Withers, F. et al. Mild-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).
Semonin, O. E. et al. Peak exterior photocurrent quantum effectivity exceeding 100% by way of MEG in a quantum dot photo voltaic cell. Science 334, 1530–1533 (2011).
Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).
Weisbuch, C. et al. Statement of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).
Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023).
Wang, T. et al. Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime. Nat. Commun. 14, 5966 (2023).
Smith, D. R. & Schurig, D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 90, 077405 (2003).
Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a pure van der Waals crystal. Nature 562, 557–562 (2018).
Li, P. et al. Infrared hyperbolic metasurface primarily based on nanostructured van der Waals supplies. Science 359, 892–896 (2018).
Galiffi, E. et al. Excessive mild confinement and management in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2024).
Wang, H. et al. Planar hyperbolic polaritons in 2D van der Waals supplies. Nat. Commun. 15, 69 (2024).
Lee, Y. U. et al. Low-loss natural hyperbolic supplies within the seen spectral vary: a joint experimental and first-principles research. Adv. Mater. 32, 2002387 (2020).
Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a damaging index of refraction. Science 292, 77–79 (2001).
Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and damaging refractive index. Science 305, 788–792 (2004).
Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).
Valentine, J. et al. Three-dimensional optical metamaterial with a damaging refractive index. Nature 455, 376–379 (2008).
Sternbach, A. J. et al. Unfavourable refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).
Hu, H. et al. Gate-tunable damaging refraction of mid-infrared polaritons. Science 379, 558–561 (2023).
Lezec, H. J., Dionne, J. A. & Atwater, H. A. Unfavourable refraction at seen frequencies. Science 316, 430–432 (2007).
Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy utilizing metamaterial crystals: concept and simulations. Phys. Rev. B 74, 075103 (2006).
Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging past the diffraction restrict. Decide. Specific 14, 8247–8256 (2006).
Liu, Z. et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686–1686 (2007).
Rho, J. et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at seen frequencies. Nat. Commun. 1, 143 (2010).
Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a pure hyperbolic materials. Nat. Commun. 6, 6963 (2015).
Cai, W. et al. Optical cloaking with metamaterials. Nat. Photon. 1, 224–227 (2007).
Valentine, J. et al. An optical cloak product of dielectrics. Nat. Mater. 8, 568–571 (2009).
Ergin, T. et al. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).
Excessive, A. A. et al. Seen-frequency hyperbolic metasurface. Nature 522, 192–196 (2015).
Poddubny, A. et al. Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).
Yao, J. et al. Optical damaging refraction in bulk metamaterials of nanowires. Science 321, 930–930 (2008).
Epstein, I. et al. Extremely confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Mater. 7, 035031 (2020).
Eini, T. et al. Valley-polarized hyperbolic exciton polaritons in few-layer two-dimensional semiconductors at seen frequencies. Phys. Rev. B 106, L201405 (2022).
Wang, F. et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun. 12, 5628 (2021).
Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).
Göser, O., Paul, W. & Kahle, H. G. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 92, 129–136 (1990).
Telford, E. J. et al. Layered antiferromagnetism induces massive damaging magnetoresistance within the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).
Lee, Ok. et al. Magnetic order and symmetry within the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).
Wilson, N. P. et al. Interlayer digital coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021).
Qian, T.-X. et al. Anisotropic electron-hole excitation and enormous linear dichroism within the two-dimensional ferromagnet CrSBr with in-plane magnetization. Phys. Rev. Res. 5, 033143 (2023).
Klein, J. et al. The majority van der Waals layered magnet CrSBr is a quasi-1D materials. ACS Nano 17, 5316–5328 (2023).
López-Paz, S. A. et al. Dynamic magnetic crossover on the origin of the hidden-order in van der Waals antiferromagnet CrSBr. Nat. Commun. 13, 4745 (2022).
Marques-Moros, F. et al. Interaction between optical emission and magnetism within the van der Waals magnetic semiconductor CrSBr within the two-dimensional restrict. ACS Nano 17, 13224–13231 (2023).
Lin, Ok. et al. Probing the band splitting close to the Γ level within the van der Waals magnetic semiconductor CrSBr. J. Phys. Chem. Lett. 15, 6010–6016 (2024).
Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).
Diederich, G. M. et al. Tunable interplay between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 18, 23–28 (2023).
Ma, J. Excitonic damaging refraction mediated by magnetic orders—supply knowledge. Zenodo https://doi.org/10.5281/zenodo.17715871 (2025).
