Hobold, G. M. et al. Shifting past 99.9% Coulombic effectivity for lithium anodes in liquid electrolytes. Nat. Power 6, 951–960 (2021).
Horstmann, B. et al. Methods in the direction of enabling lithium metallic in batteries: interphases and electrodes. Power Environ. Sci. 14, 5289–5314 (2021).
Brandt, Ok. & Laman, F. C. Reproducibility and reliability of rechargeable lithium/molybdenum disulfide batteries. J. Energy Sources 25, 265–276 (1989).
Fang, C., Wang, X. & Meng, Y. S. Key points hindering a sensible lithium-metal anode. Traits Chem. 1, 152–158 (2019).
Liu, J. et al. Pathways for sensible high-energy long-cycling lithium metallic batteries. Nat. Power 4, 180–186 (2019).
Jagger, B. & Pasta, M. Stable electrolyte interphases in lithium metallic batteries. Joule 7, 2228–2244 (2023).
He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).
Lu, D. et al. Failure mechanism for fast-charged lithium metallic batteries with liquid electrolytes. Adv. Power Mater. 5, 1400993 (2015).
Wang, H. et al. Liquid electrolyte: the nexus of sensible lithium metallic batteries. Joule 6, 588–616 (2022).
Boyle, D. T. et al. Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes. J. Am. Chem. Soc. 144, 20717–20725 (2022).
Giffin, G. A. The function of focus in electrolyte options for non-aqueous lithium-based batteries. Nat. Commun. 13, 5250 (2022).
Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metallic battery electrolytes. Nat. Power 7, 94–106 (2022). Systematic design of bi-ethers to optimize the thermodynamic and kinetic properties of liquid electrolytes.
Qian, J. et al. Excessive price and steady biking of lithium metallic anode. Nat. Commun. 6, 6362 (2015).
Choi, I. R. et al. Uneven ether solvents for high-rate lithium metallic batteries. Nat. Power 10, 365–379 (2025).
Zhang, G. et al. A monofluoride ether-based electrolyte answer for fast-charging and low-temperature non-aqueous lithium metallic batteries. Nat. Commun. 14, 1081 (2023). Single-solvent mono-ether-based electrolyte enabling environment friendly Li stripping/plating at excessive present densities.
Yang, W., Chen, A., He, P. & Zhou, H. Advancing lithium metallic electrode past 99.9% coulombic effectivity through super-saturated electrolyte with compressed solvation construction. Nat. Commun. 16, 4229 (2025).
Xu, Ok. Electrolytes, Interfaces and Interphases (Royal Society of Chemistry, 2023).
Zhou, P., Xiang, Y. & Liu, Ok. Understanding and making use of the donor variety of electrolytes in lithium metallic batteries. Power Environ. Sci. 17, 8057–8077 (2024).
Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).
Peljo, P. & Girault, H. H. Electrochemical potential window of battery electrolytes: the HOMO–LUMO false impression. Power Environ. Mater. 11, 2306–2309 (2018).
Xu, Ok., Ding, S. P. & Jow, T. R. Towards dependable values of electrochemical stability limits for electrolytes. J. Electrochem. Soc. 146, 4172–4178 (1999).
Sethurajan, A. Ok., Krachkovskiy, S. A., Halalay, I. C., Goward, G. R. & Protas, B. Correct characterization of ion transport properties in binary symmetric electrolytes utilizing in situ NMR imaging and inverse modeling. J. Phys. Chem. B 119, 12238–12248 (2015).
Hou, T. & Monroe, C. W. Composition-dependent thermodynamic and mass-transport characterization of lithium hexafluorophosphate in propylene carbonate. Electrochim. Acta 332, 135085 (2020).
Wang, A. A., Hou, T., Karanjavala, M. & Monroe, C. W. Shifting-reference focus cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes. Electrochim. Acta 358, 136688 (2020).
Diederichsen, Ok. M., McShane, E. J. & McCloskey, B. D. Promising routes to a excessive Li+ transference quantity electrolyte for lithium ion batteries. ACS Power Lett. 2, 2563–2575 (2017).
Lorenz, M. et al. Native quantity conservation in concentrated electrolytes is governing cost transport in electrical fields. J. Phys. Chem. Lett. 13, 8761–8767 (2022).
Schammer, M., Horstmann, B. & Latz, A. Principle of transport in extremely concentrated electrolytes. J. Electrochem. Soc. 168, 026511 (2021).
Zugmann, S. et al. Measurement of transference numbers for lithium ion electrolytes through 4 completely different strategies, a comparative research. Electrochim. Acta 56, 3926–3933 (2011).
Petrowsky, M., Frech, R., Suarez, S. N., Jayakody, J. R. P. & Greenbaum, S. Investigation of basic transport properties and thermodynamics in diglyme−salt options. J. Phys. Chem. B 110, 23012–23021 (2006).
Kwabi, D. G. et al. Experimental and computational evaluation of the solvent-dependent O2/Li+–O2− redox couple: commonplace potentials, coupling energy, and implications for lithium–oxygen batteries. Angew. Chem. Int. Ed. 55, 3129–3134 (2016).
Leverick, G. & Shao-Horn, Y. Controlling electrolyte properties and redox reactions utilizing solvation and implications in battery features: a mini-review. Adv. Power Mater. 13, 2204094 (2023).
Ko, S. et al. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Power 7, 1217–1224 (2022).
Wu, Q., McDowell, M. T. & Qi, Y. Impact of the electrical double layer (EDL) in multicomponent electrolyte discount and strong electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 145, 2473–2484 (2023).
Angarita-Gomez, S. & Balbuena, P. B. Solvation vs. floor cost switch: an interfacial chemistry sport drives cation movement. Chem. Commun. 57, 6189–6192 (2021).
Xu, Ok. Electrolytes and interphases in Li-ion batteries and past. Chem. Rev. 114, 11503–11618 (2014).
Camacho-Forero, L. E., Smith, T. W. & Balbuena, P. B. Results of excessive and low salt focus in electrolytes at lithium-metal anode surfaces. J. Phys. Chem. C 121, 182–194 (2017).
Sayah, S. et al. How do tremendous concentrated electrolytes push the Li-ion batteries and supercapacitors past their thermodynamic and electrochemical limits?. Nano Power 98, 107336 (2022).
Dokko, Ok. et al. Direct proof for Li ion hopping conduction in extremely concentrated sulfolane-based liquid electrolytes. J. Phys. Chem. B 122, 10736–10745 (2018).
Raccichini, R., Dibden, J. W., Brew, A., Owen, J. R. & García-Aráez, N. Ion speciation and transport properties of LiTFSI in 1,3-dioxolane options: a case research for Li–S battery functions. J. Phys. Chem. B 122, 267–274 (2018).
Chen, Y. et al. Steric impact tuned ion solvation enabling steady biking of high-voltage lithium metallic battery. J. Am. Chem. Soc. 143, 18703–18713 (2021).
Lin, Y.-X. et al. Connecting the irreversible capability loss in Li-ion batteries with the digital insulating properties of strong electrolyte interphase (SEI) parts. J. Energy Sources 309, 221–230 (2016).
Li, Y. et al. Atomic construction of delicate battery supplies and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).
Wang, M. et al. Impact of LiFSI concentrations to kind thickness- and modulus-controlled SEI layers on lithium metallic anodes. J. Phys. Chem. C 122, 9825–9834 (2018).
Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metallic batteries. Science 375, 66–70 (2022).
Li, Y. & Qi, Y. Transferable self-consistent cost density useful tight-binding parameters for Li-metal and Li-ions in inorganic compounds and natural solvents. J. Phys. Chem. C 122, 10755–10764 (2018).
Soto, F. A., Ma, Y., Martinez De La Hoz, J. M., Seminario, J. M. & Balbuena, P. B. Formation and progress mechanisms of strong–electrolyte interphase layers in rechargeable batteries. Chem. Mater. 27, 7990–8000 (2015).
Single, F., Latz, A. & Horstmann, B. Figuring out the mechanism of continued progress of the solid-electrolyte interphase. ChemSusChem 11, 1950–1955 (2018).
Von Kolzenberg, L., Latz, A. & Horstmann, B. Stable–electrolyte interphase throughout battery biking: concept of progress regimes. ChemSusChem 13, 3901–3910 (2020).
Single, F., Horstmann, B. & Latz, A. Dynamics and morphology of strong electrolyte interphase (SEI). Phys. Chem. Chem. Phys. 18, 17810–17814 (2016).
Single, F., Horstmann, B. & Latz, A. Revealing SEI morphology: in-depth evaluation of a modeling strategy. J. Electrochem. Soc. 164, E3132–E3145 (2017).
Harris, O. C., Lin, Y., Qi, Y., Leung, Ok. & Tang, M. H. How transition metals allow electron switch by means of the SEI: half I. Experiments and Butler–Volmer modeling. J. Electrochem. Soc. 167, 013502 (2020).
Menkin, S. et al. Towards an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 125, 16719–16732 (2021).
Wang, H. et al. The impact of eradicating the native passivation movie on the electrochemical efficiency of lithium metallic electrodes. J. Energy Sources 520, 230817 (2022).
Kühn, S. P. et al. Again to the fundamentals: superior understanding of the as-defined strong electrolyte interphase on lithium metallic electrodes. J. Energy Sources 549, 232118 (2022).
Otto, S.-Ok. et al. Storage of lithium metallic: the function of the native passivation layer for the anode interface resistance in strong state batteries. ACS Appl. Power Mater. 4, 12798–12807 (2021).
Yoon, J. S. et al. Thermodynamics, adhesion, and wetting at Li/Cu(-oxide) interfaces: relevance for anode-free lithium-metal batteries. ACS Appl. Mater. Interfaces 16, 18790–18799 (2024).
Aravindan, V., Gnanaraj, J., Madhavi, S. & Liu, H. Lithium-ion conducting electrolyte salts for lithium batteries. Chem. Eur. J. 17, 14326–14346 (2011).
Schmitz, R. W. et al. Investigations on novel electrolytes, solvents and SEI components to be used in lithium-ion batteries: systematic electrochemical characterization and detailed evaluation by spectroscopic strategies. Prog. Stable State Chem. 42, 65–84 (2014).
Yeddala, M., Rynearson, L. & Lucht, B. L. Modification of carbonate electrolytes for lithium metallic electrodes. ACS Power Lett. 8, 4782–4793 (2023).
Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium progress mechanisms in liquid electrolytes. Power Environ. Sci. 9, 3221–3229 (2016).
Shin, W. & Manthiram, A. A facile potential maintain technique for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries. Angew. Chem. 134, e202115909 (2022).
Kwon, Y. et al. Elucidating the function of cathode identification: voltage-dependent reversibility of anode-free batteries. Chem 10, 3159–3183 (2024).
Fang, C. et al. Stress-tailored lithium deposition and dissolution in lithium metallic batteries. Nat. Power 6, 987–994 (2021).
Lei, Y. et al. Latest advances in separator design for lithium metallic batteries with out dendrite formation: implications for electrical automobiles. eTransportation 20, 100330 (2024).
Ishikawa, M., Tasaka, Y., Yoshimoto, N. & Morita, M. Optimization of physicochemical traits of a lithium anode interface for high-efficiency biking: an impact of electrolyte temperature. J. Energy Sources 97/98, 262–264 (2001).
Wang, J. et al. Enhancing cyclability of Li metallic batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Power 4, 664–670 (2019).
Sheng, S., Sheng, L., Wang, L., Piao, N. & He, X. Thickness variation of lithium metallic anode with biking. J. Energy Sources 476, 228749 (2020).
McBrayer, J. D., Apblett, C. A., Harrison, Ok. L., Fenton, Ok. R. & Minteer, S. D. Mechanical research of the strong electrolyte interphase on anodes in lithium and lithium ion batteries. Nanotechnology 32, 502005 (2021).
Yuan, S. et al. Revisiting the designing standards of superior strong electrolyte interphase on lithium metallic anode beneath sensible situation. Nano Power 83, 105847 (2021).
Shen, X. et al. The failure of strong electrolyte interphase on Li metallic anode: structural uniformity or mechanical energy? Adv. Power Mater. 10, 1903645 (2020).
Werres, M. et al. Origin of heterogeneous stripping of lithium in liquid electrolytes. ACS Nano 17, 10218–10228 (2023).
Gao, Y. et al. Unraveling the mechanical origin of steady strong electrolyte interphase. Joule 5, 1860–1872 (2021).
Gu, Y. et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metallic anodes. Nat. Commun. 9, 1339 (2018).
Wang, J. et al. In situ self-assembly of ordered natural/inorganic dual-layered interphase for reaching long-life dendrite-free Li metallic anodes in LiFSI-based electrolyte. Adv. Funct. Mater. 31, 2007434 (2021).
Xu, Y. et al. Theoretical calculation research on the electrochemical properties of lithium halide-based synthetic SEI movies for lithium metallic anodes. Surf. Interfaces 44, 103768 (2024).
Shi, S. et al. Direct calculation of Li-ion transport within the strong electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012).
Lu, P. & Harris, S. J. Lithium transport throughout the strong electrolyte interphase. Electrochem. Commun. 13, 1035–1037 (2011). Investigation of Li+ transport within the SEI through isotope trade experiments.
Yu, X. et al. Direct and in situ examination of Li+ transport kinetics in an isotope-labeled strong–electrolyte interphase. Proc. Natl Acad. Sci. USA 122, e2514652122 (2025).
Das Goswami, B. R., Jabbari, V., Shahbazian-Yassar, R., Mashayek, F. & Yurkiv, V. Unraveling ion diffusion pathways and energetics in polycrystalline SEI of lithium-based batteries: mixed cryo-HRTEM and DFT research. J. Phys. Chem. C 127, 21971–21979 (2023).
Soto, F. A., Marzouk, A., El-Mellouhi, F. & Balbuena, P. B. Understanding ionic diffusion by means of SEI parts for lithium-ion and sodium-ion batteries: insights from first-principles calculations. Chem. Mater. 30, 3315–3322 (2018).
Xu, Y. et al. Direct in situ measurements {of electrical} properties of solid-electrolyte interphase on lithium metallic anodes. Nat. Power 8, 1345–1354 (2023). Experimental proof of {the electrical} semiconducting properties of the SEI.
Benitez, L. & Seminario, J. M. Electron transport and electrolyte discount within the solid-electrolyte interphase of rechargeable lithium ion batteries with silicon anodes. J. Phys. Chem. C 120, 17978–17988 (2016).
Derosa, P. A. & Seminario, J. M. Electron transport by means of single molecules: scattering therapy utilizing density useful and Inexperienced operate theories. J. Phys. Chem. B 105, 471–481 (2001).
Köbbing, L., Latz, A. & Horstmann, B. Progress of the solid-electrolyte interphase: electron diffusion versus solvent diffusion. J. Energy Sources 561, 232651 (2023).
Feng, M., Pan, J. & Qi, Y. Influence of digital properties of grain boundaries on the strong electrolyte interphases (SEIs) in Li-ion batteries. J. Phys. Chem. C 125, 15821–15829 (2021).
Fang, C. et al. Quantifying inactive lithium in lithium metallic batteries. Nature 572, 511–515 (2019).
Steiger, J., Kramer, D. & Mönig, R. Mechanisms of dendritic progress investigated by in situ gentle microscopy throughout electrodeposition and dissolution of lithium. J. Energy Sources 261, 112–119 (2014).
Xu, Y. et al. Present density regulated atomic to nanoscale course of on Li deposition and strong electrolyte interphase revealed by cryogenic transmission electron microscopy. ACS Nano 14, 8766–8775 (2020).
Boyle, D. T. et al. Resolving current-dependent regimes of electroplating mechanisms for quick charging lithium metallic anodes. Nano Lett. 22, 8224–8232 (2022).
He, M., Guo, R., Hobold, G. M., Gao, H. & Gallant, B. M. The intrinsic conduct of lithium fluoride in strong electrolyte interphases on lithium. Proc. Natl Acad. Sci. USA 117, 73–79 (2020).
Zhang, X.-Q., Cheng, X.-B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate components to render uniform Li deposits in lithium metallic batteries. Adv. Funct. Mater. 27, 1605989 (2017).
Dhattarwal, H. S., Kuo, J.-L. & Kashyap, H. Ok. Mechanistic perception on the steadiness of ether and fluorinated ether solvent-based lithium bis(fluoromethanesulfonyl) electrolytes close to Li metallic floor. J. Phys. Chem. C 126, 8953–8963 (2022).
Perez-Beltran, S., Kuai, D. & Balbuena, P. B. SEI formation and lithium-ion electrodeposition dynamics in lithium metallic batteries through first-principles kinetic Monte Carlo modeling. ACS Power Lett. 9, 5268–5278 (2024).
Tan, Y. et al. Lithium fluoride in electrolyte for steady and protected lithium-metal batteries. Adv. Mater. 33, 2102134 (2021).
Zeng, H. et al. Past LiF: tailoring Li2O-dominated strong electrolyte interphase for steady lithium metallic batteries. ACS Nano 18, 1969–1981 (2024).
Hobold, G. M., Wang, C., Steinberg, Ok., Li, Y. & Gallant, B. M. Excessive lithium oxide prevalence within the lithium strong–electrolyte interphase for prime Coulombic effectivity. Nat. Power 9, 580–591 (2024). Correlation of Li2O prevalence within the SEI and the CE in lithium metallic batteries.
Gao, Ok., Solar, L., Wang, Ok. & Zhang, Y. Non-aqueous liquid electrolytes in lithium metallic battery: parts and modification. Mater. Right this moment Power 37, 101413 (2023).
Borodin, O., Self, J., Persson, Ok. A., Wang, C. & Xu, Ok. Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020).
Jiang, G. et al. Perspective on high-concentration electrolytes for lithium metallic batteries. Small Struct. 2, 2000122 (2021).
Ren, X. et al. Enabling high-voltage lithium-metal batteries beneath sensible circumstances. Joule 3, 1662–1676 (2019).
Ren, X. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4, 1877–1892 (2018). Introduction of LHCEs as promising electrolyte idea for lithium metallic batteries.
Zheng, J. et al. Extraordinarily steady sodium metallic batteries enabled by localized high-concentration electrolytes. ACS Power Lett. 3, 315–321 (2018).
Efaw, C. M. et al. Localized high-concentration electrolytes get extra localized by means of micelle-like buildings. Nat. Mater. 22, 1531–1539 (2023).
Verma, A., Schulze, M. C. & Colclasure, A. Micelle-like bulk construction of localized high-concentration electrolytes. Joule 8, 10–12 (2024).
Cao, X., Jia, H., Xu, W. & Zhang, J.-G. Evaluate—Localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168, 010522 (2021).
Chen, J. et al. Design of localized high-concentration electrolytes through donor quantity. ACS Power Lett. 8, 1723–1734 (2023).
Ren, F. et al. Solvent–diluent interaction-mediated solvation construction of localized high-concentration electrolytes. ACS Appl. Mater. Interfaces 14, 4211–4219 (2022).
Chen, S. et al. Excessive-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).
Zhang, X. et al. Superior electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature vary. Adv. Power Mater. 10, 2000368 (2020).
Jia, H. et al. Excessive-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv. Power Mater. 9, 1900784 (2019).
Ahmed, R. A. et al. Enhanced electrochemical efficiency of disordered rocksalt cathodes in a localized high-concentration electrolyte. Adv. Power Mater. 14, 2400722 (2024).
Cao, X. et al. Optimization of fluorinated orthoformate based mostly electrolytes for sensible high-voltage lithium metallic batteries. Power Storage Mater. 34, 76–84 (2021).
Cao, X. Results of fluorinated solvents on electrolyte solvation buildings and electrode/electrolyte interphases for lithium metallic batteries. Proc. Natl Acad. Sci. USA 118, e2020357118 (2021).
Niu, C. et al. Balancing interfacial reactions to attain lengthy cycle life in high-energy lithium metallic batteries. Nat. Power 6, 723–732 (2021).
Perez Beltran, S., Cao, X., Zhang, J.-G., El-Khoury, P. Z. & Balbuena, P. B. Affect of diluent focus in localized excessive focus electrolytes: elucidation of hidden diluent–Li + interactions and Li + transport mechanism. J. Mater. Chem. A 9, 17459–17473 (2021).
Liu, Y. et al. Regulating electrolyte solvation buildings through diluent–solvent interactions for protected high-voltage lithium metallic batteries. Small 20, 2311812 (2024).
Zhao, Y. et al. Electrolyte engineering for extremely inorganic strong electrolyte interphase in high-performance lithium metallic batteries. Chem 9, 682–697 (2023).
Shi, J. et al. An amphiphilic molecule-regulated core–shell-solvation electrolyte for Li-metal batteries at ultra-low temperature. Angew. Chem. Int. Ed. 62, e202218151 (2023).
Kim, S. et al. Vast-temperature-range operation of lithium-metal batteries utilizing partially and weakly solvating liquid electrolytes. Power Environ. Sci. 16, 5108–5122 (2023).
Tran, T. et al. Enhancing biking stability of lithium metallic batteries by a bifunctional fluorinated ether. Adv. Funct. Mater. 34, 2407012 (2024).
Chen, S. et al. Excessive-efficiency lithium metallic batteries with fire-retardant electrolytes. Joule 2, 1548–1558 (2018).
Cao, N. et al. Designing ionic liquid electrolytes for a inflexible and Li+-conductive strong electrolyte interface in excessive efficiency lithium metallic batteries. Chem. Phys. Lett. 866, 141959 (2025).
Hai, F. et al. A low-cost, fluorine-free localized extremely concentrated electrolyte towards ultra-high loading lithium metallic batteries. Adv. Power Mater. 14, 2304253 (2024).
Yuan, Z., Chen, A., Liao, J., Music, L. & Zhou, X. Latest advances in multifunctional generalized native high-concentration electrolytes for high-efficiency alkali metallic batteries. Nano Power 119, 109088 (2024).
Li, M. et al. Acetonitrile-based native high-concentration electrolytes for superior lithium metallic batteries. Adv. Mater. 36, 2404271 (2024).
Jie, Y. et al. In direction of long-life 500 Wh kg−1 lithium metallic pouch cells through compact ion-pair mixture electrolytes. Nat. Power 9, 987–998 (2024).
Kim, S. C. et al. Excessive-entropy electrolytes for sensible lithium metallic batteries. Nat. Power 8, 814–826 (2023).
Li, Z. et al. Vital assessment of fluorinated electrolytes for high-performance lithium metallic batteries. Adv. Funct. Mater. 33, 2300502 (2023).
Wichmann, L. et al. Design of fluorine-free weakly coordinating electrolyte solvents with enhanced oxidative stability. Angew. Chem. Int. Ed. 64, e202506826 (2025).
Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metallic batteries. Nat. Power 5, 526–533 (2020).
Zhang, X. et al. Li+(ionophore) nanoclusters engineered aqueous/non-aqueous biphasic electrolyte options for high-potential lithium-based batteries. Nat. Nanotechnol. 20, 798–806 (2025).
Vu, M. C. et al. Low melting alkali-based molten salt electrolytes for solvent-free lithium-metal batteries. Matter 6, 4357–4375 (2023). Report of low melting FSI-based molten salt electrolyte with excessive oxidative stability, enabling excessive Coulombic efficiencies at excessive charges.
Xue, W. et al. FSI-inspired solvent and ‘full fluorosulfonyl’ electrolyte for 4 V class lithium-metal batteries. Power Environ. Sci. 13, 212–220 (2020). Introduction of full fluorosulfonyl electrolytes for lithium metallic batteries.
Xue, W. et al. Extremely-high-voltage Ni-rich layered cathodes in sensible Li metallic batteries enabled by a sulfonamide-based electrolyte. Nat. Power 6, 495–505 (2021).
Rustomji, C. S. et al. Liquefied fuel electrolytes for electrochemical power storage gadgets. Science 356, eaal4263 (2017). Report of liquefied fuel electrolytes enabling environment friendly Li plating/stripping.
Yang, Y. et al. Excessive-efficiency lithium-metal anode enabled by liquefied fuel electrolytes. Joule 3, 1986–2000 (2019).
Louli, A. J. et al. Diagnosing and correcting anode-free cell failure through electrolyte and morphological evaluation. Nat. Power 5, 693–702 (2020).
Weber, R. et al. Lengthy cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Power 4, 683–689 (2019).
Qiu, F. et al. A concentrated ternary-salts electrolyte for prime reversible Li metallic battery with slight extra Li. Adv. Power Mater. 9, 1803372 (2019).
Kang, D. W., Moon, J., Choi, H.-Y., Shin, H.-C. & Kim, B. G. Secure biking and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with excessive LiNO3 content material. J. Energy Sources 490, 229504 (2021).
Stuckenberg, S. et al. Affect of LiNO3 on the lithium metallic deposition conduct in carbonate-based liquid electrolytes and on the electrochemical efficiency in zero-excess lithium metallic batteries. Small 20, 2305203 (2024).
Agostini, M., Scrosati, B. & Hassoun, J. A sophisticated lithium-ion sulfur battery for prime power storage. Adv. Power Mater. 5, 1500481 (2015).
Ma, Q. et al. Improved biking stability of lithium-metal anode with concentrated electrolytes based mostly on lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem 3, 531–536 (2016).
Weintz, D., Kühn, S. P., Winter, M. & Cekic-Laskovic, I. Tailoring the preformed strong electrolyte interphase in lithium metallic batteries: influence of fluoroethylene carbonate. ACS Appl. Mater. Interfaces 15, 53526–53532 (2023).
Xue, T. et al. Tailoring fluorine-rich strong electrolyte interphase to spice up excessive effectivity and lengthy biking stability of lithium metallic batteries. Sci. China Chem. 66, 2121–2129 (2023).
Ding, F. et al. Results of cesium cations in lithium deposition through self-healing electrostatic protect mechanism. J. Phys. Chem. C 118, 4043–4049 (2014).
Ding, F. et al. Dendrite-free lithium deposition through self-healing electrostatic protect mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).
Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the way forward for lithium-based batteries. Nat. Commun. 14, 420 (2023).
Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. Correct dedication of Coulombic effectivity for lithium metallic anodes and lithium metallic batteries. Adv. Power Mater. 8, 1702097 (2018).
Single, F., Horstmann, B. & Latz, A. Principle of impedance spectroscopy for lithium batteries. J. Phys. Chem. C 123, 27327–27343 (2019).
Stolz, L., Winter, M. & Kasnatscheew, J. Sensible relevance of cost switch resistance on the Li metallic electrode|electrolyte interface in batteries?. J. Stable State Electrochem. 29, 4181–4186 (2025).
Meddings, N. et al. Software of electrochemical impedance spectroscopy to industrial Li-ion cells: a assessment. J. Energy Sources 480, 228742 (2020).
Meunier, V., Leal De Souza, M., Morcrette, M. & Grimaud, A. Design of workflows for crosstalk detection and lifelong deviation onset in Li-ion batteries. Joule 7, 42–56 (2023).
Meng, W. et al. The progress of in situ expertise for lithium metallic batteries. Mater. Chem. Entrance. 8, 700–714 (2024).
Scurtu, R.-G. et al. From small batteries to huge claims. Nat. Nanotechnol. 20, 970–976 (2025).
