Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular section transitions. Nat. Phys. 11, 899–904 (2015).
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. Okay. Biomolecular condensates: organizers of mobile biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
Farag, M., Borcherds, W. M., Bremer, A., Mittag, T. & Pappu, R. V. Section separation of protein mixtures is pushed by the interaction of homotypic and heterotypic interactions. Nat. Commun. 14, 5527 (2023).
Kar, M. et al. Section-separating RNA-binding proteins kind heterogeneous distributions of clusters in subsaturated options. Proc. Natl Acad. Sci. USA 119, e2202222119 (2022).
Martin, E. W. et al. Valence and patterning of fragrant residues decide the section conduct of prion-like domains. Science 367, 694–699 (2020).
Liu, J., Spruijt, E., Miserez, A. & Langer, R. Peptide-based liquid droplets as rising supply autos. Nat. Rev. Mater. 8, 139–141 (2023).
Lu, T., Hu, X., van Haren, M. H. I., Spruijt, E. & Huck, W. T. S. Construction–property relationships governing membrane-penetrating behaviour of advanced coacervates. Small 19, e2303138 (2023).
Solar, Y. et al. Section-separating peptides for direct cytosolic supply and redox-activated launch of macromolecular therapeutics. Nat. Chem. 14, 274–283 (2022).
Solar, Y. et al. Redox-responsive phase-separating peptide as a common supply automobile for CRISPR/Cas9 genome modifying equipment. ACS Nano 17, 16597–16606 (2023).
Shebanova, A. et al. Mobile uptake of phase-separating peptide coacervates. Adv. Sci. 11, e2402652 (2024).
Solar, Y. et al. Section-separating peptide coacervates with programmable materials properties for common intracellular supply of macromolecules. Nat. Commun. 15, 10094 (2024).
Abbas, M., Lipiński, W. P., Nakashima, Okay. Okay., Huck, W. T. S. & Spruijt, E. A brief peptide synthon for liquid–liquid section separation. Nat. Chem. 13, 1046–1054 (2021).
Nichols, M. Okay. et al. Fabrication of micropatterned dipeptide hydrogels by acoustic trapping of stimulus-responsive coacervate droplets. Small 14, e1800739 (2018).
Capasso Palmiero, U. et al. Programmable zwitterionic droplets as biomolecular sorters and mannequin of membraneless organelles. Adv. Mater. 34, e2104837 (2022).
Baruch Leshem, A. et al. Biomolecular condensates fashioned by designer minimalistic peptides. Nat. Commun. 14, 421 (2023).
Nakashima, Okay. Okay., Vibhute, M. A. & Spruijt, E. Biomolecular chemistry in liquid section separated compartments. Entrance. Mol. Biosci. 6, 21 (2019).
Dai, Y., You, L. & Chilkoti, A. Engineering artificial biomolecular condensates. Nat. Rev. Bioeng. 1, 466–480 (2023).
Lim, S. & Clark, D. S. Section-separated biomolecular condensates for biocatalysis. Developments Biotechnol. 42, 496–509 (2024).
Chatterjee, A., Reja, A., Pal, S. & Das, D. Methods chemistry of peptide-assemblies for biochemical transformations. Chem. Soc. Rev. 51, 3047–3070 (2022).
Donau, C. et al. Lively coacervate droplets as a mannequin for membraneless organelles and protocells. Nat. Commun. 11, 5167 (2020).
Liu, W., Lupfer, C., Samanta, A., Sarkar, A. & Walther, A. Switchable hydrophobic pockets in DNA protocells improve chemical conversion. J. Am. Chem. Soc. 145, 7090–7094 (2023).
Chen, Y. et al. Building of coacervate-in-coacervate multi-compartment protocells for spatial group of enzymatic reactions. Chem. Sci. 11, 8617–8625 (2020).
Liu, S. et al. Enzyme-mediated nitric oxide manufacturing in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat. Chem. 12, 1165–1173 (2020).
People who smoke, I. B. A., Visser, B. S., Slootbeek, A. D., Huck, W. T. S. & Spruijt, E. How droplets can speed up reactions—coacervate protocells as catalytic microcompartments. Acc. Chem. Res. 57, 1885–1895 (2024).
Reis, D. Q. P. et al. Catalytic peptide-based coacervates for enhanced operate by structural group and substrate specificity. Nat. Commun. 15, 9368 (2024).
Shin, Y. et al. Spatiotemporal management of intracellular section transitions utilizing light-activated optoDroplets. Cell 168, 159–171.e14 (2017).
Akahoshi, Y. et al. Section-separation propensity of non-ionic amino acids in peptide-based advanced coacervation techniques. Biomacromolecules 24, 704–713 (2023).
Shorter, J. Liquidizing FUS by way of prion-like area phosphorylation. EMBO J. 36, 2925–2927 (2017).
Schuster, B. S. et al. Figuring out sequence perturbations to an intrinsically disordered protein that decide its phase-separation conduct. Proc. Natl Acad. Sci. USA 117, 11421–11431 (2020).
Alshareedah, I., Moosa, M. M., Pham, M., Potoyan, D. A. & Banerjee, P. R. Programmable viscoelasticity in protein–RNA condensates with disordered sticker–spacer polypeptides. Nat. Commun. 12, 6620 (2021).
Ryan, V. H. et al. Tyrosine phosphorylation regulates hnRNPA2 granule protein partitioning and reduces neurodegeneration. EMBO J. 40, e105001 (2021).
Martin, E. W. et al. A multi-step nucleation course of determines the kinetics of prion-like area section separation. Nat. Commun. 12, 4513 (2021).
Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Bodily ideas underlying the advanced biology of intracellular section transitions. Annu. Rev. Biophys. 49, 107–133 (2020).
Udono, H., Gong, J., Sato, Y. & Takinoue, M. DNA droplets: clever, dynamic fluid. Adv. Biol. 7, e2200180 (2023).
Samanta, A., Baranda Pellejero, L., Masukawa, M. & Walther, A. DNA-empowered artificial cells as minimalistic life types. Nat. Rev. Chem. 8, 454–470 (2024).
Forman-Kay, J. D., Ditlev, J. A., Nosella, M. L. & Lee, H. O. What are the distinguishing options and measurement necessities of biomolecular condensates and their implications for RNA-containing condensates?. RNA 28, 36–47 (2022).
Xue, Z. et al. Focused RNA condensation in residing cells by way of genetically encodable triplet repeat tags. Nucleic Acids Res. 51, 8337–8347 (2023).
Vieregg, J. R. et al. Oligonucleotide–peptide complexes: section management by hybridization. J. Am. Chem. Soc. 140, 1632–1638 (2018).
Martin, N. et al. Photoswitchable section separation and oligonucleotide trafficking in DNA coacervate microdroplets. Angew. Chem. Int. Ed. 58, 14594–14598 (2019).
Schoenmakers, L. L. J. et al. In vitro transcription–translation in a man-made biomolecular condensate. ACS Synth. Biol. 12, 2004–2014 (2023).
Lu, T. & Spruijt, E. Multiphase advanced coacervate droplets. J. Am. Chem. Soc. 142, 2905–2914 (2020).
Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology utilizing strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).
Sato, Y., Sakamoto, T. & Takinoue, M. Sequence-based engineering of dynamic features of micrometer-sized DNA droplets. Sci. Adv. 6, eaba3471 (2020).
Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).
Merindol, R., Loescher, S., Samanta, A. & Walther, A. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nat. Nanotechnol. 13, 730–738 (2018).
Heidenreich, M. et al. Designer protein assemblies with tunable section diagrams in residing cells. Nat. Chem. Biol. 16, 939–945 (2020).
Yeong, V., Werth, E. G., Brown, L. M. & Obermeyer, A. C. Formation of biomolecular condensates in micro organism by tuning protein electrostatics. ACS Cent. Sci. 6, 2301–2310 (2020).
Peeples, W. & Rosen, M. Okay. Mechanistic dissection of elevated enzymatic price in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).
Li, P. et al. Section transitions within the meeting of multivalent signalling proteins. Nature 483, 336–340 (2012).
Lee, M. et al. Optogenetic management of mRNA condensation reveals an intimate hyperlink between condensate materials properties and features. Nat. Commun. 15, 3216 (2024).
Kapelner, R. A. & Obermeyer, A. C. Ionic polypeptide tags for protein section separation. Chem. Sci. 10, 2700–2707 (2019).
Faltova, L., Küffner, A. M., Hondele, M., Weis, Okay. & Arosio, P. Multifunctional protein supplies and microreactors utilizing low complexity domains as molecular adhesives. ACS Nano 12, 9991–9999 (2018).
McCall, P. M. et al. A label-free technique for measuring the composition of multicomponent biomolecular condensates. Nat. Chem. https://doi.org/10.1038/s41557-025-01928-3 (2025).
Hong, Y. et al. Label-free quantitative evaluation of coacervates by way of 3D section imaging. Adv. Choose. Mater. 9, 2100697 (2021).
Küffner, A. M., et al. Acceleration of an enzymatic response in liquid section separated compartments primarily based on intrinsically disordered protein domains. ChemSystemsChem 2, e2000001 (2020).
Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 11, 4628 (2020).
Blocher McTigue, W. C. & Perry, S. L. Design guidelines for encapsulating proteins into advanced coacervates. Delicate Matter 15, 3089–3103 (2019).
Perry, S. L. et al. Chirality-selected section behaviour in ionic polypeptide complexes. Nat. Commun. 6, 6052 (2015).
Guo, W. et al. Tuning materials states and functionalities of G-quadruplex-modulated RNA–peptide condensates. J. Am. Chem. Soc. 145, 2375–2385 (2023).
Love, C. et al. Reversible pH-responsive coacervate formation in lipid vesicles prompts dormant enzymatic reactions. Angew. Chem. Int. Ed. 59, 5950–5957 (2020).
Blocher McTigue, W. C. & Perry, S. L. Protein encapsulation utilizing advanced coacervates: what nature has to show us. Small 16, e1907671 (2020).
Abbas, M., Lipiński, W. P., Wang, J. & Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 50, 3690–3705 (2021).
Roberts, S., Dzuricky, M. & Chilkoti, A. Elastin-like polypeptides as fashions of intrinsically disordered proteins. FEBS Lett. 589, 2477–2486 (2015).
Zhao, H., Ibrahimova, V., Garanger, E. & Lecommandoux, S. Dynamic spatial formation and distribution of intrinsically disordered protein droplets in macromolecularly crowded protocells. Angew. Chem. Int. Ed. 59, 11028–11036 (2020).
Xiao, L. et al. A synthetic phase-transitional underwater bioglue with sturdy and switchable adhesion efficiency. Angew. Chem. Int. Ed. 60, 12082–12089 (2021).
Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates utilizing synthetic disordered proteins. Nat. Chem. 12, 814–825 (2020).
Renner-Rao, M. et al. Mussels fabricate porous glues by way of multiphase liquid–liquid section separation of multiprotein condensates. ACS Nano 16, 20877–20890 (2022).
Deepankumar, Okay. et al. Liquid–liquid section separation of the inexperienced mussel adhesive protein Pvfp-5 is regulated by the post-translated Dopa amino acid. Adv. Mater. 34, e2103828 (2022).
Jehle, F. et al. Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases. Nat. Commun. 11, 862 (2020).
Ibáñez-Fonseca, A. et al. Affect of the thermodynamic and kinetic management of self-assembly on the microstructure evolution of silk-elastin-like recombinamer hydrogels. Small 16, e2001244 (2020).
Roberts, S. et al. Complicated microparticle architectures from stimuli-responsive intrinsically disordered proteins. Nat. Commun. 11, 1342 (2020).
Roberts, S. et al. Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat. Mater. 17, 1154–1163 (2018).
Ramšak, M. et al. Programmable de novo designed coiled coil-mediated section separation in mammalian cells. Nat. Commun. 14, 7973 (2023).
Gabryelczyk, B. et al. Hydrogen bond steerage and fragrant stacking drive liquid–liquid section separation of intrinsically disordered histidine-rich peptides. Nat. Commun. 10, 5465 (2019).
Sementa, D. et al. Sequence-tunable section conduct and intrinsic fluorescence in dynamically interacting peptides. Angew. Chem. Int. Ed. 62, e202311479 (2023).
Aumiller, W. M. & Keating, C. D. Phosphorylation-mediated RNA/peptide advanced coacervation as a mannequin for intracellular liquid organelles. Nat. Chem. 8, 129–137 (2016).
Ukmar-Godec, T. et al. Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat. Commun. 10, 2909 (2019).
Katzir, I., Haimov, E. & Lampel, A. Tuning the dynamics of viral-factories-inspired compartments fashioned by peptide–RNA liquid–liquid section separation. Adv. Mater. 34, e2206371 (2022).
Jain, A., et al. Tractable molecular adaptation patterns in a designed advanced peptide system. Chem 8, 1894–1905 (2022).
Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant section transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int. Ed. 56, 11354–11359 (2017).
Netzer, A., Baruch Leshem, A., Veretnik, S., Edelstein, I. & Lampel, A. Regulation of peptide liquid–liquid section separation by fragrant amino acid composition. Small 20, e2401665 (2024).
Adler-Abramovich, L. & Gazit, E. The bodily properties of supramolecular peptide assemblies: from constructing block affiliation to technological functions. Chem. Soc. Rev. 43, 6881–6893 (2014).
Levin, A., et al. Biomimetic peptide self-assembly for purposeful supplies. Nat. Rev. Chem. 4, 615–634 (2020).
Lampel, A., Ulijn, R. V. & Tuttle, T. Guiding ideas for peptide nanotechnology by directed discovery. Chem. Soc. Rev. 47, 3737–3758 (2018).
Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2016).
Aida, T., Meijer, E. W. & Stupp, S. I. Useful supramolecular polymers. Science 335, 813–817 (2012).
Lampel, A. Biology-inspired supramolecular peptide techniques. Chem 6, 1222–1236 (2020).
Saha, B., Chatterjee, A., Reja, A. & Das, D. Condensates of quick peptides and ATP for the temporal regulation of cytochrome c exercise. Chem. Commun. 55, 14194–14197 (2019).
Zhou, L. et al. Multiphasic condensates fashioned with mono-component of tetrapeptides by way of section separation. Nat. Commun. 16, 2706 (2025).
Krishna Kumar, R., Harniman, R. L., Patil, A. J. & Mann, S. Self-transformation and structural reconfiguration in coacervate-based protocells. Chem. Sci. 7, 5879–5887 (2016).
Shen, Y. et al. Biomolecular condensates bear a generic shear-mediated liquid-to-solid transition. Nat. Nanotechnol. 15, 841–847 (2020).
Yuan, C. et al. Nucleation and development of amino acid and peptide supramolecular polymers by liquid–liquid section separation. Angew. Chem. Int. Ed. 58, 18116–18123 (2019).
Kubota, R., Torigoe, S. & Hamachi, I. Temporal stimulus patterns drive differentiation of an artificial dipeptide-based coacervate. J. Am. Chem. Soc. 144, 15155–15164 (2022).
Cao, S. et al. Dipeptide coacervates as synthetic membraneless organelles for bioorthogonal catalysis. Nat. Commun. 15, 39 (2024).
Cao, S. et al. Binary peptide coacervates as an lively mannequin for biomolecular condensates. Nat. Commun. 16, 2407 (2025).
Wang, J. et al. A molecular grammar governing the driving forces for section separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).
Shakya, A. & King, J. T. DNA local-flexibility-dependent meeting of phase-separated liquid droplets. Biophys. J. 115, 1840–1847 (2018).
Pesce, D., Wu, Y., Kolbe, A., Weil, T. & Herrmann, A. Enhancing mobile uptake of GFP by way of unfolded supercharged protein tags. Biomaterials 34, 4360–4367 (2013).
Zhang, Y. et al. Osmotic-induced reconfiguration and activation in membranized coacervate-based protocells. J. Am. Chem. Soc. 145, 10396–10403 (2023).
Lallemang, M. et al. Hierarchical mechanical transduction of precision-engineered DNA hydrogels with sacrificial bonds. ACS Appl. Mater. Interfaces 15, 59714–59721 (2023).
Biffi, S. et al. Section conduct and demanding activated dynamics of limited-valence DNA nanostars. Proc. Natl Acad. Sci. USA 110, 15633–15637 (2013).
Um, S. H. et al. Enzyme-catalysed meeting of DNA hydrogel. Nat. Mater. 5, 797–801 (2006).
Do, S., Lee, C., Lee, T., Kim, D.-N. & Shin, Y. Engineering DNA-based artificial condensates with programmable materials properties, compositions, and functionalities. Sci. Adv. 8, eabj1771 (2022).
Zhao, Q.-H., Cao, F.-H., Luo, Z.-H., Huck, W. T. S. & Deng, N.-N. Photoswitchable molecular communication between programmable DNA-based synthetic membraneless organelles. Angew. Chem. Int. Ed. 61, e202117500 (2022).
Deng, J. & Walther, A. Programmable and chemically fueled DNA coacervates by transient liquid–liquid section separation. Chem 6, 3329–3343 (2020).
Jeon, B.-J. et al. Salt-dependent properties of a coacervate-like, self-assembled DNA liquid. Delicate Matter 14, 7009–7015 (2018).
Liu, W., Samanta, A., Deng, J., Akintayo, C. O. & Walther, A. Mechanistic insights into the section separation conduct and pathway-directed data change in all-DNA droplets. Angew. Chem. Int. Ed. 61, e202208951 (2022).
Jeon, B.-J., Nguyen, D. T. & Saleh, O. A. Sequence-controlled adhesion and microemulsification in a two-phase system of DNA liquid droplets. J. Phys. Chem. B 124, 8888–8895 (2020).
Leathers, A. et al. Response–diffusion patterning of DNA-based synthetic cells. J. Am. Chem. Soc. 144, 17468–17476 (2022).
Agarwal, S., Osmanovic, D., Dizani, M., Klocke, M. A. & Franco, E. Dynamic management of DNA condensation. Nat. Commun. 15, 1915 (2024).
Maruyama, T., Gong, J. & Takinoue, M. Temporally managed multistep division of DNA droplets for dynamic synthetic cells. Nat. Commun. 15, 7397 (2024).
Fabrini, G., Minard, A., Brady, R. A., Di Antonio, M. & Di Michele, L. Cation-responsive and photocleavable hydrogels from noncanonical amphiphilic DNA nanostructures. Nano Lett. 22, 602–611 (2022).
Gong, J., Tsumura, N., Sato, Y. & Takinoue, M. Computational DNA droplets recognizing miRNA sequence inputs primarily based on liquid–liquid section separation. Adv. Funct. Mater. 32, 2202322 (2022).
Stewart, J. M. et al. Modular RNA motifs for orthogonal section separated compartments. Nat. Commun. 15, 6244 (2024).
Wadsworth, G. M. et al. RNAs bear section transitions with decrease essential answer temperatures. Nat. Chem. 15, 1693–1704 (2023).
Jain, A. & Vale, R. D. RNA section transitions in repeat enlargement problems. Nature 546, 243–247 (2017).
Guo, H. et al. Spatial engineering of E. coli with addressable phase-separated RNAs. Cell 185, 3823–3837.e23 (2022).
Fabrini, G. et al. Co-transcriptional manufacturing of programmable RNA condensates and artificial organelles. Nat. Nanotechnol. 19, 1665–1673 (2024).
Douliez, J.-P. et al. Catanionic coacervate droplets as a surfactant-based membrane-free protocell mannequin. Angew. Chem. Int. Ed. 56, 13689–13693 (2017).
Schuster, B. S. et al. Controllable protein section separation and modular recruitment to kind responsive membraneless organelles. Nat. Commun. 9, 2985 (2018).
Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel method to drug discovery. Nat. Rev. Drug Discov. 21, 841–862 (2022).
Harris, R., Berman, N. & Lampel, A. Coacervates as enzymatic microreactors. Chem. Soc. Rev. 54, 4183–4199 (2025).
Capasso Palmiero, U., Küffner, A. M., Krumeich, F., Faltova, L. & Arosio, P. Adaptive chemoenzymatic microreactors composed of inorganic nanoparticles and bioinspired intrinsically disordered proteins. Angew. Chem. Int. Ed. 59, 8138–8142 (2020).
Guan, M. et al. Incorporation and meeting of a light-emitting enzymatic response into mannequin protein condensates. Biochemistry 60, 3137–3151 (2021).
Sang, D. et al. Condensed-phase signaling can broaden kinase specificity and reply to macromolecular crowding. Mol. Cell 82, 3693–3711.e10 (2022).
Mason, A. F., Buddingh’, B. C., Williams, D. S. & van Hest, J. C. M. Hierarchical self-assembly of a copolymer-stabilized coacervate protocell. J. Am. Chem. Soc. 139, 17309–17312 (2017).
Nakashima, Okay. Okay., van Haren, M. H. I., André, A. A. M., Robu, I. & Spruijt, E. Lively coacervate droplets are protocells that develop and resist Ostwald ripening. Nat. Commun. 12, 3819 (2021).
Beneyton, T., Love, C., Girault, M., Tang, T. -Y. D. & Baret, J. Excessive-throughput synthesis and screening of purposeful coacervates utilizing microfluidics. ChemSystemsChem 2, e2000022 (2020).
Lim, Z. W., Ping, Y. & Miserez, A. Glucose-responsive peptide coacervates with excessive encapsulation effectivity for managed launch of insulin. Bioconjugate Chem. 29, 2176–2180 (2018).
Abbas, M., Legislation, J. O., Grellscheid, S. N., Huck, W. T. S. & Spruijt, E. Peptide-based coacervate-core vesicles with semipermeable membranes. Adv. Mater. 34, e2202913 (2022).
Jacobs, M. I., Jira, E. R. & Schroeder, C. M. Understanding how coacervates drive reversible small molecule reactions to advertise molecular complexity. Langmuir 37, 14323–14335 (2021).
Wee, W. A., Sugiyama, H. & Park, S. Photoswitchable single-stranded DNA-peptide coacervate formation as a dynamic system for response management. iScience 24, 103455 (2021).
People who smoke, I. B. A., van Haren, M. H. I., Lu, T. & Spruijt, E. Complicated coacervation and compartmentalized conversion of prebiotically related metabolites. ChemSystemsChem 4, e202200004 (2022).
Wang, J., Abbas, M., Wang, J. & Spruijt, E. Selective amide bond formation in redox-active coacervate protocells. Nat. Commun. 14, 8492 (2023).
Mu, W. et al. Superstructural ordering in self-sorting coacervate-based protocell networks. Nat. Chem. 16, 158–167 (2024).
Cho, E. & Lu, Y. Compartmentalizing cell-free techniques: towards creating life-like synthetic cells and past. ACS Synth. Biol. 9, 2881–2901 (2020).
Lin, Z., Beneyton, T., Baret, J.-C. & Martin, N. Coacervate droplets for artificial cells. Small Strategies 7, e2300496 (2023).
Sokolova, E. et al. Enhanced transcription charges in membrane-free protocells fashioned by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).
Tang, T. Y. D., van Swaay, D., deMello, A., Anderson, J. L. R. & Mann, S. In vitro gene expression inside membrane-free coacervate protocells. Chem. Commun. 51, 11429–11432 (2015).
Meyer, M. O., Yamagami, R., Choi, S., Keating, C. D. & Bevilacqua, P. C. RNA folding research inside peptide-rich droplets reveal roles of modified nucleosides on the origin of life. Preprint at BioRxiv https://doi.org/10.1101/2023.02.27.530264 (2023).
Li, J. et al. Section separation of DNA-encoded synthetic cells boosts sign amplification for biosensing. Angew. Chem. 62, e202306691 (2023).
Yang, S. et al. AIEgen-conjugated phase-separating peptides illuminate intracellular RNA by coacervation-induced emission. ACS Nano 17, 8195–8203 (2023).
Gaash, D. et al. Modulating the optical properties of carbon dots by peptide condensates. Chem. Commun. 59, 12298–12301 (2023).
Netzer, A., Katzir, I., Baruch Leshem, A., Weitman, M. & Lampel, A. Emergent properties of melanin-inspired peptide/RNA condensates. Proc. Natl Acad. Sci. USA 120, e2310569120 (2023).
Hwang, D. S., Waite, J. H. & Tirrell, M. Promotion of osteoblast proliferation on advanced coacervation-based hyaluronic acid–recombinant mussel adhesive protein coatings on titanium. Biomaterials 31, 1080–1084 (2010).
Chen, Y. et al. Self-immobilization of coacervate droplets by enzyme-mediated hydrogelation. Chem. Commun. 57, 5438–5441 (2021).
Liu, Y., Wang, Okay. & Zhou, P. Microscopic construction, viscoelastic behaviour and 3D printing potential of milk protein focus–hydrocolloid advanced coacervates. Int. J. Meals Sci. Technol. 57, 4422–4431 (2022).
Kim, J.-M., Heo, T.-Y. & Choi, S.-H. Construction and rest dynamics for advanced coacervate hydrogels fashioned by ABA triblock copolymers. Macromolecules 53, 9234–9243 (2020).
Wu, B. et al. Chemical sign regulated injectable coacervate hydrogels. Chem. Sci. 14, 1512–1523 (2023).
Wang, H. et al. Fabrication of channeled scaffolds by polyelectrolyte advanced (PEC) printed sacrificial templates for tissue formation. Bioact. Mater. 17, 261–275 (2022).
Khoonkari, M. et al. Bioinspired processing: advanced coacervates as versatile inks for 3D bioprinting. Adv. Mater. 35, e2210769 (2023).
Rising, A. & Harrington, M. J. Organic supplies processing: time-tested tips for sustainable fiber fabrication. Chem. Rev. 123, 2155–2199 (2023).
Pinnaratip, R., Bhuiyan, M. S. A., Meyers, Okay., Rajachar, R. M. & Lee, B. P. Multifunctional biomedical adhesives. Adv. Healthc. Mater. 8, e1801568 (2019).
Kaur, S., Weerasekare, G. M. & Stewart, R. J. Multiphase adhesive coacervates impressed by the sandcastle worm. ACS Appl. Mater. Interfaces 3, 941–944 (2011).
Wei, W. et al. A mussel-derived one element adhesive coacervate. Acta Biomater. 10, 1663–1670 (2014).
Wei, W. et al. An underwater surface-drying peptide impressed by a mussel adhesive protein. Adv. Funct. Mater. 26, 3496–3507 (2016).
Ahn, B. Okay. et al. Excessive-performance mussel-inspired adhesives of diminished complexity. Nat. Commun. 6, 8663 (2015).
Solar, J. et al. Genetically engineered polypeptide adhesive coacervates for surgical functions. Angew. Chem. Int. Ed. 60, 23687–23694 (2021).
Ma, Q. et al. Cell-inspired all-aqueous microfluidics: from intracellular liquid–liquid section separation towards superior biomaterials. Adv. Sci. 7, 1903359 (2020).
Arter, W. E. et al. Biomolecular condensate section diagrams with a combinatorial microdroplet platform. Nat. Commun. 13, 7845 (2022).
Erkamp, N. A., Qi, R., Welsh, T. J. & Knowles, T. P. J. Microfluidics for multiscale research of biomolecular condensates. Lab Chip 23, 9–24 (2022).
Villois, A. et al. Droplet microfluidics for the label-free extraction of full section diagrams and kinetics of liquid–liquid section separation in finite volumes. Small 18, e2202606 (2022).
Linsenmeier, M. et al. Dynamics of artificial membraneless organelles in microfluidic droplets. Angew. Chem. Int. Ed. 58, 14489–14494 (2019).
Zeng, M. et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174, 1172–1187.e16 (2018).
Quiroz, F. G. et al. Liquid–liquid section separation drives pores and skin barrier formation. Science 367, eaax9554 (2020).
Alberti, S., Gladfelter, A. & Mittag, T. Concerns and challenges in finding out liquid–liquid section separation and biomolecular condensates. Cell 176, 419–434 (2019).
Patel, A. et al. A liquid-to-solid section transition of the ALS protein FUS accelerated by illness mutation. Cell 162, 1066–1077 (2015).
Kriebisch, C. M. E. et al. Template-based copying in chemically fuelled dynamic combinatorial libraries. Nat. Chem. 16, 1240–1249 (2024).
Gong, H., Sakaguchi, Y., Suzuki, T., Yanagisawa, M. & Aida, T. Close to-identical macromolecules spontaneously partition into concentric circles. Nature 636, 92–99 (2024).
Bergmann, A. M. et al. Liquid spherical shells are a non-equilibrium regular state of lively droplets. Nat. Commun. 14, 6552 (2023).
Boeynaems, S. et al. Spontaneous driving forces give rise to protein–RNA condensates with coexisting phases and sophisticated materials properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).
Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).
Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies. Science 378, 56–61 (2022).
Waite, J. H. Mussel adhesion—important footwork. J. Exp. Biol. 220, 517–530 (2017).
Lu, T. et al. Endocytosis of coacervates into liposomes. J. Am. Chem. Soc. 144, 13451–13455 (2022).
