Tsai, J. M., Nowak, R. P., Ebert, B. L. & Fischer, E. S. Focused protein degradation: from mechanisms to clinic. Nat. Rev. Mol. Cell Biol. 25, 740–757 (2024). This evaluate systematically examined TPD mechanisms and positioned particular emphasis on their progress in the direction of scientific translation.
Garber, Ok. The PROTAC gold rush. Nat. Biotechnol. 40, 12–16 (2022). This commentary captured the thrill round PROTACs, noting their promise for‘undruggable’ targets and likewise the uncertainties of scientific success.
Békés, M., Langley, D. R. & Crews, C. M. PROTAC focused protein degraders: the previous is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022). This paper comprehensively traced the rise of PROTACs and summarized the important thing milestones that formed the sphere.
Baek, Ok. & Schulman, B. A. Molecular glue idea solidifies. Nat. Chem. Biol. 16, 2–3 (2020).
Yoon, H., Rutter, J. C., Li, Y.-D. & Ebert, B. L. Induced protein degradation for therapeutics: previous, current, and future. J. Clin. Make investments. 134, e175265 (2024).
Ge, J. et al. PROTAC-DB 3.0: an up to date database of PROTACs with prolonged pharmacokinetic parameters. Nucleic Acids Res. 53, D1510–D1515 (2024).
Hsia, O. et al. Focused protein degradation through intramolecular bivalent glues. Nature 627, 204–211 (2024).
Liu, Y. et al. Increasing PROTACtable genome universe of E3 ligases. Nat. Commun. 14, 6509 (2023).
Guenette, R. G., Yang, S. W., Min, J., Pei, B. & Potts, P. R. Goal and tissue selectivity of PROTAC degraders. Chem. Soc. Rev. 51, 5740–5756 (2022).
Campone, M. et al. Vepdegestrant, a PROTAC estrogen receptor degrader, in superior breast most cancers. N. Engl. J. Med. 393, 556–568 (2025). This paper summarized the Part 3 scientific trial outcomes of the pioneering PROTAC ARV-471, demonstrating constructive advantages in sure subpopulations and highlighting the necessity for customized medication.
Li, Z. et al. Allele-selective reducing of mutant HTT protein by HTT–LC3 linker compounds. Nature 575, 203–209 (2019). This examine is an early instance of utilizing high-throughput screening to find small molecules that direct mutant huntingtin to autophagosomes for degradation.
Takahashi, D. et al. AUTACs: cargo-specific degraders utilizing selective autophagy. Mol. Cell 76, 797–810.e710 (2019).
Ji, C. H. et al. The AUTOTAC chemical biology platform for focused protein degradation through the autophagy-lysosome system. Nat. Commun. 13, 904 (2022).
Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).
Muhar, M. F. et al. C-terminal amides mark proteins for degradation through SCF–FBXO31. Nature 638, 519–527 (2025).
Wang, D. et al. Mitochondrial protease concentrating on chimeras for mitochondrial matrix protein degradation. J. Am. Chem. Soc. 145, 12861–12869 (2023).
Liu, C. X. et al. An endoplasmic reticulum (ER)-targeting DNA nanodevice for autophagy-dependent degradation of proteins in membrane-bound organelles. Angew. Chem. Int. Ed. 61, e202205509 (2022).
Lu, P. et al. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders. Cell 187, 7126–7142.e7120 (2024).
Gu, X. et al. The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation. Science 381, eadh5021 (2023).
Lascaux, P. et al. TEX264 drives selective autophagy of DNA lesions to advertise DNA restore and cell survival. Cell 187, 5698–5718.e5626 (2024).
Liu, H. et al. TFAM is an autophagy receptor that limits irritation by binding to cytoplasmic mitochondrial DNA. Nat. Cell Biol. 26, 878–891 (2024).
Chen, Y. et al. Rpl12 is a conserved ribophagy receptor. Nat. Cell Biol. 27, 477–492 (2025).
Koutsifeli, P. et al. Glycogen-autophagy: molecular equipment and mobile mechanisms of glycophagy. J. Biol. Chem. 298, 102093 (2022).
Zhang, J. et al. Single amino acid based mostly PROTACs set off degradation of the oncogenic kinase ABL in persistent myeloid leukemia (CML). J. Biol. Chem. 299, 104994 (2023).
Zhang, S. et al. The regulation, operate, and function of lipophagy, a type of selective autophagy, in metabolic problems. Cell Loss of life Dis. 13, 132 (2022).
Jung, H. et al. Anti-inflammatory clearance of amyloid-β by a chimeric Gas6 fusion protein. Nat. Med. 28, 1802–1812 (2022).
Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020). This examine pioneered lysosome-targeting chimeras for extracellular protein degradation, inspiring additional analysis.
Ahn, G. et al. Elucidating the mobile determinants of focused membrane protein degradation by lysosome-targeting chimeras. Science 382, eadf6249 (2023).
Wells, J. A. & Kumru, Ok. Extracellular focused protein degradation: an rising modality for drug discovery. Nat. Rev. Drug Discov. 23, 126–140 (2024).
Zhang, D. et al. Transferrin receptor concentrating on chimeras for membrane protein degradation. Nature 638, 787–795 (2025).
Liu, Y. et al. Focused protein degradation through mobile trafficking of nanoparticles. Nat. Nanotechnol. 20, 296–302 (2025). This examine comprehensively demonstrates that ligand-installed nanoparticles can degrade their corresponding membrane proteins throughout various nanoparticle formulations and ligand varieties.
Huang, X. et al. Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors. Nat. Nanotechnol. 19, 545–553 (2024). This examine pioneers the usage of ligand-installed nanoparticles to degrade the intracellular protein mutant p53 and demonstrates that nanoparticle constructive cost enhances their degradation capability.
Yao, S. et al. A plug-and-play monofunctional platform for focused degradation of extracellular proteins and vesicles. Nat. Commun. 15, 7237 (2024).
Qi, J. et al. Semiconducting polymer nanoparticles with surface-mimicking protein secondary construction as lysosome-targeting chimaeras for self-synergistic most cancers immunotherapy. Adv. Mater. 34, 2203309 (2022).
Wang, X. et al. Lysosome-targeting protein degradation by means of endocytosis pathway triggered by polyvalent nano-chimera for AD remedy. Adv. Mater. 37, 2411061 (2025).
Fan, Ok. et al. Bioengineered ferritin-based LYTAC platform for tumor-targeted remedy. Preprint at Analysis Sq. https://doi.org/10.21203/rs.3.rs-5515153/v1 (2025).
Jin, P. et al. Growth of a nano-targeting chimera for the degradation of membrane and cytoplasmic proteins. Acta Biomater. 195, 509–521 (2025).
Mukhopadhyay, A., Basu, S., Singha, S. & Patra, H. Ok. Inside-view of nanomaterial incited protein conformational modifications: insights into designable interplay. Analysis 2018, 9712832 (2018).
Tune, Y., Cui, L., Liu, Z., Tang, Z. & Chen, X. Multivalent RGD peptide-mediated nanochimera for lysosomal degradation of PDL1 orotein. Nano Lett. 25, 4078–4086 (2025).
Cheng, Q. et al. Selective organ concentrating on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene enhancing. Nat. Nanotechnol. 15, 313–320 (2020).
Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA supply by selective organ concentrating on nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).
Wang, S. et al. The function of protein corona on nanodrugs for organ-targeting and its prospects of software. J. Management. Launch 360, 15–43 (2023).
Qiu, C. et al. Superior methods for overcoming endosomal/lysosomal barrier in nanodrug supply. Analysis 6, 0148 (2023).
McNally, Ok. E. & Cullen, P. J. Endosomal retrieval of cargo: retromer just isn’t alone. Traits Cell Biol. 28, 807–822 (2018).
Akinc, A. et al. The Onpattro story and the scientific translation of nanomedicines containing nucleic acid-based medication. Nat. Nanotechnol. 14, 1084–1087 (2019).
Nguyen, L. N. M. et al. The mechanisms of nanoparticle supply to stable tumours. Nat. Rev. Bioeng. 2, 201–213 (2024).
Nguyen, L. N. et al. The exit of nanoparticles from stable tumours. Nat. Mater. 22, 1261–1272 (2023).
Sindhwani, S. et al. The entry of nanoparticles into stable tumours. Nat. Mater. 19, 566–575 (2020).
Cabral, H., Li, J., Miyata, Ok. & Kataoka, Ok. Controlling the biodistribution and clearance of nanomedicines. Nat. Rev. Bioeng. 2, 214–232 (2024).
Mi, P., Cabral, H. & Kataoka, Ok. Ligand-installed nanocarriers towards precision remedy. Adv. Mater. 32, 1902604 (2020).
Zheng, S. et al. Accelerated rational PROTAC design through deep studying and molecular simulations. Nat. Mach. Intell. 4, 739–748 (2022).
Chen, D., Liu, J. & Wei, G.-W. Multiscale topology-enabled structure-to-sequence transformer for protein–ligand interplay predictions. Nat. Mach. Intell. 6, 799–810 (2024).
Adir, O. et al. Integrating synthetic intelligence and nanotechnology for precision most cancers medication. Adv. Mater. 32, 1901989 (2020).
Rao, L., Yuan, Y., Shen, X., Yu, G. & Chen, X. Designing nanotheranostics with machine studying. Nat. Nanotechnol. 19, 1769–1781 (2024).
