10.4 C
Canberra
Friday, September 20, 2024

A translational framework to DELIVER nanomedicines to the clinic


  • Park, Ok. The start of the top of the nanomedicine hype. J. Management. Launch 305, 221–222 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatia, S. N., Chen, X., Dobrovolskaia, M. A. & Lammers, T. Most cancers nanomedicine. Nat. Rev. Most cancers 22, 550–556 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youn, Y. S. & Bae, Y. H. Views on the previous, current, and way forward for most cancers nanomedicine. Adv. Drug Deliv. Rev. 130, 3–11 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leong, H. S. et al. On the problem of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14, 629–635 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lammers, T. et al. Most cancers nanomedicine: is focusing on our goal? Nat. Rev. Mater. 1, 16069 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barenholz, Y. Doxil®—the primary FDA-approved nano-drug: classes realized. J. Management. Launch 160, 117–134 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan, X. et al. Present approaches of nanomedicines available in the market and varied stage of scientific translation. Acta Pharm. Sin. B 12, 3028–3048 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • COVID-19 vaccination, world knowledge. WHO https://knowledge.who.int/dashboards/covid19/vaccines?n=c (2024).

  • Mathieu, E. et al. Coronavirus pandemic (COVID-19). OurWorldInData.org https://ourworldindata.org/coronavirus (2020).

  • Milane, L. & Amiji, M. Medical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: affect on translational nanomedicine. Drug Deliv. Transl. Res. 11, 1309–1315 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharjee, S. & Brayden, D. J. Addressing the challenges to extend the effectivity of translating nanomedicine formulations to sufferers. Skilled Opin. Drug Discov. 16, 235–254 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swierczewska, M., Crist, R. M. & McNeil, S. E. in Characterization of Nanoparticles Meant for Drug Supply (ed. McNeil, S. E.) 3–16 (Springer, 2018).

  • Metselaar, J. M. & Lammers, T. Challenges in nanomedicine scientific translation. Drug Deliv. Transl. Res. 10, 721–725 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, H. et al. Ldl cholesterol modulates the physiological response to nanoparticles by altering the composition of protein corona. Nat. Nanotechnol. 18, 1067–1077 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hare, J. I. et al. Challenges and techniques in anti-cancer nanomedicine growth: an trade perspective. Adv. Drug Deliv. Rev. 108, 25–38 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Germain, M. et al. Delivering the ability of nanomedicine to sufferers in the present day. J. Management. Launch 326, 164–171 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, G. H., Grey, A. B. C. & Patra, H. Ok. Nanomedicine: controlling nanoparticle clearance for translational success. Tendencies Pharmacol. Sci. 43, 709–711 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kendall, M. & Lynch, I. Lengthy-term monitoring for nanomedicine implants and medicines. Nat. Nanotechnol. 11, 206–210 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crist, R. M. et al. Frequent pitfalls in nanotechnology: classes realized from NCI’s Nanotechnology Characterization Laboratory. Integr. Biol. 5, 66–73 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. & Kataoka, Ok. Chemo-physical methods to advance the in vivo performance of focused nanomedicine: the subsequent era. J. Am. Chem. Soc. 143, 538–559 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Beraldo-de-Araújo, V. L. et al. Excipient–excipient interactions within the growth of nanocarriers: an progressive statistical method for formulation choices. Sci. Rep. 9, 10738 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, N., Solar, H., Dong, J. & Ouyang, D. PharmDE: a brand new professional system for drug–excipient compatibility analysis. Int. J. Pharm. 607, 120962 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berrecoso, G., Crecente-Campo, J. & Alonso, M. J. Quantification of the particular composition of polymeric nanocapsules: a top quality management evaluation. Drug Deliv. Transl. Res. 12, 2865–2874 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterhouse, D. N., Tardi, P. G., Mayer, L. D. & Bally, M. B. A comparability of liposomal formulations of doxorubicin with drug administered in free kind: altering toxicity profiles. Drug. Saf. 24, 903–920 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrington, Ok. J. et al. Part I–II research of pegylated liposomal cisplatin (SPI-077) in sufferers with inoperable head and neck most cancers. Ann. Oncol. 12, 493–496 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Troiano, G. et al. A high quality by design method to growing and manufacturing polymeric nanoparticle drug merchandise. AAPS J. 18, 1354–1365 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mast, M.-P. et al. Nanomedicine on the crossroads—a fast information for IVIVC. Adv. Drug Deliv. Rev. 179, 113829 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stillhart, C. et al. PBPK absorption modeling: establishing the in vitro–in vivo hyperlink—trade perspective. AAPS 21, 19 (2019).

    Article 

    Google Scholar
     

  • Yuan, D. et al. Physiologically primarily based pharmacokinetic modeling of nanoparticles. J. Pharm. Sci. 108, 58–72 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, M. et al. Advances in 3D bioprinting for most cancers biology and precision medication: from matrix design to utility. Adv. Healthc. Mater. 11, 2200690 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cai, R. & Chen, C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv. Mater. 31, 1805740 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Subramaniam, S. et al. Protein adsorption determines pulmonary cell uptake of lipid-based nanoparticles. J. Colloid Interface Sci. 641, 36–47 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Article 

    Google Scholar
     

  • Urbán, P., Liptrott, N. J. & Bremer, S. Overview of the blood compatibility of nanomedicines: a development evaluation of in vitro and in vivo research. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, e1546 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jain, P. et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine: iprotein corona the lacking hyperlink? Biotechnol. Adv. 35, 889–904 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agnihotri, T. G. et al. In vitro–in vivo correlation in nanocarriers: from protein corona to therapeutic implications. J. Management. Launch 354, 794–809 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, H. et al. Survey of scientific translation of most cancers nanomedicines—classes realized from successes and failures. Acc. Chem. Res. 52, 2445–2461 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong, F., Wang, Y. & Gao, H. Progress and challenges within the translation of most cancers nanomedicines. Curr. Opin. Biotechnol. 85, 103045 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. Most cancers nanomedicine towards scientific translation: obstacles, alternatives, and future prospects. Med 4, 147–167 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffman, R. M. Affected person-derived orthotopic xenografts: higher mimic of metastasis than subcutaneous xenografts. Nat. Rev. Most cancers 15, 451–452 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zushin, P. H., Mukherjee, S. & Wu, J. C. FDA Modernization Act 2.0: transitioning past animal fashions with human cells, organoids, and AI/ML-based approaches. J. Clin. Make investments. 133, e175824 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ioannidis, J. P. A., Kim, B. Y. S. & Trounson, A. Tips on how to design preclinical research in nanomedicine and cell remedy to maximise the prospects of scientific translation. Nat. Biomed. Eng. 2, 797–809 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodman, S. N., Fanelli, D. & Ioannidis, J. P. A. What does analysis reproducibility imply? Sci. Transl. Med. 8, 341ps12 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ke, W. et al. Tendencies and patterns in most cancers nanotechnology analysis: asurvey of NCI’s caNanoLab and nanotechnology characterization laboratory. Adv. Drug Deliv. Rev. 191, 114591 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paliwal, R., Babu, R. J. & Palakurthi, S. Nanomedicine scale-up applied sciences: feasibilities and challenges. AAPS PharmSciTech 15, 1527–1534 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X., Huang, P., Yang, R. & Deng, H. mRNA most cancers vaccines: development and boosting methods. ACS Nano 17, 19550–19580 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, S. et al. The potential of mRNA vaccines in most cancers nanomedicine and immunotherapy. Tendencies Immunol. 45, 20–31 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, S. et al. Nanoparticle-based chimeric antigen receptor remedy for most cancers immunotherapy. Tissue Eng. Regen. Med. 20, 371–387 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mi, J., Ye, Q. & Min, Y. Advances in nanotechnology growth to beat present roadblocks in CAR-T remedy for stable tumors. Entrance. Immunol. 13, 849759 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, Y.-H., Zhao, X.-P. & Fan, X.-X. Nanotechnology-based chimeric antigen receptor T-cell remedy in treating stable tumor. Pharmacol. Res. 184, 106454 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Environment friendly non-viral CAR-T cell era through silicon-nanotube-mediated transfection. Mater. As we speak 63, 8–17 (2023).

    Article 

    Google Scholar
     

  • Hu, T., Kumar, A. R. Ok., Luo, Y. & Tay, A. Automating CAR-T transfection with micro and nano-technologies. Small Strategies https://doi.org/10.1002/smtd.202301300 (2023).

  • López-Estévez, A. M., Lapuhs, P., Pineiro-Alonso, L. & Alonso, M. J. Customized most cancers nanomedicine: overcoming organic limitations for intracellular supply of biopharmaceuticals. Adv. Mater. 36, 2309355 (2023).

    Article 

    Google Scholar
     

  • Solar, Q., Radosz, M. & Shen, Y. Challenges in design of translational nanocarriers. J. Management. Launch 164, 156–169 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DepoCyte—withdrawal of utility for variation to advertising and marketing authorisation. EMA https://www.ema.europa.eu/en/medicines/human/variation/depocyte (2006).

  • Ramanathan, R. Ok. et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in sufferers with superior stable tumors: a pilot research. Clin. Most cancers Res. 23, 3638–3648 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Could, J.-N. et al. Histopathological biomarkers for predicting the tumour accumulation of nanomedicines. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01197-4 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Angeli, F. et al. Optimum use of the non-inferiority trial design. Pharm. Med. 34, 159–165 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shitara, Ok. et al. Nab-paclitaxel versus solvent-based paclitaxel in sufferers with beforehand handled superior gastric most cancers (ABSOLUTE): an open-label, randomised, non-inferiority, section 3 trial. Lancet Gastroenterol. Hepatol. 2, 277–287 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Fujiwara, Y. et al. A multi-national, randomised, open-label, parallel, section III non-inferiority research evaluating NK105 and paclitaxel in metastatic or recurrent breast most cancers sufferers. Br. J. Most cancers 120, 475–480 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosaka, Y. et al. Multicenter randomized open-label section II scientific research evaluating outcomes of NK105 and paclitaxel in superior or recurrent breast most cancers. Int. J. Nanomed. 17, 4567 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Miedema, I. H. C. et al. First-in-human imaging of nanoparticle entrapped docetaxel (CPC634) in sufferers with superior stable tumors utilizing 89Zr-Df-CPC634 PET/CT. J. Clin. Oncol. 37, 3093 (2019).

    Article 

    Google Scholar
     

  • Atrafi, F. et al. A section I dose-finding and pharmacokinetics research of CPC634 (nanoparticle entrapped docetaxel) in sufferers with superior stable tumors. J. Clin. Oncol. 37, 3026–3026 (2019).

    Article 

    Google Scholar
     

  • Atrafi, F. et al. Intratumoral comparability of nanoparticle entrapped docetaxel (CPC634) with standard docetaxel in sufferers with stable tumors. Clin. Most cancers Res. 26, 3537–3545 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ingrid, B. et al. CINOVA: a section II research of CPC634 (nanoparticulate docetaxel) in sufferers with platinum resistant recurrent ovarian most cancers. Int. J. Gynecol. Most cancers 33, 1247 (2023).

    Article 

    Google Scholar
     

  • Tinkle, S. et al. Nanomedicines: addressing the scientific and regulatory hole. Ann. N. Y. Acad. Sci. 1313, 35–56 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foulkes, R. et al. The regulation of nanomaterials and nanomedicines for scientific utility: present and future views. Biomater. Sci. 8, 4653–4664 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hemmrich, E. & McNeil, S. Energetic ingredient vs excipient debate for nanomedicines. Nat. Nanotechnol. 18, 692–695 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hertig, J. B. et al. Tackling the challenges of nanomedicines: are we prepared? Am. J. Well being Syst. Pharm. 78, 1047–1056 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fogel, D. B. Elements related to scientific trials that fail and alternatives for bettering the chance of success: a assessment. Contemp. Clin. Trials Commun. 11, 156–164 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heart for Drug Analysis and Analysis Drug Merchandise, Together with Organic Merchandise, that Include Nanomaterials (US Meals & Drug Administration, 2022); https://www.fda.gov/media/157812/obtain

  • Van Norman, G. A. Medicine, gadgets, and the FDA: Half 1: an outline of approval processes for medicine. J. Am. Coll. Cardiol. 1, 170–179 (2016).


    Google Scholar
     

  • Klein, Ok. et al. A realistic regulatory method for advanced generics by means of the US FDA 505 (j) or 505 (b)(2) approval pathways. Ann. N. Y. Acad. Sci. 1502, 5–13 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elnathan, R., Tay, A., Voelcker, N. H. & Chiappini, C. The beginning-ups taking nanoneedles into the clinic. Nat. Nanotechnol. 17, 807–811 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, A. et al. Speedy response by means of the entrepreneurial capabilities of educational scientists. Nat. Nanotechnol. 17, 802–807 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, V. J., Bliemel, M., Shippam, C. & Maine, E. Endowing college spin-offs pre-formation: entrepreneurial capabilities for scientist-entrepreneurs. Technovation 96-97, 102153 (2020).

    Article 

    Google Scholar
     

  • Dayton, L. Coronavirus vaccine front-runner Moderna places MIT chemist-entrepreneur Robert Langer within the highlight. Nature Index https://www.nature.com/nature-index/information/coronavirus-vaccine-front-runner-moderna-puts-mit-chemist-entrepreneur-robert-langer-in-the-spotlight (2020).

  • Langer, R. A private account of translating discoveries in an instructional lab. Nat. Biotechnol. 31, 487–489 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prokesch, S. The Edison of drugs. Harv. Bus. Rev. 95, 134–143 (2017).


    Google Scholar
     

  • Baden, L. R. et al. Efficacy and security of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eaton, M. A. W., Levy, L. & Fontaine, O. M. A. Delivering nanomedicines to sufferers: a sensible information. Nanomedicine 11, 983–992 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhary, N., Weissman, D. & Whitehead, Ok. A. mRNA vaccines for infectious ailments: ideas, supply and scientific translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gold, E. R. What the COVID-19 pandemic revealed about mental property. Nat. Biotechnol. 40, 1428–1430 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faria, M. et al. Minimal data reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kilkenny, C. et al. Enhancing bioscience analysis reporting: the ARRIVE pointers for reporting animal analysis. J. Pharmacol. Pharmacother. 1, 94–99 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heart for Drug Analysis and Analysis & Heart for Biologics Analysis and Analysis Steering for Trade: Surroundings Evaluation of Human Drug and Biologics Functions (US Meals & Drug Administration, 1998); https://www.fda.gov/media/70809/obtain

  • Heart for Drug Analysis and Analysis Steering for Trade: Drug Merchandise, Together with Organic Merchandise, that Include Nanomaterials (US Meals & Drug Administration, 2022); https://www.fda.gov/media/157812/obtain

  • Chetwynd, A. J., Wheeler, Ok. E. & Lynch, I. Greatest follow in reporting corona research: Minimal details about Nanomaterial Biocorona Experiments (MINBE). Nano As we speak 28, 100758 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadjidemetriou, M. et al. In vivo biomolecule corona round blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 9, 8142–8156 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ban, Z. et al. Machine studying predicts the useful composition of the protein corona and the mobile recognition of nanoparticles. Proc. Natl Acad. Sci. USA 117, 10492–10499 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickman, R. J. et al. Self-driving laboratories: a paradigm shift in nanomedicine growth. Matter 6, 1071–1081 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arden, N. S. et al. Trade 4.0 for pharmaceutical manufacturing: getting ready for the good factories of the long run. Int. J. Pharm. 602, 120554 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Younger, H. et al. Towards the scalable, fast, reproducible, and cost-effective synthesis of customized nanomedicines on the level of care. Nano Lett. 24, 920–928 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Vlieger, J. S. B. et al. Report of the AAPS steerage discussion board on the FDA draft steerage for trade: ‘drug merchandise, together with organic merchandise, that include nanomaterials’. AAPS J. 21, 56 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Marchant, G. E., Sylvester, D. J., Abbott, Ok. W. & Danforth, T. L. Worldwide harmonization of regulation of nanomedicine. Stud. Ethics Regulation Technol. https://doi.org/10.2202/1941-6008.1120 (2010).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles