Törmä, P. & Barnes, W. L. Sturdy coupling between floor plasmon polaritons and emitters: a assessment. Rep. Prog. Phys. 78, 013901 (2014).
Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by sturdy coupling to hoover fields. Science 373, eabd0336 (2021).
Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between mild and matter. Nat. Rev. Phys. 1, 19–40 (2019).
Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals supplies. Science 354, aag1992 (2016).
Genco, A. et al. Femtosecond switching of sturdy light-matter interactions in microcavities with two-dimensional semiconductors. Nat. Commun. 16, 6490 (2025).
Vasa, P. & Lienau, C. Sturdy mild–matter interplay in quantum emitter/steel hybrid nanostructures. ACS Photon. 5, 2–23 (2018).
Chikkaraddy, R. et al. Single-molecule sturdy coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).
Gross, H., Hamm, J. M., Tufarelli, T., Hess, O. & Hecht, B. Close to-field sturdy coupling of single quantum dots. Sci. Adv. 4, eaar4906 (2018).
Aberra Guebrou, S. et al. Coherent emission from a disordered natural semiconductor induced by sturdy coupling with floor plasmons. Phys. Rev. Lett. 108, 066401 (2012).
Chevrier, Okay. et al. Natural exciton in sturdy coupling with long-range floor plasmons and waveguided modes. ACS Photon. 5, 80–84 (2018).
Timmer, D. et al. Plasmon mediated coherent inhabitants oscillations in molecular aggregates. Nat. Commun. 14, 8035 (2023).
Greten, L. et al. Sturdy coupling of two-dimensional excitons and plasmonic photonic crystals: microscopic idea reveals triplet spectra. ACS Photon. 11, 1396–1411 (2024).
Zhou, Y. et al. Probing darkish excitons in atomically skinny semiconductors through near-field coupling to floor plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).
de Abajo, F. J. G. et al. Roadmap for photonics with 2D supplies. ACS Photon. https://doi.org/10.1021/acsphotonics.5c00353 (2025).
Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition steel dichalcogenides. Nat. Commun. 6, 8315 (2015).
Katsch, F., Selig, M. & Knorr, A. Exciton-scattering-induced dephasing in two-dimensional semiconductors. Phys. Rev. Lett. 124, 257402 (2020).
Trovatello, C. et al. Disentangling many-body results within the coherent optical response of 2D semiconductors. Nano Lett. 22, 5322–5329 (2022).
Mapara, V. et al. Vibrant and darkish exciton coherent coupling and hybridization enabled by exterior magnetic fields. Nano Lett. 22, 1680–1687 (2022).
Tang, Y. X. et al. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor. Gentle Sci. Appl. 11, 94 (2022).
Du, W. et al. Ultrafast modulation of exciton–plasmon coupling in a monolayer WS2–Ag nanodisk hybrid system. ACS Photon. 6, 2832–2840 (2019).
Yang, J. et al. Ultrafast investigation of the sturdy coupling system between sq. Ag nanohole array and monolayer WS2. Nano Lett. 25, 3391–3397 (2025).
Wei, Okay. et al. Charged biexciton polaritons sustaining sturdy nonlinearity in 2D semiconductor-based nanocavities. Nat. Commun. 14, 5310 (2023).
Timmer, D. et al. Ultrafast coherent exciton couplings and many-body interactions in monolayer WS2. Nano Lett. 24, 8117–8125 (2024).
Peruffo, N., Mancin, F. & Collini, E. Coherent dynamics in options of colloidal plexcitonic nanohybrids at room temperature. Adv. Choose. Mater. 11, 2203010 (2023).
Vasa, P. et al. Actual-time statement of ultrafast Rabi oscillations between excitons and plasmons in steel nanostructures with J-aggregates. Nat. Photon. 7, 128–132 (2013).
Policht, V. R., Proscia, N. V. & Cunningham, P. D. Perception into exciton polaritons of two-dimensional transition steel dichalcogenides with time-resolved spectroscopy. MRS Commun. 15, 1–20 (2025).
Toffoletti, F. & Collini, E. Coherent phenomena in exciton–polariton methods. J. Phys. Mater. 8, 022002 (2025).
Takemura, N. et al. Dephasing results on coherent exciton-polaritons and the breakdown of the sturdy coupling regime. Phys. Rev. B 92, 235305 (2015).
Fresch, E. et al. Two-dimensional digital spectroscopy. Nat. Rev. Strategies Prim. 3, 84 (2023).
Li, H., Lomsadze, B., Moody, G., Smallwood, C. & Cundiff, S. Optical Multidimensional Coherent Spectroscopy (Oxford Univ. Press, 2023).
Mewes, L., Wang, M., Ingle, R. A., Börjesson, Okay. & Chergui, M. Vitality leisure pathways between light-matter states revealed by coherent two-dimensional spectroscopy. Commun. Phys. 3, 157 (2020).
Son, M. et al. Vitality cascades in donor-acceptor exciton-polaritons noticed by ultrafast two-dimensional white-light spectroscopy. Nat. Commun. 13, 7305 (2022).
Russo, M. et al. Direct proof of ultrafast power delocalization between optically hybridized J-aggregates in a strongly coupled microcavity. Adv. Choose. Mater. 12, 2400821 (2024).
Finkelstein-Shapiro, D. et al. Understanding radiative transitions and leisure pathways in plexcitons. Chem. 7, 1092–1107 (2021).
Li, D. H. et al. Hybridized exciton-photon-phonon states in a transition steel dichalcogenide van der Waals heterostructure microcavity. Phys. Rev. Lett. 128, 087401 (2022).
Dhamija, S. & Son, M. Mapping the dynamics of power leisure in exciton–polaritons utilizing ultrafast two-dimensional digital spectroscopy. Chem. Phys. Rev. 5, 041309 (2024).
Shen, Okay., Solar, Okay., Gelin, M. F. & Zhao, Y. 2D digital spectroscopy uncovers 2D supplies: theoretical research of nanocavity-integrated monolayer semiconductors. J. Phys. Chem. Lett. 16, 3264–3273 (2025).
Mondal, M. E., Vamivakas, A. N., Cundiff, S. T., Krauss, T. D. & Huo, P. Polariton spectra below the collective coupling regime. II. 2D non-linear spectra. J. Chem. Phys. 162, 074110 (2025).
Gallego-Valencia, D., Mewes, L., Feist, J. & Sanz-Vicario, J. L. Coherent multidimensional spectroscopy in polariton methods. Phys. Rev. A 109, 063704 (2024).
Mondal, M. E. et al. Quantum dynamics simulations of the 2D spectroscopy for exciton polaritons. J. Chem. Phys. 159, 094102 (2023).
Finkelstein-Shapiro, D., Mante, P.-A., Balci, S., Zigmantas, D. & Pullerits, T. Non-Hermitian Hamiltonians for linear and nonlinear optical response: a mannequin for plexcitons. J. Chem. Phys. 158, 104104 (2023).
Huang, C., Bai, S. & Shi, Q. A theoretical mannequin for linear and nonlinear spectroscopy of plexcitons. J. Chem. Concept Comput. 21, 3612–3624 (2025).
Quenzel, T. et al. Plasmon-enhanced exciton delocalization in squaraine-type molecular aggregates. ACS Nano 16, 4693–4704 (2022).
Kumar, P., De, B., Tripathi, R. & Singh, R. Exciton-exciton interplay: a quantitative comparability between complimentary phenomenological fashions. Phys. Rev. B 109, 155423 (2024).
Conway, M. et al. Direct measurement of biexcitons in monolayer WS2. 2D Mater. 9, 021001 (2022).
Katsch, F., Selig, M. & Knorr, A. Concept of coherent pump–probe spectroscopy in monolayer transition steel dichalcogenides. 2D Mater. 7, 015021 (2019).
Purz, T. L. et al. Imaging dynamic exciton interactions and coupling in transition steel dichalcogenides. J. Chem. Phys. 156, 214704 (2022).
Greten, L., Salzwedel, R., Schutsch, D. & Knorr, A. Microscopic idea for a minimal oscillator mannequin of exciton-plasmon coupling in hybrids of two-dimensional semiconductors and steel nanoparticles. Phys. Rev. B 111, 205438 (2025).
Kim, D. S. et al. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, 143901 (2003).
del Pino, J., Feist, J. & Garcia-Vidal, F. J. Quantum idea of collective sturdy coupling of molecular vibrations with a microcavity mode. New J. Phys. 17, 053040 (2015).
Chng, B. X. Okay. et al. Mechanism of molecular polariton decoherence within the collective mild–matter couplings regime. J. Phys. Chem. Lett. 15, 11773–11783 (2024).
DelPo, C. A. et al. Polariton transitions in femtosecond transient absorption research of ultrastrong light-molecule coupling. J. Phys. Chem. Lett. 11, 2667–2674 (2020).
Autry, T. M. et al. Excitation ladder of cavity polaritons. Phys. Rev. Lett. 125, 067403 (2020).
Büttner, S. et al. Probing plexciton dynamics with higher-order spectroscopy. J. Chem. Phys. 163, 044702 (2025).
Vasa, P. et al. Ultrafast manipulation of sturdy coupling in metal-molecular mixture hybrid nanostructures. ACS Nano 4, 7559–7565 (2010).
Garraway, B. M. The Dicke mannequin in quantum optics: Dicke mannequin revisited. Phil. Trans. R. Soc. A 369, 1137–1155 (2011).
Stepanov, P. et al. Exciton-exciton interplay past the hydrogenic image in a MoSe2 monolayer within the sturdy light-matter coupling regime. Phys. Rev. Lett. 126, 167401 (2021).
Emmanuele, R. P. A. et al. Extremely nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).
Bange, J. P. et al. Ultrafast dynamics of vibrant and darkish excitons in monolayer WSe2 and heterobilayer WSe2/MoS2. 2D Mater. 10, 035039 (2023).
Novoselov, Okay. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Xu, C. et al. Ultrafast digital leisure dynamics of atomically skinny MoS2 is accelerated by wrinkling. ACS Nano 17, 16682–16694 (2023).
Cadore, A. et al. Monolayer WS2 electro- and photo-luminescence enhancement by TFSI remedy. 2D Mater. 11, 025017 (2024).
Grupp, A. et al. Broadly tunable ultrafast pump-probe system working at multi-kHz repetition charge. J. Choose. 20, 014005 (2017).
Brida, D., Manzoni, C. & Cerullo, G. Part-locked pulses for two-dimensional spectroscopy by a birefringent delay line. Choose. Lett. 37, 3027–3029 (2012).
Timmer, D., Lünemann, D. C., De Sio, A., Cerullo, G. & Lienau, C. Disentangling sign contributions in two-dimensional digital spectroscopy within the pump–probe geometry. J. Chem. Phys. 162, 12 (2025).
Palmieri, B., Abramavicius, D. & Mukamel, S. Lindblad equations for strongly coupled populations and coherences in photosynthetic complexes. J. Chem. Phys. 130, 204512 (2009).
Breuer, H.-P. & Petruccione, F. The Concept of Open Quantum Methods (Oxford Univ. Press, 2002).
Timmer, D. et al. Dataset for ‘Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon construction’. Zenodo https://doi.org/10.5281/zenodo.17200209 (2025).
