Nelson, B. J. & Pané, S. Delivering medicine with microrobots. Science 382, 1120–1122 (2023).
Almeida, H., Traverso, G., Sarmento, B. & das Neves, J. Nanoscale anisotropy for biomedical purposes. Nat. Rev. Bioeng. 2, 609–625 (2024).
Kim, Okay., Guo, J., Liang, Z. & Fan, D. Synthetic micro/nanomachines for bioapplications: biochemical supply and diagnostic sensing. Adv. Funct. Mater. 28, 1705867 (2018).
Li, J., de Ávila, B. E.-F., Gao, W., Zhang, L. & Wang, J. Micro/nanorobots for biomedicine: supply, surgical procedure, sensing, and cleansing. Sci. Robotic. 2, eaam6431 (2017).
Elnaggar, A., Kang, S., Tian, M., Han, B. & Keshavarz, M. Cutting-edge in actuation of micro/nanorobots for biomedical purposes. Small Sci. 4, 2300211 (2024).
Simo, C. et al. Urease-powered nanobots for radionuclide bladder most cancers remedy. Nat. Nanotechnol. 19, 554–564 (2024).
Zhang, H. et al. Twin-responsive biohybrid neutrobots for energetic goal supply. Sci. Robotic. 6, 9519eaaz (2021).
Yoo, J., Tang, S. & Gao, W. Micro- and nanorobots for biomedical purposes within the mind. Nat. Rev. Bioeng. 1, 308–310 (2023).
Wu, Z. et al. A swarm of slippery micropropellers penetrates the vitreous physique of the attention. Sci. Adv. 4, eaat4388 (2018).
Wang, Y. et al. Microrobots for focused supply and remedy in digestive system. ACS Nano 17, 27–50 (2023).
Wu, Z. et al. Oral mitochondrial transplantation utilizing nanomotors to deal with ischaemic coronary heart illness. Nat. Nanotechnol. 19, 1375–1385 (2024).
Yan, M. et al. Web site-selective superassembly of biomimetic nanorobots enabling deep penetration into tumor with stiff stroma. Nat. Commun. 14, 4628 (2023).
Wu, X. et al. Self-adaptive magnetic liquid metallic microrobots able to crossing organic obstacles and wi-fi neuromodulation. ACS Nano 18, 29558–29571 (2024).
Legislation, J. et al. Microrobotic swarms for selective embolization. Sci. Adv. 8, eabm5752 (2022).
Go, G. et al. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization remedy of liver most cancers. Sci. Adv. 8, eabq8545 (2022).
Del Campo Fonseca, A. et al. Ultrasound trapping and navigation of microrobots within the mouse mind vasculature. Nat. Commun. 14, 5889 (2023).
Kim, J. et al. Superior supplies for micro/nanorobotics. Chem. Soc. Rev. 53, 9190–9253 (2024).
Peng, F., Tu, Y. & Wilson, D. A. Micro/nanomotors in the direction of in vivo software: cell, tissue and biofluid. Chem. Soc. Rev. 46, 5289–5310 (2017).
Yong, J., Mellick, A. S., Whitelock, J., Wang, J. & Liang, Okay. A biomolecular toolbox for precision nanomotors. Adv. Mater. 35, e2205746 (2023).
Huang, T.-Y., Gu, H. & Nelson, B. J. More and more clever micromachines. Annu. Rev. Management Robotic. Auton. Syst. 5, 279–310 (2022).
Legislation, J. et al. Micro/nanorobotic swarms: from fundamentals to functionalities. ACS Nano 17, 12971–12999 (2023).
Mujtaba, J. et al. Micro-bio-chemo-mechanical-systems: micromotors, microfluidics, and nanozymes for biomedical purposes. Adv. Mater. 33, e2007465 (2021).
Cao, S. et al. Photoactivated nanomotors through aggregation induced emission for enhanced phototherapy. Nat. Commun. 12, 2077 (2021).
Zhao, H. et al. Clever metallic micro/nanomotors: from propulsion to software. Nano At this time 52, 101939 (2023).
Tang, S. et al. Enzyme-powered janus platelet cell robots for energetic and focused drug supply. Sci. Robotic. 5, eaba6137 (2020).
Medina-Sanchez, M., Schwarz, L., Meyer, A. Okay., Hebenstreit, F. & Schmidt, O. G. Mobile cargo supply: towards assisted fertilization by sperm-carrying micromotors. Nano Lett. 16, 555–561 (2016).
Go, G. et al. Human adipose–derived mesenchymal stem cell–primarily based medical microrobot system for knee cartilage regeneration in vivo. Sci. Robotic. 5, eaay6626 (2020).
Felfoul, O. et al. Magneto-aerotactic micro organism ship drug-containing nanoliposomes to tumour hypoxic areas. Nat. Nanotechnol. 11, 941–947 (2016).
Alapan, Y. et al. Tender erythrocyte-based bacterial microswimmers for cargo supply. Sci. Robotic. 3, eaar4423 (2018).
Zhang, F. et al. Nanoparticle-modified microrobots for in vivo antibiotic supply to deal with acute bacterial pneumonia. Nat. Mater. 21, 1324–1332 (2022).
Yan, X. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided remedy. Sci. Robotic. 2, eaaq1155 (2017).
Ceylan, H. et al. 3D printed customized magnetic micromachines from affected person blood–derived biomaterials. Sci. Adv. 7, eabh0273 (2021).
Tang, S. et al. Bacterial outer membrane vesicle nanorobot. Proc. Natl Acad. Sci. USA 121, e2403460121 (2024).
Zhang, F. et al. Biomembrane-functionalized micromotors: biocompatible energetic gadgets for numerous biomedical purposes. Adv. Mater. 34, e2107177 (2022).
Huang, G. et al. Cell-based clever micro/nanorobots for exact regulation and energetic biotherapy. Matter 6, 4158–4194 (2023).
Wang, B., Kostarelos, Okay., Nelson, B. J. & Zhang, L. Tendencies in micro-/nanorobotics: supplies growth, actuation, localization, and system integration for biomedical purposes. Adv. Mater. 33, 2002047 (2020).
Gao, C. et al. Biomedical micro-/nanomotors: from overcoming organic obstacles to in vivo imaging. Adv. Mater. 33, 2000512 (2020).
Singh, A. Okay., Awasthi, R. & Malviya, R. Bioinspired microrobots: alternatives and challenges in focused most cancers remedy. J. Management. Launch 354, 439–452 (2023).
Wan, M., Li, T., Chen, H., Mao, C. & Shen, J. Biosafety, functionalities, and purposes of biomedical micro/nanomotors. Angew. Chem. Int. Ed. 60, 13158–13176 (2021).
Hortelao, A. C. et al. Swarming habits and in vivo monitoring of enzymatic nanomotors throughout the bladder. Sci. Robotic. 6, eabd2823 (2021).
Zhang, B. et al. Twin-bioengine self-adaptive micro/nanorobots utilizing enzyme actuation and macrophage relay for gastrointestinal irritation remedy. Sci. Adv. 9, eadc8978 (2023).
Dasgupta, A. et al. Nonspherical ultrasound microbubbles. Proc. Natl Acad. Sci. USA 120, e2218847120 (2023).
Xu, F., Wang, W.-H., Tan, Y.-J. & Bruening, M. L. Facile trypsin immobilization in polymeric membranes for fast, environment friendly protein digestion. Anal. Chem. 82, 10045–10051 (2010).
Ma, X., Wang, X., Hahn, Okay. & Sanchez, S. Movement management of urea-powered biocompatible hole microcapsules. ACS Nano 10, 3597–3605 (2016).
Wang, W., Duan, W., Ahmed, S., Mallouk, T. E. & Sen, A. Small energy: autonomous nano- and micromotors propelled by self-generated gradients. Nano At this time 8, 531–554 (2013).
Mulvana, H., Eckersley, R. J., Tang, M.-X., Pankhurst, Q. & Stride, E. Theoretical and experimental characterisation of magnetic microbubbles. Ultrasound Med. Biol. 38, 864–875 (2012).
Crake, C. et al. Enhancement and passive acoustic mapping of cavitation from fluorescently tagged magnetic resonance-visible magnetic microbubbles in vivo. Ultrasound Med. Biol. 42, 3022–3036 (2016).
Chertok, B. & Langer, R. Circulating magnetic microbubbles for localized real-time management of drug supply by ultrasonography-guided magnetic focusing on and ultrasound. Theranostics 8, 341 (2018).
Beguin, E. et al. Magnetic microbubble mediated chemo-sonodynamic remedy utilizing a mixed magnetic-acoustic machine. J. Management. Launch 317, 23–33 (2020).
Gusliakova, O. I. et al. Magnetically navigated microbubbles coated with albumin/polyarginine and superparamagnetic iron oxide nanoparticles. Biomater. Adv. 158, 213759 (2024).
Owen, J. et al. Magnetic focusing on of microbubbles in opposition to physiologically related movement circumstances. Interface Focus 5, 20150001 (2015).
Lee, H. et al. Microbubbles used for distinction enhanced ultrasound and theragnosis: a overview of ideas to purposes. Biomed. Eng. Lett. 7, 59–69 (2017).
Maas, M., Todenhöfer, T. & Black, P. C. Urine biomarkers in bladder most cancers—present standing and future views. Nat. Rev. Urol. 20, 597–614 (2023).
Kaufman, D. S., Shipley, W. U. & Feldman, A. S. Bladder most cancers. Lancet 374, 239–249 (2009).
Douglass, L. & Schoenberg, M. The way forward for intravesical drug supply for non-muscle invasive bladder most cancers. Bladder Most cancers 2, 285–292 (2016).
Somasundar, A. et al. Constructive and unfavourable chemotaxis of enzyme-coated liposome motors. Nat. Nanotechnol. 14, 1129–1134 (2019).
Keenan, T. M. & Folch, A. Biomolecular gradients in cell tradition programs. Lab Chip 8, 34–57 (2008).
Ralph, S. J. & Reynolds, M. J. Intratumoral pro-oxidants promote most cancers immunotherapy by recruiting and reprogramming neutrophils to remove tumors. Most cancers Immunol. Immunother. 72, 527–542 (2023).
Szatrowski, T. P. & Nathan, C. F. Manufacturing of huge quantities of hydrogen peroxide by human tumor cells. Most cancers Res. 51, 794–798 (1991).
Bar-Zion, A. et al. Acoustically triggered mechanotherapy utilizing genetically encoded fuel vesicles. Nat. Nanotechnol. 16, 1403–1412 (2021).
Xiu, W. et al. Ultrasound-responsive catalytic microbubbles improve biofilm elimination and immune activation to deal with power lung infections. Sci. Adv. 9, eade5446 (2023).
Chen, S. et al. A overview of bioeffects induced by targeted ultrasound mixed with microbubbles on the neurovascular unit. J. Cereb. Blood Circulate Metab. 42, 3–26 (2022).
Şen, T., Tüfekçioğlu, O. & Koza, Y. Mechanical index. Anat. J. Cardiol. 15, 334 (2015).
Lakshmanan, A. et al. Preparation of biogenic fuel vesicle nanostructures to be used as distinction brokers for ultrasound and MRI. Nat. Protoc. 12, 2050–2080 (2017).
Criado-Hidalgo, E. Keller-Miksis dynamic mannequin simulations of CBRs. Zenodo https://doi.org/10.5281/zenodo.17717384 (2025).
