Basov, D., Fogler, M. & García de Abajo, F. Polaritons in van der Waals supplies. Science 354, aag1992 (2016).
Low, T. et al. Polaritons in layered two-dimensional supplies. Nat. Mater. 16, 182–194 (2017).
Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2020).
Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).
Wang, H. et al. Planar hyperbolic polaritons in 2D van der Waals supplies. Nat. Commun. 15, 69 (2024).
Galiffi, E. et al. Excessive gentle confinement and management in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2024).
Wu, Y. et al. Manipulating polaritons on the excessive scale in van der Waals supplies. Nat. Rev. Phys. 4, 578–594 (2022).
Wei, H., Wang, Z., Tian, X., Käll, M. & Xu, H. Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 2, 387 (2011).
Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics utilizing free electrons. Science 372, 1181–1186 (2021).
Li, P. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy on the sturdy coupling restrict. Gentle. Sci. Appl. 7, 17172 (2018).
Dolado, I. et al. Distant near-field spectroscopy of vibrational sturdy coupling between natural molecules and phononic nanoresonators. Nat. Commun. 13, 6850 (2022).
Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).
Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a pure hyperbolic materials. Nat. Commun. 6, 6963 (2015).
Coles, D. M. et al. Polariton-mediated power switch between natural dyes in a strongly coupled optical microcavity. Nat. Mater. 13, 712–719 (2014).
Wang, M., Hertzog, M. & Börjesson, Okay. Polariton-assisted excitation power channeling in natural heterojunctions. Nat. Commun. 12, 1874 (2021).
Ruta, F. L. et al. Good plasmons in a nasty steel. Science 387, 786–791 (2025).
Dai, S. et al. Tunable phonon polaritons in atomically skinny van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). This reference reviews the real-space mapping of the hyperbolic phonon polaritons in van der Waals crystals of boron nitride.
Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).
Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). References 19 and 78 independently demonstrated real-space visualization of gate-tunable plasmon polaritons in graphene.
Ni, G. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).
Yoxall, E. et al. Direct statement of ultraslow hyperbolic polariton propagation with unfavorable section velocity. Nat. Photon. 9, 674–678 (2015).
Mester, L., Govyadinov, A. A., Chen, S., Goikoetxea, M. & Hillenbrand, R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 11, 3359 (2020).
Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial decision. Nano Lett. 12, 3973–3978 (2012).
Hillenbrand, R., Abate, Y., Liu, M., Chen, X. & Basov, D. Seen-to-THz near-field nanoscopy. Nat. Rev. Mater. 10, 285–310 (2025).
Guo, X. et al. Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes. Nat. Nanotechnol. 18, 529–534 (2023).
Wang, H., Wang, L., Jakob, D. S. & Xu, X. G. Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak pressure tapping mode. Nat. Commun. 9, 2005 (2018).
Li, Y. et al. Broadband near-infrared hyperbolic polaritons in MoOCl2. Nat. Commun. 16, 6172 (2025).
Liu, S.-F. et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science 377, 1112–1116 (2022).
Fei, Z. et al. Infrared nanoscopy of Dirac plasmons on the graphene–SiO2 Interface. Nano Lett. 11, 4701–4705 (2011).
Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).
Li, A. et al. Distinctive factors and non-Hermitian photonics on the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).
Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).
Guan, F. et al. Overcoming losses in superlenses with artificial waves of advanced frequency. Science 381, 766–771 (2023).
Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a pure van der Waals crystal. Nature 562, 557–562 (2018). This reference reviews the real-space imaging of hyperbolic polariton propagation alongside the floor of molybdenum trioxide, exhibiting ultra-confined wavelength (as much as 60-times smaller than the corresponding photon wavelengths) and ultralong lifetime (about 8 ps).
Hu, G. et al. Actual-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).
Duan, J. et al. Twisted nano-optics: manipulating gentle on the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020). References 30, 36, 39 and 40 independently demonstrated flattened polariton dispersion at thephotonic magic angle in twisted bilayers of molybdenum trioxide, exhibiting low-loss polariton canalization anddiffractionless propagation.
Herzig Sheinfux, H. & Koppens, F. H. The rise of twist-optics. Nano Lett. 20, 6935–6936 (2020).
Obst, M. et al. Terahertz twistoptics—engineering canalized phonon polaritons. ACS Nano 17, 19313–19322 (2023).
Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).
Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).
Duan, J. et al. Enabling propagation of anisotropic polaritons alongside forbidden instructions through a topological transition. Sci. Adv. 7, eabf2690 (2021). This reference reviews the statement of topological transition of polariton dispersion from hyperbolic (open alongside x course) to hyperbolic (open alongside y course) IFCs, yielding a ray-like propagation with linear-crossing IFCs.
Terán-García, E. et al. Actual-space visualization of canalized ray polaritons in a single van der Waals skinny slab. Nano Lett. 25, 2203–2209 (2025).
Ma, W. et al. Ghost hyperbolic floor polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).
Shao, Y. et al. Infrared plasmons propagate via a hyperbolic nodal steel. Sci. Adv. 8, eadd6169 (2022).
Guo, P. et al. Hyperbolic dispersion arising from anisotropic excitons in two-dimensional perovskites. Phys. Rev. Lett. 121, 127401 (2018).
Ambrosio, A. et al. Selective excitation and imaging of ultraslow phonon polaritons in skinny hexagonal boron nitride crystals. Gentle. Sci. Appl. 7, 27 (2018).
Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).
Zheng, Z. et al. Extremely confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition steel oxides. Adv. Mater. 30, 1705318 (2018).
Venturi, G., Mancini, A., Melchioni, N., Chiodini, S. & Ambrosio, A. Seen-frequency hyperbolic plasmon polaritons in a pure van der Waals crystal. Nat. Commun. 15, 9727 (2024).
Zhang, X. et al. Excitonic unfavorable refraction mediated by magnetic orders. Preprint at Analysis Sq. https://doi.org/10.21203/rs.3.rs-5016542/v1 (2024).
Rizzo, D. J. et al. Uniaxial plasmon polaritons through cost switch on the graphene/CrSBr interface. Preprint at https://arxiv.org/abs/2407.07178 (2024).
Wang, C. et al. Van der Waals skinny movies of WTe2 for pure hyperbolic plasmonic surfaces. Nat. Commun. 11, 1158 (2020).
Chen, S. et al. Actual-space statement of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (2023).
Wang, F. et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun. 12, 5628 (2021).
Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).
F. Tresguerres-Mata, A. I. et al. Remark of naturally canalized phonon polaritons in LiV2O5 skinny layers. Nat. Commun. 15, 2696 (2024).
Álvarez-Pérez, G. et al. Infrared permittivity of the biaxial van der waals semiconductor α-MoO3 from near-and far-field correlative research. Adv. Mater. 32, 1908176 (2020).
Duan, J. et al. Launching phonon polaritons by pure boron nitride wrinkles with modifiable dispersion by dielectric environments. Adv. Mater. 29, 1702494 (2017).
Born, M. & Wolf, E. Ideas of Optics: Electromagnetic Idea of Propagation, Interference and Diffraction of Gentle (Elsevier, 2013).
Matson, J. et al. Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide. Nat. Commun. 14, 5240 (2023).
Ermolaev, G. A. et al. Wandering principal optical axes in van der Waals triclinic supplies. Nat. Commun. 15, 1552 (2024).
Duan, J. et al. Canalization-based super-resolution imaging utilizing a person van der Waals skinny layer. Sci. Adv. 11, eads0569 (2025). This reference demonstrates a proof-of-concept software of polariton canalization: super-resolution nanoimaing (~λ0/220, with λ0 the wavelength of free-space gentle).
Alonso-González, P. et al. Controlling graphene plasmons with resonant steel antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).
Chaudhary, Okay. et al. Polariton nanophotonics utilizing phase-change supplies. Nat. Commun. 10, 4487 (2019).
Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and unfavorable refractive index. Science 305, 788–792 (2004).
Hoffman, A. J. et al. Detrimental refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007).
Zhang, S. et al. Detrimental refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009).
Hu, H. et al. Gate-tunable unfavorable refraction of mid-infrared polaritons. Science 379, 558–561 (2023). References 68 and 70 independently reveal in-plane and out-of-plane unfavorable refraction of mid-infrared phonon polaritons at theinterface between van der Waals supplies.
Lin, X. et al. All-angle unfavorable refraction of extremely squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proc. Natl Acad. Sci. USA 114, 6717–6721 (2017).
Sternbach, A. et al. Detrimental refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).
Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).
Duan, J. et al. Planar refraction and lensing of extremely confined polaritons in anisotropic media. Nat. Commun. 12, 4325 (2021).
Duan, J. et al. A number of and spectrally strong photonic magic angles in reconfigurable α-MoO3 trilayers. Nat. Mater. 22, 867–872 (2023). This reference reviews the statement of a number of spectrally strong photonic magic angles in reconfigurable twisted molybdenum trioxide trilayers, the place polariton canalization might be programmed at will alongside any desired in-plane course.
Zheng, C. et al. Hyperbolic-to-hyperbolic transition at distinctive Reststrahlen level in rare-earth oxyorthosilicates. Nat. Commun. 15, 7047 (2024).
Álvarez-Cuervo, J. et al. Unidirectional ray polaritons in twisted uneven stacks. Nat. Commun. 15, 9042 (2024).
Álvarez-Pérez, G. et al. Detrimental reflection of nanoscale-confined polaritons in a low-loss pure medium. Sci. Adv. 8, eabp8486 (2022).
Martín-Sánchez, J. et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailor-made infrared nanoantennas. Sci. Adv. 7, eabj0127 (2021).
Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).
Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).
Álvarez-Pérez, G., Voronin, Okay. V., Volkov, V. S., Alonso-González, P. & Nikitin, A. Y. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Phys. Rev. B 100, 235408 (2019).
Li, P. et al. Infrared hyperbolic metasurface primarily based on nanostructured van der Waals supplies. Science 359, 892–896 (2018).
Li, P. et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun. 11, 3663 (2020).
Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).
Duan, J. et al. Lively and passive tuning of ultranarrow resonances in polaritonic nanoantennas. Adv. Mater. 34, 2104954 (2022).
Lv, J. et al. Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes. Nat. Commun. 14, 3894 (2023).
Sunku, S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).
Lv, H. et al. Tailoring phonon polaritons with a single-layer photonics-empowered polaritonic crystal. Nano Lett. 12, 4946–4953 (2025).
Solar, T. et al. Van der Waals quaternary oxides for tunable low-loss anisotropic polaritonics. Nat. Nanotechnol. 19, 758–765 (2024).
Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).
Chen, M. et al. Van der Waals isotope heterostructures for engineering phonon polariton dispersions. Nat. Commun. 14, 4782 (2023).
Li, N. et al. Phonon transition throughout an isotopic interface. Nat. Commun. 14, 2382 (2023).
Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).
Zhao, Y. et al. Ultralow-loss phonon polaritons within the isotope-enriched α-MoO3. Nano Lett. 22, 10208–10215 (2022).
Wu, Y. et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nat. Commun. 11, 2646 (2020).
Wu, Y. et al. Environment friendly and tunable reflection of phonon polaritons at built-in intercalation interfaces. Adv. Mater. 33, 2008070 (2021).
Shen, J. et al. Cost-transfer hyperbolic polaritons in α-MoO3/graphene heterostructures. Appl. Phys. Rev. 11, 021409 (2024).
Ruta, F. L. et al. Floor plasmons induce topological transition in graphene/α-MoO3 heterostructures. Nat. Commun. 13, 3719 (2022).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Moore, S. et al. Nanoscale lattice dynamics in hexagonal boron nitride moiré superlattices. Nat. Commun. 12, 5741 (2021).
Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).
Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene area partitions. Nat. Mater. 15, 840–844 (2016).
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).
Ni, G. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).
Hesp, N. C. et al. Remark of interband collective excitations in twisted bilayer graphene. Nat. Phys. 17, 1162–1168 (2021).
Huang, T. et al. Remark of chiral and sluggish plasmons in twisted bilayer graphene. Nature 605, 63–68 (2022).
Dai, S. et al. Hyperbolic phonon polaritons in suspended hexagonal boron nitride. Nano Lett. 19, 1009–1014 (2018).
Li, N. et al. Direct statement of extremely confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).
Hu, H. et al. Lively management of micrometer plasmon propagation in suspended graphene. Nat. Commun. 13, 1465 (2022).
Zhou, Y. et al. Tunable low loss 1D floor plasmons in InAs nanowires. Adv. Mater. 30, 1802551 (2018).
Fali, A. et al. Refractive index-based management of hyperbolic phonon-polariton propagation. Nano Lett. 19, 7725–7734 (2019).
He, M. et al. Polariton design and modulation through van der Waals/doped semiconductor heterostructures. Nat. Commun. 14, 7965 (2023).
Dubrovkin, A. M. et al. Resonant nanostructures for extremely confined and ultra-sensitive floor phonon-polaritons. Nat. Commun. 11, 1863 (2020).
Dubrovkin, A. M., Qiang, B., Krishnamoorthy, H. N. S., Zheludev, N. I. & Wang, Q. J. Extremely-confined floor phonon polaritons in molecular layers of van der Waals dielectrics. Nat. Commun. 9, 1762 (2018).
Shen, J. et al. Hyperbolic phonon polaritons with optimistic and unfavorable section velocities in suspended α-MoO3. Appl. Phys. Lett. 120, 113101 (2022).
Chaudhary, Okay. et al. Engineering phonon polaritons in van der Waals heterostructures to reinforce in-plane optical anisotropy. Sci. Adv. 5, eaau7171 (2019).
Lee, I.-H. et al. Picture polaritons in boron nitride for excessive polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).
Menabde, S. G. et al. Low-loss anisotropic picture polaritons in van der Waals crystal α-MoO3. Adv. Decide. Mater. 10, 2201492 (2022).
Menabde, S. G. et al. Close to-field probing of picture phonon-polaritons in hexagonal boron nitride on gold crystals. Sci. Adv. 8, eabn0627 (2022).
Guddala, S. et al. Topological phonon-polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).
Orsini, L. et al. Deep subwavelength topological edge state in a hyperbolic medium. Nat. Nanotechnol. 19, 1485–1490 (2024).
Dong, Y. et al. Fizeau drag in graphene plasmonics. Nature 594, 513–516 (2021). References 122 and 123 reveal that plasmon polaritons might be dragged by drifting electrons within the 2D materials graphene.
Zhao, W. et al. Environment friendly Fizeau drag from Dirac electrons in monolayer graphene. Nature 594, 517–521 (2021).
Pogna, E. A. et al. Close to-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies. Nat. Commun. 15, 2373 (2024).
Gao, H. et al. Tunable anisotropic plasmons in monolayer Ca4N2 induced by orbital-selective transitions. Decide. Specific 32, 45197–45206 (2024).
Xing, Q. et al. Tunable anisotropic van der Waals movies of 2M-WS2 for plasmon canalization. Nat. Commun. 15, 2623 (2024).
Luo, Y. et al. Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor. Nat. Nanotechnol. 18, 350–356 (2023).
Wang, M. et al. Spin–orbit-locked hyperbolic polariton vortices carrying reconfigurable topological prices. eLight 2, 12 (2022).
Xiong, L. et al. Polaritonic vortices with a half-integer cost. Nano Lett. 21, 9256–9261 (2021).
Guan, F. et al. Compensating losses in polariton propagation with synthesized advanced frequency excitation. Nat. Mater. 23, 506–511 (2024).
Kim, S., Krasnok, A. & Alù, A. Complicated-frequency excitations in photonics and wave physics. Science 387, eado4128 (2025).
Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).
Sternbach, A. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).
Mrejen, M., Yadgarov, L., Levanon, A. & Suchowski, H. Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging. Sci. Adv. 5, eaat9618 (2019).
Fu, R. et al. Manipulating hyperbolic transient plasmons in a layered semiconductor. Nat. Commun. 15, 709 (2024).
Li, P. et al. Reversible optical switching of extremely confined phonon–polaritons with an ultrathin phase-change materials. Nat. Mater. 15, 870–875 (2016).
Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces utilizing section change supplies. Nat. Commun. 9, 4371 (2018).
Ni, G. X. et al. Elementary limits to graphene plasmonics. Nature 557, 530–533 (2018).
Zhou, Y. et al. Thermal and electrostatic tuning of floor phonon-polaritons in LaAlO3/SrTiO3 heterostructures. Nat. Commun. 14, 7686 (2023). This reference reviews real-space imaging of floor phonon polaritons in SrTiO3 and LaAlO3/SrTiO3 heterostructures at cryogenic temperatures in addition to the thermal tunability of polaritonic properties.
Ni, G. et al. Lengthy-lived phonon polaritons in hyperbolic supplies. Nano Lett. 21, 5767–5773 (2021).
Taboada-Gutiérrez, J. et al. Unveiling the mechanism of phonon-polariton damping in α-MoO3. ACS Photon.11, 3570–3577 (2024).
Duan, J. & Zhou, Y. Magnetic order as a tuning knob for Coulomb correlation. Nat. Mater. 24, 332–333 (2025).
Liebich, M. et al. Controlling Coulomb correlations and wonderful construction of quasi-one-dimensional excitons by magnetic order. Nat. Mater. 24, 384–390 (2025). References 143 and 144 reveal that antiferromagnetic order blocks interlayerhopping of electron–gap pairs in a two-dimensional magnetic semiconductor (CrSBr), resulting in the formation ofmagnetic floor excitons with quasi-one-dimensional quantum confinement.
Shao, Y. et al. Magnetically confined floor and bulk excitons in a layered antiferromagnet. Nat. Mater. 24, 391–398 (2025).
He, M. et al. Guided mid-IR and near-IR gentle inside a hybrid hyperbolic-material/silicon waveguide heterostructure. Adv. Mater. 33, 2004305 (2021).
Pan, Z. et al. Outstanding warmth conduction mediated by non-equilibrium phonon polaritons. Nature 623, 307–312 (2023).
Pei, Y., Chen, L., Jeon, W., Liu, Z. & Chen, R. Low-dimensional warmth conduction in floor phonon polariton waveguide. Nat. Commun. 14, 8242 (2023).
Boroviks, S. et al. Extraordinarily confined hole plasmon modes: when nonlocality issues. Nat. Commun. 13, 3105 (2022).
Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).
Schnell, M. et al. Nanofocusing of mid-infrared power with tapered transmission strains. Nat. Photon. 5, 283–287 (2011).
Chikkaraddy, R. et al. Single-molecule sturdy coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).
Epstein, I. et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020).
Lundeberg, M. B. et al. Tuning quantum nonlocal results in graphene plasmonics. Science 357, 187–191 (2017).
Tamagnone, M. et al. Extremely-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4, eaat7189 (2018).
Herzig Sheinfux, H. et al. Excessive-quality nanocavities via multimodal confinement of hyperbolic polaritons in hexagonal boron nitride. Nat. Mater. 23, 499–505 (2024).
Liu, Z., Lee, H., Xiong, Y., Solar, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).
Jäckering, L. et al. Tremendous-resolution imaging of nanoscale inhomogeneities in hBN-covered and encapsulated few-layer graphene. Adv. Sci. 12, 2409039 (2025).
He, M. et al. Ultrahigh-resolution, label-free hyperlens imaging within the mid-IR. Nano Lett. 21, 7921–7928 (2021).
Castilla, S. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for delicate and quick mid-infrared photodetection with graphene. Nat. Commun. 11, 4872 (2020).
Bylinkin, A. et al. On-chip phonon-enhanced IR near-field detection of molecular vibrations. Nat. Commun. 15, 8907 (2024).
Bylinkin, A. et al. Actual-space statement of vibrational sturdy coupling between propagating phonon polaritons and natural molecules. Nat. Photon. 15, 197–202 (2021).
Bylinkin, A. et al. Twin-band coupling of phonon and floor plasmon polaritons with vibrational and digital excitations in molecules. Nano Lett. 23, 3985–3993 (2023).
Arora, S., Bauer, T., Barczyk, R., Verhagen, E. & Kuipers, L. Direct quantification of topological safety in symmetry-protected photonic edge states at telecom wavelengths. Gentle. Sci. Appl. 10, 9 (2021).
Smirnova, D. et al. Polaritonic states trapped by topological defects. Nat. Commun. 15, 6355 (2024).
Yang, X. et al. Far-Subject spectroscopy and near-field optical imaging of coupled plasmon–phonon polaritons in 2D van der Waals heterostructures. Adv. Mater. 28, 2931–2938 (2016).
Chen, X. et al. Machine studying for optical scanning probe nanoscopy. Adv. Mater. 35, 2109171 (2023).
García de Abajo, F. J. Graphene plasmonics: challenges and alternatives. ACS Photon. 1, 135–152 (2014).
Hu, F. et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photon. 11, 356–360 (2017).
Luan, Y. et al. Imaging anisotropic waveguide exciton polaritons in tin sulfide. Nano Lett. 22, 1497–1503 (2022).
Sternbach, A. J. et al. Femtosecond exciton dynamics in WSe2 optical waveguides. Nat. Commun. 11, 3567 (2020).
Zhao, W. et al. Remark of hydrodynamic plasmons and power waves in graphene. Nature 614, 688–693 (2023).
