14.9 C
Canberra
Saturday, January 3, 2026

Design and functions of artificial biomolecular condensates


  • Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular section transitions. Nat. Phys. 11, 899–904 (2015).

    Article 

    Google Scholar
     

  • Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. Okay. Biomolecular condensates: organizers of mobile biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farag, M., Borcherds, W. M., Bremer, A., Mittag, T. & Pappu, R. V. Section separation of protein mixtures is pushed by the interaction of homotypic and heterotypic interactions. Nat. Commun. 14, 5527 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kar, M. et al. Section-separating RNA-binding proteins kind heterogeneous distributions of clusters in subsaturated options. Proc. Natl Acad. Sci. USA 119, e2202222119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, E. W. et al. Valence and patterning of fragrant residues decide the section conduct of prion-like domains. Science 367, 694–699 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J., Spruijt, E., Miserez, A. & Langer, R. Peptide-based liquid droplets as rising supply autos. Nat. Rev. Mater. 8, 139–141 (2023).

    Article 

    Google Scholar
     

  • Lu, T., Hu, X., van Haren, M. H. I., Spruijt, E. & Huck, W. T. S. Construction–property relationships governing membrane-penetrating behaviour of advanced coacervates. Small 19, e2303138 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Solar, Y. et al. Section-separating peptides for direct cytosolic supply and redox-activated launch of macromolecular therapeutics. Nat. Chem. 14, 274–283 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Solar, Y. et al. Redox-responsive phase-separating peptide as a common supply automobile for CRISPR/Cas9 genome modifying equipment. ACS Nano 17, 16597–16606 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Shebanova, A. et al. Mobile uptake of phase-separating peptide coacervates. Adv. Sci. 11, e2402652 (2024).

    Article 

    Google Scholar
     

  • Solar, Y. et al. Section-separating peptide coacervates with programmable materials properties for common intracellular supply of macromolecules. Nat. Commun. 15, 10094 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbas, M., Lipiński, W. P., Nakashima, Okay. Okay., Huck, W. T. S. & Spruijt, E. A brief peptide synthon for liquid–liquid section separation. Nat. Chem. 13, 1046–1054 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Nichols, M. Okay. et al. Fabrication of micropatterned dipeptide hydrogels by acoustic trapping of stimulus-responsive coacervate droplets. Small 14, e1800739 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Capasso Palmiero, U. et al. Programmable zwitterionic droplets as biomolecular sorters and mannequin of membraneless organelles. Adv. Mater. 34, e2104837 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Baruch Leshem, A. et al. Biomolecular condensates fashioned by designer minimalistic peptides. Nat. Commun. 14, 421 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakashima, Okay. Okay., Vibhute, M. A. & Spruijt, E. Biomolecular chemistry in liquid section separated compartments. Entrance. Mol. Biosci. 6, 21 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, Y., You, L. & Chilkoti, A. Engineering artificial biomolecular condensates. Nat. Rev. Bioeng. 1, 466–480 (2023).

  • Lim, S. & Clark, D. S. Section-separated biomolecular condensates for biocatalysis. Developments Biotechnol. 42, 496–509 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Chatterjee, A., Reja, A., Pal, S. & Das, D. Methods chemistry of peptide-assemblies for biochemical transformations. Chem. Soc. Rev. 51, 3047–3070 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Donau, C. et al. Lively coacervate droplets as a mannequin for membraneless organelles and protocells. Nat. Commun. 11, 5167 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W., Lupfer, C., Samanta, A., Sarkar, A. & Walther, A. Switchable hydrophobic pockets in DNA protocells improve chemical conversion. J. Am. Chem. Soc. 145, 7090–7094 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Building of coacervate-in-coacervate multi-compartment protocells for spatial group of enzymatic reactions. Chem. Sci. 11, 8617–8625 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Enzyme-mediated nitric oxide manufacturing in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat. Chem. 12, 1165–1173 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • People who smoke, I. B. A., Visser, B. S., Slootbeek, A. D., Huck, W. T. S. & Spruijt, E. How droplets can speed up reactions—coacervate protocells as catalytic microcompartments. Acc. Chem. Res. 57, 1885–1895 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reis, D. Q. P. et al. Catalytic peptide-based coacervates for enhanced operate by structural group and substrate specificity. Nat. Commun. 15, 9368 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, Y. et al. Spatiotemporal management of intracellular section transitions utilizing light-activated optoDroplets. Cell 168, 159–171.e14 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Akahoshi, Y. et al. Section-separation propensity of non-ionic amino acids in peptide-based advanced coacervation techniques. Biomacromolecules 24, 704–713 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Shorter, J. Liquidizing FUS by way of prion-like area phosphorylation. EMBO J. 36, 2925–2927 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuster, B. S. et al. Figuring out sequence perturbations to an intrinsically disordered protein that decide its phase-separation conduct. Proc. Natl Acad. Sci. USA 117, 11421–11431 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alshareedah, I., Moosa, M. M., Pham, M., Potoyan, D. A. & Banerjee, P. R. Programmable viscoelasticity in protein–RNA condensates with disordered sticker–spacer polypeptides. Nat. Commun. 12, 6620 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryan, V. H. et al. Tyrosine phosphorylation regulates hnRNPA2 granule protein partitioning and reduces neurodegeneration. EMBO J. 40, e105001 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, E. W. et al. A multi-step nucleation course of determines the kinetics of prion-like area section separation. Nat. Commun. 12, 4513 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Bodily ideas underlying the advanced biology of intracellular section transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Udono, H., Gong, J., Sato, Y. & Takinoue, M. DNA droplets: clever, dynamic fluid. Adv. Biol. 7, e2200180 (2023).

    Article 

    Google Scholar
     

  • Samanta, A., Baranda Pellejero, L., Masukawa, M. & Walther, A. DNA-empowered artificial cells as minimalistic life types. Nat. Rev. Chem. 8, 454–470 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Forman-Kay, J. D., Ditlev, J. A., Nosella, M. L. & Lee, H. O. What are the distinguishing options and measurement necessities of biomolecular condensates and their implications for RNA-containing condensates?. RNA 28, 36–47 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, Z. et al. Focused RNA condensation in residing cells by way of genetically encodable triplet repeat tags. Nucleic Acids Res. 51, 8337–8347 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vieregg, J. R. et al. Oligonucleotide–peptide complexes: section management by hybridization. J. Am. Chem. Soc. 140, 1632–1638 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, N. et al. Photoswitchable section separation and oligonucleotide trafficking in DNA coacervate microdroplets. Angew. Chem. Int. Ed. 58, 14594–14598 (2019).

    Article 

    Google Scholar
     

  • Schoenmakers, L. L. J. et al. In vitro transcription–translation in a man-made biomolecular condensate. ACS Synth. Biol. 12, 2004–2014 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, T. & Spruijt, E. Multiphase advanced coacervate droplets. J. Am. Chem. Soc. 142, 2905–2914 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology utilizing strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Sato, Y., Sakamoto, T. & Takinoue, M. Sequence-based engineering of dynamic features of micrometer-sized DNA droplets. Sci. Adv. 6, eaba3471 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article 

    Google Scholar
     

  • Merindol, R., Loescher, S., Samanta, A. & Walther, A. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nat. Nanotechnol. 13, 730–738 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heidenreich, M. et al. Designer protein assemblies with tunable section diagrams in residing cells. Nat. Chem. Biol. 16, 939–945 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yeong, V., Werth, E. G., Brown, L. M. & Obermeyer, A. C. Formation of biomolecular condensates in micro organism by tuning protein electrostatics. ACS Cent. Sci. 6, 2301–2310 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peeples, W. & Rosen, M. Okay. Mechanistic dissection of elevated enzymatic price in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, P. et al. Section transitions within the meeting of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M. et al. Optogenetic management of mRNA condensation reveals an intimate hyperlink between condensate materials properties and features. Nat. Commun. 15, 3216 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapelner, R. A. & Obermeyer, A. C. Ionic polypeptide tags for protein section separation. Chem. Sci. 10, 2700–2707 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faltova, L., Küffner, A. M., Hondele, M., Weis, Okay. & Arosio, P. Multifunctional protein supplies and microreactors utilizing low complexity domains as molecular adhesives. ACS Nano 12, 9991–9999 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • McCall, P. M. et al. A label-free technique for measuring the composition of multicomponent biomolecular condensates. Nat. Chem. https://doi.org/10.1038/s41557-025-01928-3 (2025).

  • Hong, Y. et al. Label-free quantitative evaluation of coacervates by way of 3D section imaging. Adv. Choose. Mater. 9, 2100697 (2021).

    Article 

    Google Scholar
     

  • Küffner, A. M., et al. Acceleration of an enzymatic response in liquid section separated compartments primarily based on intrinsically disordered protein domains. ChemSystemsChem 2, e2000001 (2020).

    Article 

    Google Scholar
     

  • Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 11, 4628 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blocher McTigue, W. C. & Perry, S. L. Design guidelines for encapsulating proteins into advanced coacervates. Delicate Matter 15, 3089–3103 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Perry, S. L. et al. Chirality-selected section behaviour in ionic polypeptide complexes. Nat. Commun. 6, 6052 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, W. et al. Tuning materials states and functionalities of G-quadruplex-modulated RNA–peptide condensates. J. Am. Chem. Soc. 145, 2375–2385 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Love, C. et al. Reversible pH-responsive coacervate formation in lipid vesicles prompts dormant enzymatic reactions. Angew. Chem. Int. Ed. 59, 5950–5957 (2020).

    Article 

    Google Scholar
     

  • Blocher McTigue, W. C. & Perry, S. L. Protein encapsulation utilizing advanced coacervates: what nature has to show us. Small 16, e1907671 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Abbas, M., Lipiński, W. P., Wang, J. & Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 50, 3690–3705 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Roberts, S., Dzuricky, M. & Chilkoti, A. Elastin-like polypeptides as fashions of intrinsically disordered proteins. FEBS Lett. 589, 2477–2486 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, H., Ibrahimova, V., Garanger, E. & Lecommandoux, S. Dynamic spatial formation and distribution of intrinsically disordered protein droplets in macromolecularly crowded protocells. Angew. Chem. Int. Ed. 59, 11028–11036 (2020).

    Article 

    Google Scholar
     

  • Xiao, L. et al. A synthetic phase-transitional underwater bioglue with sturdy and switchable adhesion efficiency. Angew. Chem. Int. Ed. 60, 12082–12089 (2021).

    Article 

    Google Scholar
     

  • Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates utilizing synthetic disordered proteins. Nat. Chem. 12, 814–825 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renner-Rao, M. et al. Mussels fabricate porous glues by way of multiphase liquid–liquid section separation of multiprotein condensates. ACS Nano 16, 20877–20890 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Deepankumar, Okay. et al. Liquid–liquid section separation of the inexperienced mussel adhesive protein Pvfp-5 is regulated by the post-translated Dopa amino acid. Adv. Mater. 34, e2103828 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jehle, F. et al. Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases. Nat. Commun. 11, 862 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibáñez-Fonseca, A. et al. Affect of the thermodynamic and kinetic management of self-assembly on the microstructure evolution of silk-elastin-like recombinamer hydrogels. Small 16, e2001244 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Roberts, S. et al. Complicated microparticle architectures from stimuli-responsive intrinsically disordered proteins. Nat. Commun. 11, 1342 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, S. et al. Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat. Mater. 17, 1154–1163 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramšak, M. et al. Programmable de novo designed coiled coil-mediated section separation in mammalian cells. Nat. Commun. 14, 7973 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabryelczyk, B. et al. Hydrogen bond steerage and fragrant stacking drive liquid–liquid section separation of intrinsically disordered histidine-rich peptides. Nat. Commun. 10, 5465 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sementa, D. et al. Sequence-tunable section conduct and intrinsic fluorescence in dynamically interacting peptides. Angew. Chem. Int. Ed. 62, e202311479 (2023).

    Article 

    Google Scholar
     

  • Aumiller, W. M. & Keating, C. D. Phosphorylation-mediated RNA/peptide advanced coacervation as a mannequin for intracellular liquid organelles. Nat. Chem. 8, 129–137 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ukmar-Godec, T. et al. Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat. Commun. 10, 2909 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katzir, I., Haimov, E. & Lampel, A. Tuning the dynamics of viral-factories-inspired compartments fashioned by peptide–RNA liquid–liquid section separation. Adv. Mater. 34, e2206371 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jain, A., et al. Tractable molecular adaptation patterns in a designed advanced peptide system. Chem 8, 1894–1905 (2022).

    Article 

    Google Scholar
     

  • Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant section transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int. Ed. 56, 11354–11359 (2017).

    Article 

    Google Scholar
     

  • Netzer, A., Baruch Leshem, A., Veretnik, S., Edelstein, I. & Lampel, A. Regulation of peptide liquid–liquid section separation by fragrant amino acid composition. Small 20, e2401665 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Adler-Abramovich, L. & Gazit, E. The bodily properties of supramolecular peptide assemblies: from constructing block affiliation to technological functions. Chem. Soc. Rev. 43, 6881–6893 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Levin, A., et al. Biomimetic peptide self-assembly for purposeful supplies. Nat. Rev. Chem. 4, 615–634 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lampel, A., Ulijn, R. V. & Tuttle, T. Guiding ideas for peptide nanotechnology by directed discovery. Chem. Soc. Rev. 47, 3737–3758 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Aida, T., Meijer, E. W. & Stupp, S. I. Useful supramolecular polymers. Science 335, 813–817 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lampel, A. Biology-inspired supramolecular peptide techniques. Chem 6, 1222–1236 (2020).

    Article 

    Google Scholar
     

  • Saha, B., Chatterjee, A., Reja, A. & Das, D. Condensates of quick peptides and ATP for the temporal regulation of cytochrome c exercise. Chem. Commun. 55, 14194–14197 (2019).

    Article 

    Google Scholar
     

  • Zhou, L. et al. Multiphasic condensates fashioned with mono-component of tetrapeptides by way of section separation. Nat. Commun. 16, 2706 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishna Kumar, R., Harniman, R. L., Patil, A. J. & Mann, S. Self-transformation and structural reconfiguration in coacervate-based protocells. Chem. Sci. 7, 5879–5887 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Y. et al. Biomolecular condensates bear a generic shear-mediated liquid-to-solid transition. Nat. Nanotechnol. 15, 841–847 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, C. et al. Nucleation and development of amino acid and peptide supramolecular polymers by liquid–liquid section separation. Angew. Chem. Int. Ed. 58, 18116–18123 (2019).

    Article 

    Google Scholar
     

  • Kubota, R., Torigoe, S. & Hamachi, I. Temporal stimulus patterns drive differentiation of an artificial dipeptide-based coacervate. J. Am. Chem. Soc. 144, 15155–15164 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, S. et al. Dipeptide coacervates as synthetic membraneless organelles for bioorthogonal catalysis. Nat. Commun. 15, 39 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, S. et al. Binary peptide coacervates as an lively mannequin for biomolecular condensates. Nat. Commun. 16, 2407 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. A molecular grammar governing the driving forces for section separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shakya, A. & King, J. T. DNA local-flexibility-dependent meeting of phase-separated liquid droplets. Biophys. J. 115, 1840–1847 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pesce, D., Wu, Y., Kolbe, A., Weil, T. & Herrmann, A. Enhancing mobile uptake of GFP by way of unfolded supercharged protein tags. Biomaterials 34, 4360–4367 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Osmotic-induced reconfiguration and activation in membranized coacervate-based protocells. J. Am. Chem. Soc. 145, 10396–10403 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lallemang, M. et al. Hierarchical mechanical transduction of precision-engineered DNA hydrogels with sacrificial bonds. ACS Appl. Mater. Interfaces 15, 59714–59721 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Biffi, S. et al. Section conduct and demanding activated dynamics of limited-valence DNA nanostars. Proc. Natl Acad. Sci. USA 110, 15633–15637 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Um, S. H. et al. Enzyme-catalysed meeting of DNA hydrogel. Nat. Mater. 5, 797–801 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Do, S., Lee, C., Lee, T., Kim, D.-N. & Shin, Y. Engineering DNA-based artificial condensates with programmable materials properties, compositions, and functionalities. Sci. Adv. 8, eabj1771 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Q.-H., Cao, F.-H., Luo, Z.-H., Huck, W. T. S. & Deng, N.-N. Photoswitchable molecular communication between programmable DNA-based synthetic membraneless organelles. Angew. Chem. Int. Ed. 61, e202117500 (2022).

    Article 

    Google Scholar
     

  • Deng, J. & Walther, A. Programmable and chemically fueled DNA coacervates by transient liquid–liquid section separation. Chem 6, 3329–3343 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon, B.-J. et al. Salt-dependent properties of a coacervate-like, self-assembled DNA liquid. Delicate Matter 14, 7009–7015 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, W., Samanta, A., Deng, J., Akintayo, C. O. & Walther, A. Mechanistic insights into the section separation conduct and pathway-directed data change in all-DNA droplets. Angew. Chem. Int. Ed. 61, e202208951 (2022).

    Article 

    Google Scholar
     

  • Jeon, B.-J., Nguyen, D. T. & Saleh, O. A. Sequence-controlled adhesion and microemulsification in a two-phase system of DNA liquid droplets. J. Phys. Chem. B 124, 8888–8895 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Leathers, A. et al. Response–diffusion patterning of DNA-based synthetic cells. J. Am. Chem. Soc. 144, 17468–17476 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal, S., Osmanovic, D., Dizani, M., Klocke, M. A. & Franco, E. Dynamic management of DNA condensation. Nat. Commun. 15, 1915 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maruyama, T., Gong, J. & Takinoue, M. Temporally managed multistep division of DNA droplets for dynamic synthetic cells. Nat. Commun. 15, 7397 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fabrini, G., Minard, A., Brady, R. A., Di Antonio, M. & Di Michele, L. Cation-responsive and photocleavable hydrogels from noncanonical amphiphilic DNA nanostructures. Nano Lett. 22, 602–611 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, J., Tsumura, N., Sato, Y. & Takinoue, M. Computational DNA droplets recognizing miRNA sequence inputs primarily based on liquid–liquid section separation. Adv. Funct. Mater. 32, 2202322 (2022).

  • Stewart, J. M. et al. Modular RNA motifs for orthogonal section separated compartments. Nat. Commun. 15, 6244 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadsworth, G. M. et al. RNAs bear section transitions with decrease essential answer temperatures. Nat. Chem. 15, 1693–1704 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, A. & Vale, R. D. RNA section transitions in repeat enlargement problems. Nature 546, 243–247 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, H. et al. Spatial engineering of E. coli with addressable phase-separated RNAs. Cell 185, 3823–3837.e23 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Fabrini, G. et al. Co-transcriptional manufacturing of programmable RNA condensates and artificial organelles. Nat. Nanotechnol. 19, 1665–1673 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douliez, J.-P. et al. Catanionic coacervate droplets as a surfactant-based membrane-free protocell mannequin. Angew. Chem. Int. Ed. 56, 13689–13693 (2017).

    Article 

    Google Scholar
     

  • Schuster, B. S. et al. Controllable protein section separation and modular recruitment to kind responsive membraneless organelles. Nat. Commun. 9, 2985 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel method to drug discovery. Nat. Rev. Drug Discov. 21, 841–862 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, R., Berman, N. & Lampel, A. Coacervates as enzymatic microreactors. Chem. Soc. Rev. 54, 4183–4199 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capasso Palmiero, U., Küffner, A. M., Krumeich, F., Faltova, L. & Arosio, P. Adaptive chemoenzymatic microreactors composed of inorganic nanoparticles and bioinspired intrinsically disordered proteins. Angew. Chem. Int. Ed. 59, 8138–8142 (2020).

    Article 

    Google Scholar
     

  • Guan, M. et al. Incorporation and meeting of a light-emitting enzymatic response into mannequin protein condensates. Biochemistry 60, 3137–3151 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sang, D. et al. Condensed-phase signaling can broaden kinase specificity and reply to macromolecular crowding. Mol. Cell 82, 3693–3711.e10 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mason, A. F., Buddingh’, B. C., Williams, D. S. & van Hest, J. C. M. Hierarchical self-assembly of a copolymer-stabilized coacervate protocell. J. Am. Chem. Soc. 139, 17309–17312 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakashima, Okay. Okay., van Haren, M. H. I., André, A. A. M., Robu, I. & Spruijt, E. Lively coacervate droplets are protocells that develop and resist Ostwald ripening. Nat. Commun. 12, 3819 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beneyton, T., Love, C., Girault, M., Tang, T. -Y. D. & Baret, J. Excessive-throughput synthesis and screening of purposeful coacervates utilizing microfluidics. ChemSystemsChem 2, e2000022 (2020).

  • Lim, Z. W., Ping, Y. & Miserez, A. Glucose-responsive peptide coacervates with excessive encapsulation effectivity for managed launch of insulin. Bioconjugate Chem. 29, 2176–2180 (2018).

    Article 

    Google Scholar
     

  • Abbas, M., Legislation, J. O., Grellscheid, S. N., Huck, W. T. S. & Spruijt, E. Peptide-based coacervate-core vesicles with semipermeable membranes. Adv. Mater. 34, e2202913 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jacobs, M. I., Jira, E. R. & Schroeder, C. M. Understanding how coacervates drive reversible small molecule reactions to advertise molecular complexity. Langmuir 37, 14323–14335 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wee, W. A., Sugiyama, H. & Park, S. Photoswitchable single-stranded DNA-peptide coacervate formation as a dynamic system for response management. iScience 24, 103455 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • People who smoke, I. B. A., van Haren, M. H. I., Lu, T. & Spruijt, E. Complicated coacervation and compartmentalized conversion of prebiotically related metabolites. ChemSystemsChem 4, e202200004 (2022).

  • Wang, J., Abbas, M., Wang, J. & Spruijt, E. Selective amide bond formation in redox-active coacervate protocells. Nat. Commun. 14, 8492 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mu, W. et al. Superstructural ordering in self-sorting coacervate-based protocell networks. Nat. Chem. 16, 158–167 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Cho, E. & Lu, Y. Compartmentalizing cell-free techniques: towards creating life-like synthetic cells and past. ACS Synth. Biol. 9, 2881–2901 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, Z., Beneyton, T., Baret, J.-C. & Martin, N. Coacervate droplets for artificial cells. Small Strategies 7, e2300496 (2023).

  • Sokolova, E. et al. Enhanced transcription charges in membrane-free protocells fashioned by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, T. Y. D., van Swaay, D., deMello, A., Anderson, J. L. R. & Mann, S. In vitro gene expression inside membrane-free coacervate protocells. Chem. Commun. 51, 11429–11432 (2015).

    Article 

    Google Scholar
     

  • Meyer, M. O., Yamagami, R., Choi, S., Keating, C. D. & Bevilacqua, P. C. RNA folding research inside peptide-rich droplets reveal roles of modified nucleosides on the origin of life. Preprint at BioRxiv https://doi.org/10.1101/2023.02.27.530264 (2023).

  • Li, J. et al. Section separation of DNA-encoded synthetic cells boosts sign amplification for biosensing. Angew. Chem. 62, e202306691 (2023).

  • Yang, S. et al. AIEgen-conjugated phase-separating peptides illuminate intracellular RNA by coacervation-induced emission. ACS Nano 17, 8195–8203 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Gaash, D. et al. Modulating the optical properties of carbon dots by peptide condensates. Chem. Commun. 59, 12298–12301 (2023).

    Article 

    Google Scholar
     

  • Netzer, A., Katzir, I., Baruch Leshem, A., Weitman, M. & Lampel, A. Emergent properties of melanin-inspired peptide/RNA condensates. Proc. Natl Acad. Sci. USA 120, e2310569120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, D. S., Waite, J. H. & Tirrell, M. Promotion of osteoblast proliferation on advanced coacervation-based hyaluronic acid–recombinant mussel adhesive protein coatings on titanium. Biomaterials 31, 1080–1084 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Self-immobilization of coacervate droplets by enzyme-mediated hydrogelation. Chem. Commun. 57, 5438–5441 (2021).

    Article 

    Google Scholar
     

  • Liu, Y., Wang, Okay. & Zhou, P. Microscopic construction, viscoelastic behaviour and 3D printing potential of milk protein focus–hydrocolloid advanced coacervates. Int. J. Meals Sci. Technol. 57, 4422–4431 (2022).

    Article 

    Google Scholar
     

  • Kim, J.-M., Heo, T.-Y. & Choi, S.-H. Construction and rest dynamics for advanced coacervate hydrogels fashioned by ABA triblock copolymers. Macromolecules 53, 9234–9243 (2020).

    Article 

    Google Scholar
     

  • Wu, B. et al. Chemical sign regulated injectable coacervate hydrogels. Chem. Sci. 14, 1512–1523 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Fabrication of channeled scaffolds by polyelectrolyte advanced (PEC) printed sacrificial templates for tissue formation. Bioact. Mater. 17, 261–275 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khoonkari, M. et al. Bioinspired processing: advanced coacervates as versatile inks for 3D bioprinting. Adv. Mater. 35, e2210769 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rising, A. & Harrington, M. J. Organic supplies processing: time-tested tips for sustainable fiber fabrication. Chem. Rev. 123, 2155–2199 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Pinnaratip, R., Bhuiyan, M. S. A., Meyers, Okay., Rajachar, R. M. & Lee, B. P. Multifunctional biomedical adhesives. Adv. Healthc. Mater. 8, e1801568 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur, S., Weerasekare, G. M. & Stewart, R. J. Multiphase adhesive coacervates impressed by the sandcastle worm. ACS Appl. Mater. Interfaces 3, 941–944 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, W. et al. A mussel-derived one element adhesive coacervate. Acta Biomater. 10, 1663–1670 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Wei, W. et al. An underwater surface-drying peptide impressed by a mussel adhesive protein. Adv. Funct. Mater. 26, 3496–3507 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, B. Okay. et al. Excessive-performance mussel-inspired adhesives of diminished complexity. Nat. Commun. 6, 8663 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Solar, J. et al. Genetically engineered polypeptide adhesive coacervates for surgical functions. Angew. Chem. Int. Ed. 60, 23687–23694 (2021).

    Article 

    Google Scholar
     

  • Ma, Q. et al. Cell-inspired all-aqueous microfluidics: from intracellular liquid–liquid section separation towards superior biomaterials. Adv. Sci. 7, 1903359 (2020).

    Article 

    Google Scholar
     

  • Arter, W. E. et al. Biomolecular condensate section diagrams with a combinatorial microdroplet platform. Nat. Commun. 13, 7845 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erkamp, N. A., Qi, R., Welsh, T. J. & Knowles, T. P. J. Microfluidics for multiscale research of biomolecular condensates. Lab Chip 23, 9–24 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villois, A. et al. Droplet microfluidics for the label-free extraction of full section diagrams and kinetics of liquid–liquid section separation in finite volumes. Small 18, e2202606 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Linsenmeier, M. et al. Dynamics of artificial membraneless organelles in microfluidic droplets. Angew. Chem. Int. Ed. 58, 14489–14494 (2019).

    Article 

    Google Scholar
     

  • Zeng, M. et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174, 1172–1187.e16 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Quiroz, F. G. et al. Liquid–liquid section separation drives pores and skin barrier formation. Science 367, eaax9554 (2020).

  • Alberti, S., Gladfelter, A. & Mittag, T. Concerns and challenges in finding out liquid–liquid section separation and biomolecular condensates. Cell 176, 419–434 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, A. et al. A liquid-to-solid section transition of the ALS protein FUS accelerated by illness mutation. Cell 162, 1066–1077 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kriebisch, C. M. E. et al. Template-based copying in chemically fuelled dynamic combinatorial libraries. Nat. Chem. 16, 1240–1249 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, H., Sakaguchi, Y., Suzuki, T., Yanagisawa, M. & Aida, T. Close to-identical macromolecules spontaneously partition into concentric circles. Nature 636, 92–99 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Bergmann, A. M. et al. Liquid spherical shells are a non-equilibrium regular state of lively droplets. Nat. Commun. 14, 6552 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boeynaems, S. et al. Spontaneous driving forces give rise to protein–RNA condensates with coexisting phases and sophisticated materials properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies. Science 378, 56–61 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waite, J. H. Mussel adhesion—important footwork. J. Exp. Biol. 220, 517–530 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, T. et al. Endocytosis of coacervates into liposomes. J. Am. Chem. Soc. 144, 13451–13455 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles