28.1 C
Canberra
Thursday, January 29, 2026

Elementary optical phenomena of strongly anisotropic polaritons on the nanoscale


  • Basov, D., Fogler, M. & García de Abajo, F. Polaritons in van der Waals supplies. Science 354, aag1992 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Low, T. et al. Polaritons in layered two-dimensional supplies. Nat. Mater. 16, 182–194 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2020).

    Article 

    Google Scholar
     

  • Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Planar hyperbolic polaritons in 2D van der Waals supplies. Nat. Commun. 15, 69 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Galiffi, E. et al. Excessive gentle confinement and management in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2024).

    Article 

    Google Scholar
     

  • Wu, Y. et al. Manipulating polaritons on the excessive scale in van der Waals supplies. Nat. Rev. Phys. 4, 578–594 (2022).

    Article 

    Google Scholar
     

  • Wei, H., Wang, Z., Tian, X., Käll, M. & Xu, H. Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 2, 387 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics utilizing free electrons. Science 372, 1181–1186 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, P. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy on the sturdy coupling restrict. Gentle. Sci. Appl. 7, 17172 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolado, I. et al. Distant near-field spectroscopy of vibrational sturdy coupling between natural molecules and phononic nanoresonators. Nat. Commun. 13, 6850 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a pure hyperbolic materials. Nat. Commun. 6, 6963 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Coles, D. M. et al. Polariton-mediated power switch between natural dyes in a strongly coupled optical microcavity. Nat. Mater. 13, 712–719 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, M., Hertzog, M. & Börjesson, Okay. Polariton-assisted excitation power channeling in natural heterojunctions. Nat. Commun. 12, 1874 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruta, F. L. et al. Good plasmons in a nasty steel. Science 387, 786–791 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai, S. et al. Tunable phonon polaritons in atomically skinny van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). This reference reviews the real-space mapping of the hyperbolic phonon polaritons in van der Waals crystals of boron nitride.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). References 19 and 78 independently demonstrated real-space visualization of gate-tunable plasmon polaritons in graphene.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ni, G. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yoxall, E. et al. Direct statement of ultraslow hyperbolic polariton propagation with unfavorable section velocity. Nat. Photon. 9, 674–678 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mester, L., Govyadinov, A. A., Chen, S., Goikoetxea, M. & Hillenbrand, R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 11, 3359 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial decision. Nano Lett. 12, 3973–3978 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hillenbrand, R., Abate, Y., Liu, M., Chen, X. & Basov, D. Seen-to-THz near-field nanoscopy. Nat. Rev. Mater. 10, 285–310 (2025).

  • Guo, X. et al. Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes. Nat. Nanotechnol. 18, 529–534 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, H., Wang, L., Jakob, D. S. & Xu, X. G. Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak pressure tapping mode. Nat. Commun. 9, 2005 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Broadband near-infrared hyperbolic polaritons in MoOCl2. Nat. Commun. 16, 6172 (2025).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, S.-F. et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science 377, 1112–1116 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fei, Z. et al. Infrared nanoscopy of Dirac plasmons on the graphene–SiO2 Interface. Nano Lett. 11, 4701–4705 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, A. et al. Distinctive factors and non-Hermitian photonics on the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guan, F. et al. Overcoming losses in superlenses with artificial waves of advanced frequency. Science 381, 766–771 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a pure van der Waals crystal. Nature 562, 557–562 (2018). This reference reviews the real-space imaging of hyperbolic polariton propagation alongside the floor of molybdenum trioxide, exhibiting ultra-confined wavelength (as much as 60-times smaller than the corresponding photon wavelengths) and ultralong lifetime (about 8 ps).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, G. et al. Actual-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Duan, J. et al. Twisted nano-optics: manipulating gentle on the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020). References 30, 36, 39 and 40 independently demonstrated flattened polariton dispersion at thephotonic magic angle in twisted bilayers of molybdenum trioxide, exhibiting low-loss polariton canalization anddiffractionless propagation.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Herzig Sheinfux, H. & Koppens, F. H. The rise of twist-optics. Nano Lett. 20, 6935–6936 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Obst, M. et al. Terahertz twistoptics—engineering canalized phonon polaritons. ACS Nano 17, 19313–19322 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Duan, J. et al. Enabling propagation of anisotropic polaritons alongside forbidden instructions through a topological transition. Sci. Adv. 7, eabf2690 (2021). This reference reviews the statement of topological transition of polariton dispersion from hyperbolic (open alongside x course) to hyperbolic (open alongside y course) IFCs, yielding a ray-like propagation with linear-crossing IFCs.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Terán-García, E. et al. Actual-space visualization of canalized ray polaritons in a single van der Waals skinny slab. Nano Lett. 25, 2203–2209 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, W. et al. Ghost hyperbolic floor polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shao, Y. et al. Infrared plasmons propagate via a hyperbolic nodal steel. Sci. Adv. 8, eadd6169 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guo, P. et al. Hyperbolic dispersion arising from anisotropic excitons in two-dimensional perovskites. Phys. Rev. Lett. 121, 127401 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ambrosio, A. et al. Selective excitation and imaging of ultraslow phonon polaritons in skinny hexagonal boron nitride crystals. Gentle. Sci. Appl. 7, 27 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zheng, Z. et al. Extremely confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition steel oxides. Adv. Mater. 30, 1705318 (2018).

    Article 

    Google Scholar
     

  • Venturi, G., Mancini, A., Melchioni, N., Chiodini, S. & Ambrosio, A. Seen-frequency hyperbolic plasmon polaritons in a pure van der Waals crystal. Nat. Commun. 15, 9727 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Excitonic unfavorable refraction mediated by magnetic orders. Preprint at Analysis Sq. https://doi.org/10.21203/rs.3.rs-5016542/v1 (2024).

  • Rizzo, D. J. et al. Uniaxial plasmon polaritons through cost switch on the graphene/CrSBr interface. Preprint at https://arxiv.org/abs/2407.07178 (2024).

  • Wang, C. et al. Van der Waals skinny movies of WTe2 for pure hyperbolic plasmonic surfaces. Nat. Commun. 11, 1158 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, S. et al. Actual-space statement of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, F. et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun. 12, 5628 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • F. Tresguerres-Mata, A. I. et al. Remark of naturally canalized phonon polaritons in LiV2O5 skinny layers. Nat. Commun. 15, 2696 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Álvarez-Pérez, G. et al. Infrared permittivity of the biaxial van der waals semiconductor α-MoO3 from near-and far-field correlative research. Adv. Mater. 32, 1908176 (2020).

    Article 

    Google Scholar
     

  • Duan, J. et al. Launching phonon polaritons by pure boron nitride wrinkles with modifiable dispersion by dielectric environments. Adv. Mater. 29, 1702494 (2017).

    Article 

    Google Scholar
     

  • Born, M. & Wolf, E. Ideas of Optics: Electromagnetic Idea of Propagation, Interference and Diffraction of Gentle (Elsevier, 2013).

  • Matson, J. et al. Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide. Nat. Commun. 14, 5240 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ermolaev, G. A. et al. Wandering principal optical axes in van der Waals triclinic supplies. Nat. Commun. 15, 1552 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Duan, J. et al. Canalization-based super-resolution imaging utilizing a person van der Waals skinny layer. Sci. Adv. 11, eads0569 (2025). This reference demonstrates a proof-of-concept software of polariton canalization: super-resolution nanoimaing (~λ0/220, with λ0 the wavelength of free-space gentle).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Alonso-González, P. et al. Controlling graphene plasmons with resonant steel antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Chaudhary, Okay. et al. Polariton nanophotonics utilizing phase-change supplies. Nat. Commun. 10, 4487 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and unfavorable refractive index. Science 305, 788–792 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hoffman, A. J. et al. Detrimental refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. Detrimental refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, H. et al. Gate-tunable unfavorable refraction of mid-infrared polaritons. Science 379, 558–561 (2023). References 68 and 70 independently reveal in-plane and out-of-plane unfavorable refraction of mid-infrared phonon polaritons at theinterface between van der Waals supplies.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin, X. et al. All-angle unfavorable refraction of extremely squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proc. Natl Acad. Sci. USA 114, 6717–6721 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sternbach, A. et al. Detrimental refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Duan, J. et al. Planar refraction and lensing of extremely confined polaritons in anisotropic media. Nat. Commun. 12, 4325 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Duan, J. et al. A number of and spectrally strong photonic magic angles in reconfigurable α-MoO3 trilayers. Nat. Mater. 22, 867–872 (2023). This reference reviews the statement of a number of spectrally strong photonic magic angles in reconfigurable twisted molybdenum trioxide trilayers, the place polariton canalization might be programmed at will alongside any desired in-plane course.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zheng, C. et al. Hyperbolic-to-hyperbolic transition at distinctive Reststrahlen level in rare-earth oxyorthosilicates. Nat. Commun. 15, 7047 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Álvarez-Cuervo, J. et al. Unidirectional ray polaritons in twisted uneven stacks. Nat. Commun. 15, 9042 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Álvarez-Pérez, G. et al. Detrimental reflection of nanoscale-confined polaritons in a low-loss pure medium. Sci. Adv. 8, eabp8486 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martín-Sánchez, J. et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailor-made infrared nanoantennas. Sci. Adv. 7, eabj0127 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Álvarez-Pérez, G., Voronin, Okay. V., Volkov, V. S., Alonso-González, P. & Nikitin, A. Y. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Phys. Rev. B 100, 235408 (2019).

    Article 

    Google Scholar
     

  • Li, P. et al. Infrared hyperbolic metasurface primarily based on nanostructured van der Waals supplies. Science 359, 892–896 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, P. et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun. 11, 3663 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Duan, J. et al. Lively and passive tuning of ultranarrow resonances in polaritonic nanoantennas. Adv. Mater. 34, 2104954 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lv, J. et al. Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes. Nat. Commun. 14, 3894 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sunku, S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lv, H. et al. Tailoring phonon polaritons with a single-layer photonics-empowered polaritonic crystal. Nano Lett. 12, 4946–4953 (2025).

    Article 

    Google Scholar
     

  • Solar, T. et al. Van der Waals quaternary oxides for tunable low-loss anisotropic polaritonics. Nat. Nanotechnol. 19, 758–765 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, M. et al. Van der Waals isotope heterostructures for engineering phonon polariton dispersions. Nat. Commun. 14, 4782 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, N. et al. Phonon transition throughout an isotopic interface. Nat. Commun. 14, 2382 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Ultralow-loss phonon polaritons within the isotope-enriched α-MoO3. Nano Lett. 22, 10208–10215 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nat. Commun. 11, 2646 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Environment friendly and tunable reflection of phonon polaritons at built-in intercalation interfaces. Adv. Mater. 33, 2008070 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shen, J. et al. Cost-transfer hyperbolic polaritons in α-MoO3/graphene heterostructures. Appl. Phys. Rev. 11, 021409 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ruta, F. L. et al. Floor plasmons induce topological transition in graphene/α-MoO3 heterostructures. Nat. Commun. 13, 3719 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Moore, S. et al. Nanoscale lattice dynamics in hexagonal boron nitride moiré superlattices. Nat. Commun. 12, 5741 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene area partitions. Nat. Mater. 15, 840–844 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ni, G. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hesp, N. C. et al. Remark of interband collective excitations in twisted bilayer graphene. Nat. Phys. 17, 1162–1168 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huang, T. et al. Remark of chiral and sluggish plasmons in twisted bilayer graphene. Nature 605, 63–68 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai, S. et al. Hyperbolic phonon polaritons in suspended hexagonal boron nitride. Nano Lett. 19, 1009–1014 (2018).

    Article 

    Google Scholar
     

  • Li, N. et al. Direct statement of extremely confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hu, H. et al. Lively management of micrometer plasmon propagation in suspended graphene. Nat. Commun. 13, 1465 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Tunable low loss 1D floor plasmons in InAs nanowires. Adv. Mater. 30, 1802551 (2018).

    Article 

    Google Scholar
     

  • Fali, A. et al. Refractive index-based management of hyperbolic phonon-polariton propagation. Nano Lett. 19, 7725–7734 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He, M. et al. Polariton design and modulation through van der Waals/doped semiconductor heterostructures. Nat. Commun. 14, 7965 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dubrovkin, A. M. et al. Resonant nanostructures for extremely confined and ultra-sensitive floor phonon-polaritons. Nat. Commun. 11, 1863 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dubrovkin, A. M., Qiang, B., Krishnamoorthy, H. N. S., Zheludev, N. I. & Wang, Q. J. Extremely-confined floor phonon polaritons in molecular layers of van der Waals dielectrics. Nat. Commun. 9, 1762 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, J. et al. Hyperbolic phonon polaritons with optimistic and unfavorable section velocities in suspended α-MoO3. Appl. Phys. Lett. 120, 113101 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chaudhary, Okay. et al. Engineering phonon polaritons in van der Waals heterostructures to reinforce in-plane optical anisotropy. Sci. Adv. 5, eaau7171 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee, I.-H. et al. Picture polaritons in boron nitride for excessive polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Menabde, S. G. et al. Low-loss anisotropic picture polaritons in van der Waals crystal α-MoO3. Adv. Decide. Mater. 10, 2201492 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Menabde, S. G. et al. Close to-field probing of picture phonon-polaritons in hexagonal boron nitride on gold crystals. Sci. Adv. 8, eabn0627 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guddala, S. et al. Topological phonon-polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Orsini, L. et al. Deep subwavelength topological edge state in a hyperbolic medium. Nat. Nanotechnol. 19, 1485–1490 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dong, Y. et al. Fizeau drag in graphene plasmonics. Nature 594, 513–516 (2021). References 122 and 123 reveal that plasmon polaritons might be dragged by drifting electrons within the 2D materials graphene.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao, W. et al. Environment friendly Fizeau drag from Dirac electrons in monolayer graphene. Nature 594, 517–521 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pogna, E. A. et al. Close to-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies. Nat. Commun. 15, 2373 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao, H. et al. Tunable anisotropic plasmons in monolayer Ca4N2 induced by orbital-selective transitions. Decide. Specific 32, 45197–45206 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Xing, Q. et al. Tunable anisotropic van der Waals movies of 2M-WS2 for plasmon canalization. Nat. Commun. 15, 2623 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Luo, Y. et al. Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor. Nat. Nanotechnol. 18, 350–356 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, M. et al. Spin–orbit-locked hyperbolic polariton vortices carrying reconfigurable topological prices. eLight 2, 12 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, L. et al. Polaritonic vortices with a half-integer cost. Nano Lett. 21, 9256–9261 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guan, F. et al. Compensating losses in polariton propagation with synthesized advanced frequency excitation. Nat. Mater. 23, 506–511 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim, S., Krasnok, A. & Alù, A. Complicated-frequency excitations in photonics and wave physics. Science 387, eado4128 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sternbach, A. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mrejen, M., Yadgarov, L., Levanon, A. & Suchowski, H. Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging. Sci. Adv. 5, eaat9618 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fu, R. et al. Manipulating hyperbolic transient plasmons in a layered semiconductor. Nat. Commun. 15, 709 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, P. et al. Reversible optical switching of extremely confined phonon–polaritons with an ultrathin phase-change materials. Nat. Mater. 15, 870–875 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces utilizing section change supplies. Nat. Commun. 9, 4371 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ni, G. X. et al. Elementary limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Thermal and electrostatic tuning of floor phonon-polaritons in LaAlO3/SrTiO3 heterostructures. Nat. Commun. 14, 7686 (2023). This reference reviews real-space imaging of floor phonon polaritons in SrTiO3 and LaAlO3/SrTiO3 heterostructures at cryogenic temperatures in addition to the thermal tunability of polaritonic properties.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ni, G. et al. Lengthy-lived phonon polaritons in hyperbolic supplies. Nano Lett. 21, 5767–5773 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Taboada-Gutiérrez, J. et al. Unveiling the mechanism of phonon-polariton damping in α-MoO3. ACS Photon.11, 3570–3577 (2024).

    Article 

    Google Scholar
     

  • Duan, J. & Zhou, Y. Magnetic order as a tuning knob for Coulomb correlation. Nat. Mater. 24, 332–333 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liebich, M. et al. Controlling Coulomb correlations and wonderful construction of quasi-one-dimensional excitons by magnetic order. Nat. Mater. 24, 384–390 (2025). References 143 and 144 reveal that antiferromagnetic order blocks interlayerhopping of electron–gap pairs in a two-dimensional magnetic semiconductor (CrSBr), resulting in the formation ofmagnetic floor excitons with quasi-one-dimensional quantum confinement.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shao, Y. et al. Magnetically confined floor and bulk excitons in a layered antiferromagnet. Nat. Mater. 24, 391–398 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He, M. et al. Guided mid-IR and near-IR gentle inside a hybrid hyperbolic-material/silicon waveguide heterostructure. Adv. Mater. 33, 2004305 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pan, Z. et al. Outstanding warmth conduction mediated by non-equilibrium phonon polaritons. Nature 623, 307–312 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pei, Y., Chen, L., Jeon, W., Liu, Z. & Chen, R. Low-dimensional warmth conduction in floor phonon polariton waveguide. Nat. Commun. 14, 8242 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Boroviks, S. et al. Extraordinarily confined hole plasmon modes: when nonlocality issues. Nat. Commun. 13, 3105 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Schnell, M. et al. Nanofocusing of mid-infrared power with tapered transmission strains. Nat. Photon. 5, 283–287 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Chikkaraddy, R. et al. Single-molecule sturdy coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Epstein, I. et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lundeberg, M. B. et al. Tuning quantum nonlocal results in graphene plasmonics. Science 357, 187–191 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tamagnone, M. et al. Extremely-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4, eaat7189 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herzig Sheinfux, H. et al. Excessive-quality nanocavities via multimodal confinement of hyperbolic polaritons in hexagonal boron nitride. Nat. Mater. 23, 499–505 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, Z., Lee, H., Xiong, Y., Solar, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jäckering, L. et al. Tremendous-resolution imaging of nanoscale inhomogeneities in hBN-covered and encapsulated few-layer graphene. Adv. Sci. 12, 2409039 (2025).

    Article 

    Google Scholar
     

  • He, M. et al. Ultrahigh-resolution, label-free hyperlens imaging within the mid-IR. Nano Lett. 21, 7921–7928 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Castilla, S. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for delicate and quick mid-infrared photodetection with graphene. Nat. Commun. 11, 4872 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bylinkin, A. et al. On-chip phonon-enhanced IR near-field detection of molecular vibrations. Nat. Commun. 15, 8907 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bylinkin, A. et al. Actual-space statement of vibrational sturdy coupling between propagating phonon polaritons and natural molecules. Nat. Photon. 15, 197–202 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bylinkin, A. et al. Twin-band coupling of phonon and floor plasmon polaritons with vibrational and digital excitations in molecules. Nano Lett. 23, 3985–3993 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Arora, S., Bauer, T., Barczyk, R., Verhagen, E. & Kuipers, L. Direct quantification of topological safety in symmetry-protected photonic edge states at telecom wavelengths. Gentle. Sci. Appl. 10, 9 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Smirnova, D. et al. Polaritonic states trapped by topological defects. Nat. Commun. 15, 6355 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang, X. et al. Far-Subject spectroscopy and near-field optical imaging of coupled plasmon–phonon polaritons in 2D van der Waals heterostructures. Adv. Mater. 28, 2931–2938 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Machine studying for optical scanning probe nanoscopy. Adv. Mater. 35, 2109171 (2023).

    Article 
    CAS 

    Google Scholar
     

  • García de Abajo, F. J. Graphene plasmonics: challenges and alternatives. ACS Photon. 1, 135–152 (2014).

    Article 

    Google Scholar
     

  • Hu, F. et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photon. 11, 356–360 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Luan, Y. et al. Imaging anisotropic waveguide exciton polaritons in tin sulfide. Nano Lett. 22, 1497–1503 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sternbach, A. J. et al. Femtosecond exciton dynamics in WSe2 optical waveguides. Nat. Commun. 11, 3567 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao, W. et al. Remark of hydrodynamic plasmons and power waves in graphene. Nature 614, 688–693 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles