Mierke, C. T. Extracellular matrix cues regulate mechanosensing and mechanotransduction of most cancers cells. Cells 13, 96 (2024).
Orr, A. W., Helmke, B. P., Blackman, B. R. & Schwartz, M. A. Mechanisms of mechanotransduction. Dev. Cell 10, 11–20 (2006).
Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate mobile mechanotransduction. Nature 475, 316–323 (2011).
Jin, P., Jan, L. Y. & Jan, Y. N. Mechanosensitive ion channels: structural options related to mechanotransduction mechanisms. Annu Rev. Neurosci. 43, 207–229 (2020).
Romani, P., Valcarcel-Jimenez, L., Frezza, C. & Dupont, S. Crosstalk between mechanotransduction and metabolism. Nat. Rev. Mol. Cell Biol. 22, 22–38 (2021).
Grashoff, C. et al. Measuring mechanical stress throughout vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).
Hu, Y. et al. DNA-based ForceChrono probes for deciphering single-molecule drive dynamics in dwelling cells. Cell 187, 3445–3459.e15 (2024).
Ren, Y. et al. Drive redistribution in clathrin-mediated endocytosis revealed by coiled-coil drive sensors. Sci. Adv. 9, eadi1535 (2023).
Tao, A. et al. Figuring out constitutive and context-specific molecular-tension-sensitive protein recruitment inside focal adhesions. Dev. Cell 58, 522–534.e7 (2023).
Zhang, Y., Ge, C., Zhu, C. & Salaita, Okay. DNA-based digital stress probes reveal integrin forces throughout early cell adhesion. Nat. Commun. 5, 5167 (2014).
Fisher, T. E., Oberhauser, A. F., Carrion-Vazquez, M., Marszalek, P. E. & Fernandez, J. M. The research of protein mechanics with the atomic drive microscope. Tendencies Biochem. Sci. 24, 379–384 (1999).
Bustamante, C. J., Chemla, Y. R., Liu, S. & Wang, M. D. Optical tweezers in single-molecule biophysics. Nat. Rev. Strategies Primers 1, 25 (2021).
Choi, H. Okay., Kim, H. G., Shon, M. J. & Yoon, T. Y. Excessive-resolution single-molecule magnetic tweezers. Annu. Rev. Biochem. 91, 33–59 (2022).
Ishijima, A. et al. Simultaneous statement of particular person ATPase and mechanical occasions by a single myosin molecule throughout interplay with actin. Cell 92, 161–171 (1998).
del Rio, A. et al. Stretching single talin rod molecules prompts vinculin binding. Science 323, 638–641 (2009).
Dey, S. et al. DNA origami. Nat. Rev. Strategies Primers 1, 13 (2021).
Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2018).
Fisher, P. D. E. et al. A programmable DNA origami platform for organizing intrinsically disordered nucleoporins inside nanopore confinement. ACS Nano 12, 1508–1518 (2018).
Fu, J. et al. Multi-enzyme complexes on DNA scaffolds able to substrate channelling with a synthetic swinging arm. Nat. Nanotechnol. 9, 531–536 (2014).
Zeng, Y. C. et al. Wonderful tuning of CpG spatial distribution with DNA origami for improved most cancers vaccination. Nat. Nanotechnol. 19, 1055–1065 (2024).
Mills, A. et al. A modular spring-loaded actuator for mechanical activation of membrane proteins. Nat. Commun. 13, 3182 (2022).
Nickels, P. C. et al. Molecular drive spectroscopy with a DNA origami-based nanoscopic drive clamp. Science 354, 305–307 (2016).
Wang, Y. et al. A nanoscale DNA drive spectrometer able to making use of stress and compression on biomolecules. Nucleic Acids Res. 49, 8987–8999 (2021).
Darcy, M. et al. Excessive-force utility by a nanoscale DNA drive spectrometer. ACS Nano 16, 5682–5695 (2022).
Praetorius, F. et al. Biotechnological mass manufacturing of DNA origami. Nature 552, 84–87 (2017).
Jia, Y. L., Chen, L. M., Liu, J., Li, W. & Gu, H. Z. DNA-catalyzed environment friendly manufacturing of single-stranded DNA nanostructures. Chem 7, 959–981 (2021).
Kramm, Okay. et al. DNA origami-based single-molecule drive spectroscopy elucidates RNA polymerase III pre-initiation complicated stability. Nat. Commun. 11, 2828 (2020).
Solar, Z., Guo, S. S. & Fassler, R. Integrin-mediated mechanotransduction. J. Cell Biol. 215, 445–456 (2016).
Goult, B. T., Yan, J. & Schwartz, M. A. Talin as a mechanosensitive signaling hub. J. Cell Biol. 217, 3776–3784 (2018).
Hytonen, V. P. & Vogel, V. How drive may activate talin’s vinculin binding websites: SMD reveals a structural mechanism. PLoS Comput. Biol. 4, e24 (2008).
Yao, M. et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014).
Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).
Papagrigoriou, E. et al. Activation of a vinculin-binding web site within the talin rod entails rearrangement of a five-helix bundle. EMBO J. 23, 2942–2951 (2004).
Douglas, S. M. et al. Speedy prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).
Funke, J. J. & Dietz, H. Putting molecules with Bohr radius decision utilizing DNA origami. Nat. Nanotechnol. 11, 47–52 (2016).
Xiong, Q. et al. DNA origami post-processing by CRISPR-Cas12a. Angew. Chem. Int. Ed. 59, 3956–3960 (2020).
Aksel, T., Yu, Z., Cheng, Y. & Douglas, S. M. Molecular goniometers for single-particle cryo-electron microscopy of DNA-binding proteins. Nat. Biotechnol. 39, 378–386 (2021).
Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).
Wagenbauer, Okay. F. et al. How we make DNA origami. ChemBioChem 18, 1873–1885 (2017).
Poppleton, E. et al. Design, optimization and evaluation of enormous DNA and RNA nanostructures by means of interactive visualization, enhancing and molecular simulation. Nucleic Acids Res. 48, e72 (2020).
Woodside, M. T. et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl Acad. Sci. USA 103, 6190–6195 (2006).
Liu, J. & Yan, J. Unraveling the dual-stretch-mode affect on stress gauge tethers’ mechanical stability. J. Am. Chem. Soc. 146, 7266–7273 (2024).
Bercy, M. & Bockelmann, U. Hairpins below stress: RNA versus DNA. Nucleic Acids Res. 43, 9928–9936 (2015).
Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).
Kumar, A. et al. Talin stress sensor reveals novel options of focal adhesion drive transmission and mechanosensitivity. J. Cell Biol. 213, 371–383 (2016).
Austen, Okay. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597–1606 (2015).
Chung, M., Zhou, Okay., Powell, J. T., Lin, C. & Schwartz, M. A. DNA-based molecular clamp for probing protein interactions and construction below drive. ACS Nano 18, 27590–27596 (2024).
Lin, C., Perrault, S. D., Kwak, M., Graf, F. & Shih, W. M. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res. 41, e40 (2013).
Abramson, J. et al. Correct construction prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparability. Proc. Natl Acad. Sci. USA 96, 3694–3699 (1999).
Evans, E. & Ritchie, Okay. Power of a weak bond connecting versatile polymer chains. Biophys. J. 76, 2439–2447 (1999).
Zhou, J., Kang, X., An, H., Lv, Y. & Liu, X. The operate and pathogenic mechanism of filamin A. Gene 784, 145575 (2021).
Kumar, A. et al. Filamin A mediates isotropic distribution of utilized drive throughout the actin community. J. Cell Biol. 218, 2481–2491 (2019).
Aissaoui, N. et al. Modular imaging scaffold for single-particle electron microscopy. ACS Nano 15, 4186–4196 (2021).
Pfaff, M., Liu, S., Erle, D. J. & Ginsberg, M. H. Integrin beta cytoplasmic domains differentially bind to cytoskeletal proteins. J. Biol. Chem. 273, 6104–6109 (1998).
Rief, M., Clausen-Schaumann, H. & Gaub, H. E. Sequence-dependent mechanics of single DNA molecules. Nat. Struct. Biol. 6, 346–349 (1999).
Amiram, M. et al. Evolution of translation equipment in recoded micro organism permits multi-site incorporation of nonstandard amino acids. Nat. Biotechnol. 33, 1272–1279 (2015).
Zadeh, J. N. et al. NUPACK: evaluation and design of nucleic acid programs. J. Comput. Chem. 32, 170–173 (2010).
Driscoll, T. P., Ahn, S. J., Huang, B., Kumar, A. & Schwartz, M. A. Actin flow-dependent and -independent drive transmission by means of integrins. Proc. Natl Acad. Sci. USA 117, 32413–32422 (2020).
Chanduri, M. et al. Mobile stiffness sensing by means of talin 1 in tissue mechanical homeostasis. Sci. Adv. 10, eadi6286 (2024).
Bepler, T. et al. Constructive-unlabeled convolutional neural networks for particle choosing in cryo-electron micrographs. Nat. Strategies 16, 1153–1160 (2019).
Yan, J., Yao, M., Goult, B. T. & Sheetz, M. P. Talin dependent mechanosensitivity of cell focal adhesions. Cell. Mol. Bioeng. 8, 151–159 (2015).