Xu, Y. et al. Atomic to nanoscale origin of vinylene carbonate enhanced biking stability of lithium metallic anode revealed by cryo-transmission electron microscopy. Nano Lett. 20, 418–425 (2020).
Cao, X. et al. Monolithic strong–electrolyte interphases shaped in fluorinated orthoformate-based electrolytes decrease Li depletion and pulverization. Nat. Power 4, 796–805 (2019).
Chen, W. et al. Formation and influence of nanoscopic oriented section domains in electrochemical crystalline electrodes. Nat. Mater. 22, 92–99 (2023).
Ji, P., Lei, X. & Su, D. In situ transmission electron microscopy strategies for lithium-ion batteries. Small Strategies 8, 2301539 (2024).
Zhang, Z. et al. Characterizing batteries by in situ electrochemical atomic pressure microscopy: a important assessment. Adv. Power Mater. 11, 2101518 (2021).
Wolff, B. & Hausen, F. Mechanical evolution of strong electrolyte interphase on metallic lithium studied by in situ atomic pressure microscopy. J. Electrochem. Soc. 170, 010534 (2023).
Tan, S. et al. Evolution and interaction of lithium metallic interphase parts revealed by experimental and theoretical research. J. Am. Chem. Soc. 146, 11711–11718 (2024).
Ma, C., Xu, F. & Music, T. Twin-layered interfacial evolution of lithium metallic anode: SEI evaluation through TOF-SIMS expertise. ACS Appl. Mater. Interfaces 14, 20197–20207 (2022).
Markevich, E., Salitra, G., Chesneau, F., Schmidt, M. & Aurbach, D. Very steady lithium metallic stripping–plating at a excessive price and excessive areal capability in fluoroethylene carbonate-based natural electrolyte answer. ACS Power Lett. 2, 1321–1326 (2017).
Schmitz, R. et al. SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry. J. Energy Sources 233, 110–114 (2013).
Hope, M. A. et al. Selective NMR commentary of the SEI–metallic interface by dynamic nuclear polarisation from lithium metallic. Nat. Commun. 11, 2224 (2020).
Hsieh, Y.-C. et al. Quantification of useless lithium through in situ nuclear magnetic resonance spectroscopy. Cell Rep. Phys. Sci. 1, 100139 (2020).
Golozar, M. et al. In situ commentary of strong electrolyte interphase evolution in a lithium metallic battery. Commun. Chem. 2, 131 (2019).
Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of strong–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).
He, X., Larson, J. M., Bechtel, H. A. & Kostecki, R. In situ infrared nanospectroscopy of the native processes on the Li/polymer electrolyte interface. Nat. Commun. 13, 1398 (2022).
Zhang, H., Shen, C., Huang, Y. & Liu, Z. Spontaneously formation of SEI layers on lithium metallic from LiFSI/DME and LiTFSI/DME electrolytes. Appl. Surf. Sci. 537, 147983 (2021).
Perez Beltran, S. & Balbuena, P. B. SEI formation mechanisms and Li+ dissolution in lithium metallic anodes: influence of the electrolyte composition and the electrolyte-to-anode ratio. J. Energy Sources 551, 232203 (2022).
Wagner-Henke, J. et al. Data-driven design of solid-electrolyte interphases on lithium metallic through multiscale modelling. Nat. Commun. 14, 6823 (2023).
Pohlmann, S. Metrics and strategies for shifting from analysis to innovation in power storage. Nat. Commun. 13, 1538 (2022).
Benayad, A. et al. Excessive-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface improvement analysis. Adv. Power Mater. 12, 2102678 (2022).
Ward, L. et al. Ideas of the Battery Information Genome. Joule 6, 2253–2271 (2022).
Qu, X. et al. The Electrolyte Genome challenge: a giant knowledge strategy in battery supplies discovery. Comput. Mater. Sci. 103, 56–67 (2015).
Tagade, P. M. et al. Attribute pushed inverse supplies design utilizing deep studying Bayesian framework. npj Comput. Mater. 5, 127 (2019).
Barter, D. et al. Predictive stochastic evaluation of huge filter-based electrochemical response networks. Digit. Discov. 2, 123–137 (2023).
Gao, Y.-C. et al. Information-driven perception into the reductive stability of ion–solvent complexes in lithium battery electrolytes. J. Am. Chem. Soc. 145, 23764–23770 (2023).
Yan, P. et al. Non-aqueous battery electrolytes: high-throughput experimentation and machine learning-aided optimization of ionic conductivity. J. Mater. Chem. A 12, 19123–19136 (2024).
Dave, A. et al. Autonomous optimization of non-aqueous Li-ion battery electrolytes through robotic experimentation and machine studying coupling. Nat. Commun. 13, 5454 (2022).
Flores, E. et al. Studying the legal guidelines of lithium-ion transport in electrolytes utilizing symbolic regression. Digit. Discov. 1, 440–447 (2022).
Lewis, G. N. & Keyes, F. G. The potential of the lithium electrode. J. Am. Chem. Soc. 35, 340–344 (1913).
Harris, W. S. Electrochemical Research in Cyclic Esters. PhD thesis, Univ. California, Berkeley (1958). Demonstration of reversible electrochemical Li deposition and dissolution.
Greatbatch, W. et al. The solid-state lithium battery: a brand new improved chemical energy supply for implantable cardiac pacemakers. IEEE Trans. Biomed. Eng BME-18, 317–324 (1971).
Peled, E. The electrochemical conduct of alkali and alkaline earth metals in nonaqueous battery techniques—the strong electrolyte interphase mannequin. J. Electrochem. Soc. 126, 2047–2051 (1979). Proposal of the SEI mannequin.
Scarr, R. F. Kinetics of the strong lithium electrode in propylene carbonate. J. Electrochem. Soc. 117, 295–298 (1970).
Winter, M., Barnett, B. & Xu, Ok. Earlier than Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).
Selim, R. & Bro, P. Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J. Electrochem. Soc. 121, 1457–1459 (1974).
Rauh, R. D. & Brummer, S. B. The impact of components on lithium biking in propylene carbonate. Electrochim. Acta 22, 75–83 (1977).
Koch, V. R. & Younger, J. H. The steadiness of the secondary lithium electrode in tetrahydrofuran-based electrolytes. J. Electrochem. Soc. 125, 1371–1377 (1978).
Koch, V. R. & Younger, J. H. 2-Methyltetrahydrofuran–lithium hexafluoroarsenate: a superior electrolyte for the secondary lithium electrode. Science 204, 499–501 (1979).
Koch, V. R., Goldman, J. L., Mattos, C. J. & Mulvaney, M. Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. J. Electrochem. Soc. 129, 1–4 (1982).
Ding, F. et al. Results of carbonate solvents and lithium salts on morphology and Coulombic effectivity of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013).
Miao, R. et al. Novel dual-salts electrolyte answer for dendrite-free lithium-metal based mostly rechargeable batteries with excessive cycle reversibility. J. Energy Sources 271, 291–297 (2014).
Fan, X. et al. Extremely fluorinated interphases allow high-voltage Li-metal batteries. Chem 4, 174–185 (2018).
Fan, X. et al. Non-flammable electrolyte permits Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).
Zhao, Y., Zhou, T., Mensi, M., Choi, J. W. & Coskun, A. Electrolyte engineering through ether solvent fluorination for creating steady non-aqueous lithium metallic batteries. Nat. Commun. 14, 299 (2023).
Li, C. et al. Creating diluted low-concentration electrolyte with a excessive anion-to-solvent ratio for high-voltage lithium metallic batteries. J. Mater. Chem. A 12, 8236–8243 (2024).
Morita, M., Asai, Y., Yoshimoto, N. & Ishikawa, M. A Raman spectroscopic research of natural electrolyte options based mostly on binary solvent techniques of ethylene carbonate with low viscosity solvents which dissolve completely different lithium salts. J. Chem. Soc. Faraday Trans. 94, 3451–3456 (1998).
Qian, Ok., Winans, R. E. & Li, T. Insights into the nanostructure, solvation, and dynamics of liquid electrolytes by means of small-angle X-ray scattering. Adv. Power Mater. 11, 2002821 (2021).
Leifer, N., Aurbach, D. & Greenbaum, S. G. NMR research of lithium and sodium battery electrolytes. Prog. Nucl. Magn. Reson. Spectrosc. 142/143, 1–54 (2024).
Kim, T. et al. Purposes of voltammetry in lithium ion battery analysis. J. Electrochem. Sci. Technol. 11, 14–25 (2020).
Hess, S., Wohlfahrt-Mehrens, M. & Wachtler, M. Flammability of Li-ion battery electrolytes: flash level and self-extinguishing time measurements. J. Electrochem. Soc. 162, A3084–A3097 (2015).
Hellweg, L., Beuse, T., Winter, M. & Börner, M. Affect of lithium metallic deposition on thermal stability: mixed DSC and morphology evaluation of cyclic aged lithium metallic batteries. J. Electrochem. Soc. 170, 040530 (2023).
Arbizzani, C., Gabrielli, G. & Mastragostino, M. Thermal stability and flammability of electrolytes for lithium-ion batteries. J. Energy Sources 196, 4801–4805 (2011).
