14.9 C
Canberra
Saturday, January 3, 2026

DNA nanodevice for evaluation of force-activated protein extension and interactions


  • Mierke, C. T. Extracellular matrix cues regulate mechanosensing and mechanotransduction of most cancers cells. Cells 13, 96 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Orr, A. W., Helmke, B. P., Blackman, B. R. & Schwartz, M. A. Mechanisms of mechanotransduction. Dev. Cell 10, 11–20 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate mobile mechanotransduction. Nature 475, 316–323 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jin, P., Jan, L. Y. & Jan, Y. N. Mechanosensitive ion channels: structural options related to mechanotransduction mechanisms. Annu Rev. Neurosci. 43, 207–229 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Romani, P., Valcarcel-Jimenez, L., Frezza, C. & Dupont, S. Crosstalk between mechanotransduction and metabolism. Nat. Rev. Mol. Cell Biol. 22, 22–38 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Grashoff, C. et al. Measuring mechanical stress throughout vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hu, Y. et al. DNA-based ForceChrono probes for deciphering single-molecule drive dynamics in dwelling cells. Cell 187, 3445–3459.e15 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ren, Y. et al. Drive redistribution in clathrin-mediated endocytosis revealed by coiled-coil drive sensors. Sci. Adv. 9, eadi1535 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tao, A. et al. Figuring out constitutive and context-specific molecular-tension-sensitive protein recruitment inside focal adhesions. Dev. Cell 58, 522–534.e7 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, Y., Ge, C., Zhu, C. & Salaita, Okay. DNA-based digital stress probes reveal integrin forces throughout early cell adhesion. Nat. Commun. 5, 5167 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fisher, T. E., Oberhauser, A. F., Carrion-Vazquez, M., Marszalek, P. E. & Fernandez, J. M. The research of protein mechanics with the atomic drive microscope. Tendencies Biochem. Sci. 24, 379–384 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bustamante, C. J., Chemla, Y. R., Liu, S. & Wang, M. D. Optical tweezers in single-molecule biophysics. Nat. Rev. Strategies Primers 1, 25 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Choi, H. Okay., Kim, H. G., Shon, M. J. & Yoon, T. Y. Excessive-resolution single-molecule magnetic tweezers. Annu. Rev. Biochem. 91, 33–59 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ishijima, A. et al. Simultaneous statement of particular person ATPase and mechanical occasions by a single myosin molecule throughout interplay with actin. Cell 92, 161–171 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • del Rio, A. et al. Stretching single talin rod molecules prompts vinculin binding. Science 323, 638–641 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dey, S. et al. DNA origami. Nat. Rev. Strategies Primers 1, 13 (2021).

    Article 

    Google Scholar
     

  • Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fisher, P. D. E. et al. A programmable DNA origami platform for organizing intrinsically disordered nucleoporins inside nanopore confinement. ACS Nano 12, 1508–1518 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fu, J. et al. Multi-enzyme complexes on DNA scaffolds able to substrate channelling with a synthetic swinging arm. Nat. Nanotechnol. 9, 531–536 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zeng, Y. C. et al. Wonderful tuning of CpG spatial distribution with DNA origami for improved most cancers vaccination. Nat. Nanotechnol. 19, 1055–1065 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mills, A. et al. A modular spring-loaded actuator for mechanical activation of membrane proteins. Nat. Commun. 13, 3182 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nickels, P. C. et al. Molecular drive spectroscopy with a DNA origami-based nanoscopic drive clamp. Science 354, 305–307 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. A nanoscale DNA drive spectrometer able to making use of stress and compression on biomolecules. Nucleic Acids Res. 49, 8987–8999 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Darcy, M. et al. Excessive-force utility by a nanoscale DNA drive spectrometer. ACS Nano 16, 5682–5695 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Praetorius, F. et al. Biotechnological mass manufacturing of DNA origami. Nature 552, 84–87 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jia, Y. L., Chen, L. M., Liu, J., Li, W. & Gu, H. Z. DNA-catalyzed environment friendly manufacturing of single-stranded DNA nanostructures. Chem 7, 959–981 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kramm, Okay. et al. DNA origami-based single-molecule drive spectroscopy elucidates RNA polymerase III pre-initiation complicated stability. Nat. Commun. 11, 2828 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Solar, Z., Guo, S. S. & Fassler, R. Integrin-mediated mechanotransduction. J. Cell Biol. 215, 445–456 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Goult, B. T., Yan, J. & Schwartz, M. A. Talin as a mechanosensitive signaling hub. J. Cell Biol. 217, 3776–3784 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hytonen, V. P. & Vogel, V. How drive may activate talin’s vinculin binding websites: SMD reveals a structural mechanism. PLoS Comput. Biol. 4, e24 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, M. et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papagrigoriou, E. et al. Activation of a vinculin-binding web site within the talin rod entails rearrangement of a five-helix bundle. EMBO J. 23, 2942–2951 (2004).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Douglas, S. M. et al. Speedy prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Funke, J. J. & Dietz, H. Putting molecules with Bohr radius decision utilizing DNA origami. Nat. Nanotechnol. 11, 47–52 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiong, Q. et al. DNA origami post-processing by CRISPR-Cas12a. Angew. Chem. Int. Ed. 59, 3956–3960 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Aksel, T., Yu, Z., Cheng, Y. & Douglas, S. M. Molecular goniometers for single-particle cryo-electron microscopy of DNA-binding proteins. Nat. Biotechnol. 39, 378–386 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wagenbauer, Okay. F. et al. How we make DNA origami. ChemBioChem 18, 1873–1885 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Poppleton, E. et al. Design, optimization and evaluation of enormous DNA and RNA nanostructures by means of interactive visualization, enhancing and molecular simulation. Nucleic Acids Res. 48, e72 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Woodside, M. T. et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl Acad. Sci. USA 103, 6190–6195 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, J. & Yan, J. Unraveling the dual-stretch-mode affect on stress gauge tethers’ mechanical stability. J. Am. Chem. Soc. 146, 7266–7273 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bercy, M. & Bockelmann, U. Hairpins below stress: RNA versus DNA. Nucleic Acids Res. 43, 9928–9936 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, A. et al. Talin stress sensor reveals novel options of focal adhesion drive transmission and mechanosensitivity. J. Cell Biol. 213, 371–383 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Austen, Okay. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597–1606 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chung, M., Zhou, Okay., Powell, J. T., Lin, C. & Schwartz, M. A. DNA-based molecular clamp for probing protein interactions and construction below drive. ACS Nano 18, 27590–27596 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin, C., Perrault, S. D., Kwak, M., Graf, F. & Shih, W. M. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res. 41, e40 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Abramson, J. et al. Correct construction prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparability. Proc. Natl Acad. Sci. USA 96, 3694–3699 (1999).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Evans, E. & Ritchie, Okay. Power of a weak bond connecting versatile polymer chains. Biophys. J. 76, 2439–2447 (1999).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, J., Kang, X., An, H., Lv, Y. & Liu, X. The operate and pathogenic mechanism of filamin A. Gene 784, 145575 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kumar, A. et al. Filamin A mediates isotropic distribution of utilized drive throughout the actin community. J. Cell Biol. 218, 2481–2491 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aissaoui, N. et al. Modular imaging scaffold for single-particle electron microscopy. ACS Nano 15, 4186–4196 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pfaff, M., Liu, S., Erle, D. J. & Ginsberg, M. H. Integrin beta cytoplasmic domains differentially bind to cytoskeletal proteins. J. Biol. Chem. 273, 6104–6109 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rief, M., Clausen-Schaumann, H. & Gaub, H. E. Sequence-dependent mechanics of single DNA molecules. Nat. Struct. Biol. 6, 346–349 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Amiram, M. et al. Evolution of translation equipment in recoded micro organism permits multi-site incorporation of nonstandard amino acids. Nat. Biotechnol. 33, 1272–1279 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zadeh, J. N. et al. NUPACK: evaluation and design of nucleic acid programs. J. Comput. Chem. 32, 170–173 (2010).

    Article 

    Google Scholar
     

  • Driscoll, T. P., Ahn, S. J., Huang, B., Kumar, A. & Schwartz, M. A. Actin flow-dependent and -independent drive transmission by means of integrins. Proc. Natl Acad. Sci. USA 117, 32413–32422 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chanduri, M. et al. Mobile stiffness sensing by means of talin 1 in tissue mechanical homeostasis. Sci. Adv. 10, eadi6286 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bepler, T. et al. Constructive-unlabeled convolutional neural networks for particle choosing in cryo-electron micrographs. Nat. Strategies 16, 1153–1160 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yan, J., Yao, M., Goult, B. T. & Sheetz, M. P. Talin dependent mechanosensitivity of cell focal adhesions. Cell. Mol. Bioeng. 8, 151–159 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles