholar
     

  • Garcia de Abajo, F. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H.-L. et al. Quantitative evaluation of service density by cathodoluminescence. I. GaAs skinny movies and modeling. Phys. Rev. Appl. 15, 024006 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Loirette-Pelous, A. & Greffet, J.-J. On the applicability of Kirchhoff’s regulation to the lasing regime. Optica 11, 1621 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lambe, J. & McCarthy, S. L. Gentle emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923–925 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Laks, B. & Mills, D. L. Photon emission from barely roughened tunnel junctions. Phys. Rev. B 20, 4962–4980 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Laks, B. & Mills, D. L. Gentle emission from tunnel junctions: the position of the quick floor polariton. Phys. Rev. B 22, 5723–5729 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Hone, D., Mühlschlegel, B. & Scalapino, D. J. Concept of sunshine emission from small particle tunnel junctions. Appl. Phys. Lett. 33, 203–204 (1978).

    Article 

    Google Scholar
     

  • Kirtley, J., Theis, T. N. & Tsang, J. C. Gentle emission from tunnel junctions on gratings. Phys. Rev. B 24, 5650–5663 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Kirtley, J. R., Theis, T. N., Tsang, J. C. & DiMaria, D. J. Sizzling-electron image of sunshine emission from tunnel junctions. Phys. Rev. B 27, 4601–4611 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Persson, B. N. J. & Baratoff, A. Concept of photon emission in electron tunneling to metallic particles. Phys. Rev. Lett. 68, 3224–3227 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mooradian, A. Photoluminescence of metals. Phys. Rev. Lett. 22, 185 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Boyd, G., Yu, Z. & Shen, Y. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 33, 7923 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Apell, P., Monreal, R. & Lundqvist, S. Photoluminescence of noble metals. Phys. Scripta 38, 174 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Wilcoxon, J., Martin, J., Parsapour, F., Wiedenman, B. & Kelley, D. Photoluminescence from nanosize gold clusters. J. Chem. Phys. 108, 9137–9143 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Mohamed, M. B., Volkov, V., Hyperlink, S. & El-Sayed, M. A. The lightning gold nanorods: fluorescence enhancement of over one million in comparison with the gold steel. Chem. Phys. Lett. 317, 517–523 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Huang, T. & Murray, R. W. Seen luminescence of water-soluble monolayer-protected gold clusters. J. Phys. Chem. B 105, 12498–12502 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Beversluis, M. R., Bouhelier, A. & Novotny, L. Continuum era from single gold nanostructures by near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003).

    Article 

    Google Scholar
     

  • Wu, X. et al. Excessive-photoluminescence-yield gold nanocubes: for cell imaging and photothermal remedy. ACS Nano 4, 113–120 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tcherniak, A. et al. One-photon plasmon luminescence and its utility to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods. J. Phys. Chem. C 115, 15938–15949 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hu, H., Duan, H., Yang, J. Okay. & Shen, Z. X. Plasmon-modulated photoluminescence of particular person gold nanostructures. ACS Nano 6, 10147–10155 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yorulmaz, M., Khatua, S., Zijlstra, P., Gaiduk, A. & Orrit, M. Luminescence quantum yield of single gold nanorods. Nano Lett. 12, 4385–4391 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Y. et al. Floor enhanced anti-Stokes one-photon luminescence from single gold nanorods. Nanoscale 7, 577–582 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hugall, J. T. & Baumberg, J. J. Demonstrating photoluminescence from Au is digital inelastic mild scattering of a plasmonic steel: the origin of SERS backgrounds. Nano Lett. 15, 2600–2604 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, X. & Cahill, D. G. Thermometry of plasmonic nanostructures by anti-Stokes digital Raman scattering. Appl. Phys. Lett. 109, 183104 (2016).

    Article 

    Google Scholar
     

  • Lin, Okay.-Q. et al. Intraband hot-electron photoluminescence from single silver nanorods. ACS Photon. 3, 1248–1255 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Carattino, A., Caldarola, M. & Orrit, M. Gold nanoparticles as absolute nanothermometers. Nano Lett. 18, 874–880 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barella, M. et al. In situ photothermal response of single gold nanoparticles by hyperspectral imaging anti-Stokes thermometry. ACS Nano 15, 2458–2467 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cai, Y.-Y., Tauzin, L. J., Ostovar, B., Lee, S. & Hyperlink, S. Gentle emission from plasmonic nanostructures. J. Chem. Phys. 155, 060901 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shahbazyan, T. V. Purcell issue for plasmon-enhanced steel photoluminescence. J. Phys. Chem. C 127, 5898–5903 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dubi, Y. & Sivan, Y. ‘Sizzling’ electrons in metallic nanostructures-non-thermal carriers or heating? Gentle Sci. Appl. 8, 89 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min, S. et al. Finish-to-end design of multicolor scintillators for enhanced power decision in X-ray imaging. Gentle Sci. Appl. 14, 158 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurman, Y. et al. Purcell-enhanced X-ray scintillation. Sci. Adv. 10, eadq6325 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin-Monier, L. et al. Massive-scale self-assembled nanophotonic scintillators for X-ray imaging. Nat. Commun. 16, 5750 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shultzman, A., Segal, O., Kurman, Y., Roques-Carmes, C. & Kaminer, I. Enhanced imaging utilizing inverse design of nanophotonic scintillators. Adv. Decide. Mater. 11, 220318 (2023).

    Article 

    Google Scholar
     

  • Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dung, D. et al. Variable potentials for thermalized mild and matched condensates. Nat. Photon. 11, 565–569 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Loirette-Pelous, A. & Greffet, J.-J. Photon Bose–Einstein condensation and lasing in semiconductor cavities. Laser Photon. Rev. 17, 2300366 (2023).

    Article 

    Google Scholar
     

  • Barland, S., Azam, P., Lippi, G., Nyman, R. & Kaiser, R. Photon thermalisation and a condensation part transition in an electrically pumped semiconductor microresonator. Decide. Specific 29, 8368 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schofield, R. et al. Bose–Einstein condensation of sunshine in a semiconductor quantum effectively microcavity. Nat. Photon. 18, 1083–1089 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pieczarka, M. et al. Bose–Einstein condensation of photons in a vertical-cavity surface-emitting laser. Nat. Photon. 18, 1090–1096 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shayegan, Okay. J., Zhao, B., Kim, Y., Fan, S. & Atwater, H. A. Nonreciprocal infrared absorption by way of resonant magneto-optical coupling to inas. Sci. Adv. 8, eabm4308 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shayegan, Okay. J., Biswas, S., Zhao, B., Fan, S. & Atwater, H. A. Direct remark of the violation of Kirchhoff’s regulation of thermal radiation. Nat. Photon. 17, 891–896 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lengthy, O. et al. Nonreciprocal scintillation utilizing one-dimensional magneto-optical photonic crystals. Phys. Rev. Appl. 22, 054062 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lagrée, M. et al. Efficient-density-matrix method for intersubband plasmons coupled to a cavity subject: electrical extraction and injection of intersubband polaritons. Phys. Rev. Appl. 21, 034002 (2024).

    Article 

    Google Scholar
     

  • Yang, W. et al. A graphene Zener-Klein transistor cooled by a hyperbolic substrate. Nat. Nanotechnol. 13, 47–52 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karabchevsky, A., Mosayyebi, A. & Kavokin, A. Tuning the chemiluminescence of a luminol move utilizing plasmonic nanoparticles. Gentle Sci. Appl. 5, e16164 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vazquez-Lozano, J. E. & Liberal, I. Incandescent temporal metamaterials. Nat. Commun. 18, 4606 (2023).

    Article 

    Google Scholar
     

  • Cohen-Tannoudji, C., Dupont-Roc, J., Grinberg, G. & Thickstun, P. Atom-Photon Interactions: Fundamental Processes and Purposes (Wiley, 1992).

  • Muniz, Y., da Rosa, F. S. S., Farina, C., Szilard, D. & Kort-Kamp, W. J. M. Quantum two-photon emission in a photonic cavity. Phys. Rev. A 100, 023818 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rivera, N., Rosolen, G., Joannopoulos, J. D., Kaminer, I. & Soljačić, M. Making two-photon processes dominate one-photon processes utilizing mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA 114, 13607–13612 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leon, C. C. et al. Photon superbunching from a generic tunnel junction. Sci. Adv. 5, eaav4986 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sivan, Y. et al. Crossover from nonthermal to thermal photoluminescence from metals excited by ultrashort mild pulses. ACS Nano 17, 11439–11453 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Y.-Y. et al. Photoluminescence of gold nanorods: Purcell impact enhanced emission from scorching carriers. ACS Nano 12, 976–985 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Y.-Y. et al. Anti-Stokes emission from scorching carriers in gold nanorods. Nano Lett. 19, 1067–1073 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giuliani, L. G. & Vignale, G. Quantum Concept of the Electron Liquid (Cambridge Univ. Press, 2005).

  • Vogel, W. & Welsch, D. Quantum Optics (Wiley, 2006).

  • Loudon, R. The Quantum Concept of Gentle (Oxford Univ. Press, 2000).

  • Kira, M. & Koch, S. W. Semiconductor Quantum Optics (Cambridge Univ. Press, 2011).

  • Haug, H. & Koch, S. W. Quantum Concept of the Optical and Digital Properties of Semiconductors (World Scientific, 1990).

  • Siegman, A. Lasers (College Science Books, 1986).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles