13.6 C
Canberra
Sunday, January 18, 2026

Excitonic damaging refraction mediated by magnetic orders


  • Withers, F. et al. Mild-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Semonin, O. E. et al. Peak exterior photocurrent quantum effectivity exceeding 100% by way of MEG in a quantum dot photo voltaic cell. Science 334, 1530–1533 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Weisbuch, C. et al. Statement of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, T. et al. Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime. Nat. Commun. 14, 5966 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Smith, D. R. & Schurig, D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 90, 077405 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a pure van der Waals crystal. Nature 562, 557–562 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, P. et al. Infrared hyperbolic metasurface primarily based on nanostructured van der Waals supplies. Science 359, 892–896 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Galiffi, E. et al. Excessive mild confinement and management in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2024).

    Article 

    Google Scholar
     

  • Wang, H. et al. Planar hyperbolic polaritons in 2D van der Waals supplies. Nat. Commun. 15, 69 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee, Y. U. et al. Low-loss natural hyperbolic supplies within the seen spectral vary: a joint experimental and first-principles research. Adv. Mater. 32, 2002387 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a damaging index of refraction. Science 292, 77–79 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and damaging refractive index. Science 305, 788–792 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Valentine, J. et al. Three-dimensional optical metamaterial with a damaging refractive index. Nature 455, 376–379 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sternbach, A. J. et al. Unfavourable refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, H. et al. Gate-tunable damaging refraction of mid-infrared polaritons. Science 379, 558–561 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lezec, H. J., Dionne, J. A. & Atwater, H. A. Unfavourable refraction at seen frequencies. Science 316, 430–432 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy utilizing metamaterial crystals: concept and simulations. Phys. Rev. B 74, 075103 (2006).

    Article 

    Google Scholar
     

  • Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging past the diffraction restrict. Decide. Specific 14, 8247–8256 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686–1686 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rho, J. et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at seen frequencies. Nat. Commun. 1, 143 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a pure hyperbolic materials. Nat. Commun. 6, 6963 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cai, W. et al. Optical cloaking with metamaterials. Nat. Photon. 1, 224–227 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Valentine, J. et al. An optical cloak product of dielectrics. Nat. Mater. 8, 568–571 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ergin, T. et al. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Excessive, A. A. et al. Seen-frequency hyperbolic metasurface. Nature 522, 192–196 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Poddubny, A. et al. Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yao, J. et al. Optical damaging refraction in bulk metamaterials of nanowires. Science 321, 930–930 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Epstein, I. et al. Extremely confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Mater. 7, 035031 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Eini, T. et al. Valley-polarized hyperbolic exciton polaritons in few-layer two-dimensional semiconductors at seen frequencies. Phys. Rev. B 106, L201405 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, F. et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun. 12, 5628 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Göser, O., Paul, W. & Kahle, H. G. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 92, 129–136 (1990).

    Article 

    Google Scholar
     

  • Telford, E. J. et al. Layered antiferromagnetism induces massive damaging magnetoresistance within the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Ok. et al. Magnetic order and symmetry within the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wilson, N. P. et al. Interlayer digital coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qian, T.-X. et al. Anisotropic electron-hole excitation and enormous linear dichroism within the two-dimensional ferromagnet CrSBr with in-plane magnetization. Phys. Rev. Res. 5, 033143 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Klein, J. et al. The majority van der Waals layered magnet CrSBr is a quasi-1D materials. ACS Nano 17, 5316–5328 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • López-Paz, S. A. et al. Dynamic magnetic crossover on the origin of the hidden-order in van der Waals antiferromagnet CrSBr. Nat. Commun. 13, 4745 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marques-Moros, F. et al. Interaction between optical emission and magnetism within the van der Waals magnetic semiconductor CrSBr within the two-dimensional restrict. ACS Nano 17, 13224–13231 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin, Ok. et al. Probing the band splitting close to the Γ level within the van der Waals magnetic semiconductor CrSBr. J. Phys. Chem. Lett. 15, 6010–6016 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Diederich, G. M. et al. Tunable interplay between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 18, 23–28 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma, J. Excitonic damaging refraction mediated by magnetic orders—supply knowledge. Zenodo https://doi.org/10.5281/zenodo.17715871 (2025).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles