Li, M., Lu, J., Chen, Z. & Amine, Okay. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).
Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Efficiency and value of supplies for lithium-based rechargeable automotive batteries. Nat. Vitality 3, 267–278 (2018).
Li, W., Erickson, E. M. & Manthiram, A. Excessive-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Vitality 5, 26–34 (2020).
Goodenough, J. B. & Park, Okay. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).
Liu, T. et al. Rational design of mechanically sturdy Ni-rich cathode supplies through focus gradient technique. Nat. Commun. 12, 6024 (2021).
Yan, P. et al. Intragranular cracking as a crucial barrier for high-voltage utilization of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).
Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).
Zhang, R. et al. Compositionally complicated doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).
Lin, F. et al. Floor reconstruction and chemical evolution of stoichiometric layered cathode supplies for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).
Lee, S., Su, L., Mesnier, A., Cui, Z. & Manthiram, A. Cracking vs. floor reactivity in high-nickel cathodes for lithium-ion batteries. Joule 7, 2430–2444 (2023).
Yan, P. et al. Tailoring grain boundary buildings and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Vitality 3, 600–605 (2018).
Xu, G. L. et al. Challenges and methods to advance high-energy nickel-rich layered lithium transition metallic oxide cathodes for harsh operation. Adv. Funct. Mater. 30, 2004748 (2020).
Zhou, Y. N. et al. Tuning charge-discharge induced unit cell inhaling layer-structured cathode supplies for lithium-ion batteries. Nat. Commun. 5, 5381 (2014).
Mukhopadhyay, A. & Sheldon, B. W. Deformation and stress in electrode supplies for Li-ion batteries. Prog. Mater. Sci. 63, 58–116 (2014).
Stallard, J. C. et al. Mechanical properties of cathode supplies for lithium-ion batteries. Joule 6, 984–1007 (2022).
Ryu, H.-H., Park, Okay.-J., Yoon, C. S. & Solar, Y.-Okay. Capability fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or floor degradation? Chem. Mater. 30, 1155–1163 (2018).
Li, W., Asl, H. Y., Xie, Q. & Manthiram, A. Collapse of LiNi(1–x–y)Co(x)Mn(y)O(2) lattice at deep cost regardless of nickel content material in lithium-ion batteries. J. Am. Chem. Soc. 141, 5097–5101 (2019).
Xu, C. et al. Bulk fatigue induced by floor reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).
Liu, T. et al. Understanding Co roles in the direction of growing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Vitality 6, 277–286 (2021).
Zhao, X. & Ceder, G. Zero-strain cathode supplies for Li-ion batteries. Joule 6, 2683–2685 (2022).
Xu, G.-L. et al. Constructing ultraconformal protecting layers on each secondary and first particles of layered lithium transition metallic oxide cathodes. Nat. Vitality 4, 484–494 (2019).
Zhang, W. et al. Ni-rich LiNi0·8Co0·1Mn0·1O2 coated with Li-ion conductive Li3PO4 as aggressive cathodes for high-energy-density lithium ion batteries. Electrochim. Acta 340, 135871 (2020).
Yu, H. et al. Floor enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode towards Li-ion batteries. Nat. Commun. 12, 4564 (2021).
Goonetilleke, D. et al. Assuaging anisotropic quantity variation at comparable Li utilization throughout biking of Ni-rich, Co-free layered oxide cathode supplies. J. Phys. Chem. C 126, 16952–16964 (2022).
Li, H. et al. Is cobalt wanted in Ni-rich constructive electrode supplies for lithium ion batteries?. J. Electrochem. Soc. 166, A429–A439 (2019).
Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery provide chain concerns: evaluation of potential bottlenecks in crucial metals. Joule 1, 229–243 (2017).
Aishova, A., Park, G. T., Yoon, C. S. & Solar, Y. Okay. Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode. Adv. Vitality Mater. 10, 1903179 (2019).
Solar, Y. Okay., Lee, D. J., Lee, Y. J., Chen, Z. & Myung, S. T. Cobalt-free nickel wealthy layered oxide cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 11434–11440 (2013).
Park, G.-T. et al. Introducing high-valence components into cobalt-free layered cathodes for sensible lithium-ion batteries. Nat. Vitality 7, 946–954 (2022).
Li, W., Lee, S. & Manthiram, A. Excessive-nickel NMA: a cobalt-free various to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020).
Mu, L. et al. Dopant distribution in Co-free high-energy layered cathode supplies. Chem. Mater. 31, 9769–9776 (2019).
Qian, G. et al. Single-crystal nickel-rich layered-oxide battery cathode supplies: synthesis, electrochemistry, and intra-granular fracture. Vitality Storage Mater. 27, 140–149 (2020).
Langdon, J. & Manthiram, A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Vitality Storage Mater. 37, 143–160 (2021).
Shi, J.-L. et al. Measurement controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries. Natl Sci. Rev. 10, nwac226 (2023).
Moiseev, I. A. et al. Single crystal Ni-rich NMC cathode supplies for lithium-ion batteries with ultra-high volumetric power density. Vitality Adv. 1, 677–681 (2022).
Ge, M. et al. Kinetic limitations in single-crystal high-nickel cathodes. Angew. Chem. Int. Ed. 60, 17350–17355 (2021).
Zou, Y. G. et al. Mitigating the kinetic hindrance of single-crystalline Ni-rich cathode through floor gradient penetration of tantalum. Angew. Chem. Int. Ed. 60, 26535–26539 (2021).
Pandurangi, S. S., Corridor, D. S., Gray, C. P., Deshpande, V. S. & Fleck, N. A. Chemo-mechanical evaluation of lithiation/delithiation of Ni-rich single crystals. J. Electrochem. Soc. 170, 050531 (2023).
Liu, J. et al. Understanding the synthesis kinetics of single-crystal Co-free Ni-rich cathodes. Angew. Chem. Int. Ed. 62, e202302547 (2023).
Fan, X. et al. In situ inorganic conductive community formation in high-voltage single-crystal Ni-rich cathodes. Nat. Commun. 12, 5320 (2021).
Solar, J. et al. The origin of high-voltage stability in single-crystal layered Ni-rich cathode supplies. Angew. Chem. Int. Ed. 61, e202207225 (2022).
Kim, Okay.-E. et al. Enhancing high-voltage structural stability of single-crystalline Ni-rich LiNi0.9Mn0.05Co0.05O2 cathode materials by ultrathin Li-rich oxide layer for lithium-ion batteries. J. Energy Sources 601, 234300 (2024).
Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).
Heenan, T. M. et al. Figuring out the origins of microstructural defects corresponding to cracking inside Ni-rich NMC811 cathode particles for lithium-ion batteries. Adv. Vitality Mater. 10, 2002655 (2020).
Yang, B. Stress, Pressure, and Structural Dynamics: An Interactive Handbook of Formulation, Options, and MATLAB Toolboxes (Tutorial Press, 2005).
Chen, C. et al. Extremely crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).
Liu, D. et al. Pressure evaluation and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).
Zheng, J. et al. Ni/Li disordering in layered transition metallic oxide: electrochemical affect, origin, and management. Acc. Chem. Res. 52, 2201–2209 (2019).
Liu, S. et al. Origin of section separation in Ni-rich layered oxide cathode supplies throughout electrochemical biking. Chem. Mater. 35, 8857–8871 (2023).
Jousseaume, T., Colin, J.-F., Chandesris, M., Lyonnard, S. & Tardif, S. Pressure and collapse throughout lithiation of layered transition metallic oxides: a unified image. Vitality Environ. Sci. 17, 2753–2764 (2024).
Ogley, M. J. et al. Metallic–ligand redox in layered oxide cathodes for Li-ion batteries. Joule 9, 101775 (2025).
Li, H., Zhang, N., Li, J. & Dahn, J. R. Updating the construction and electrochemistry of LixNiO2 for 0 ≤ x ≤ 1. J. Electrochem. Soc. 165, A2985–A2993 (2018).
Olszewski, W. et al. The function of the native structural properties within the electrochemical traits of Na1–xFe1–yNiyO2 cathodes. Mater. In the present day Vitality 40, 101519 (2024).
Mao, Y. et al. Excessive-voltage charging-induced pressure, heterogeneity, and micro-cracks in secondary particles of a nickel-rich layered cathode materials. Adv. Funct. Mater. 29, 1900247 (2019).
Ryu, H.-H. et al. Capability fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Vitality Lett. 6, 2726–2734 (2021).
Yu, H. et al. Restraining the escape of lattice oxygen allows superior cyclic efficiency in the direction of high-voltage Ni-rich cathodes. Natl Sci. Rev. 10, nwac166 (2023).
Balasubramanian, M., Solar, X., Yang, X. & McBreen, J. In situ X-ray diffraction and X-ray absorption research of high-rate lithium-ion batteries. J. Energy Sources 92, 1–8 (2001).
Usoltsev, O. et al. Operando multi-edge XAS to disclose the impact of Co in Li-and Mn-rich NMC Li-ion cathodes. Mater. In the present day Vitality 50, 101853 (2025).
Solar, H.-H. & Manthiram, A. Influence of microcrack technology and floor degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries. Chem. Mater. 29, 8486–8493 (2017).
Qian, D., Xu, B., Chi, M. & Meng, Y. S. Uncovering the roles of oxygen vacancies in cation migration in lithium extra layered oxides. Phys. Chem. Chem. Phys. 16, 14665–14668 (2014).
Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the way forward for lithium-based batteries. Nat. Commun. 14, 420 (2023).
Scurtu, R.-G. et al. From small batteries to huge claims. Nat. Nanotechnol. 20, 970–976 (2025).
Chien, Y.-C. et al. Fast dedication of solid-state diffusion coefficients in Li-based batteries through intermittent present interruption technique. Nat. Commun. 14, 2289 (2023).
Schied, T. et al. Figuring out the diffusion coefficient of lithium insertion cathodes from GITT measurements: theoretical evaluation for low temperatures. ChemPhysChem 22, 885–893 (2021).
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: information evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).
Tallman, Okay. R. et al. Nickel-rich nickel manganese cobalt (NMC622) cathode lithiation mechanism and prolonged biking results utilizing operando X-ray absorption spectroscopy. J. Phys. Chem. C 125, 58–73 (2020).
Chen, C.-H. et al. Operando X-ray diffraction and X-ray absorption research of the structural transformation upon biking extra Li layered oxide Li[Li1/18Co1/6Ni1/3Mn4/9]O2 in Li ion batteries. J. Mater. Chem. A 3, 8613–8626 (2015).
Newville, M. Fundamentals of XAFS. Rev. Mineral. Geochem. 78, 33–74 (2014).
Williamson, G. & Corridor, W. X-ray line broadening from filed aluminium and wolfram. Acta Met. 1, 22–31 (1953).
Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a contemporary open-source all goal crystallography software program bundle. J. Appl. Crystallogr. 46, 544–549 (2013).
Chahine, G. A. et al. Imaging of pressure and lattice orientation by fast scanning X-ray microscopy mixed with three-dimensional reciprocal area mapping. J. Appl. Crystallogr. 47, 762–769 (2014).
Xiao, X., Xu, Z., Lin, F. & Lee, W.-Okay. TXM-Sandbox: an open-source software program for transmission X-ray microscopy information evaluation. J. Synchrotron Radiat. 29, 266–275 (2022).
Xiao, X., Xu, Z., Hou, D., Yang, Z. & Lin, F. Inflexible registration algorithm primarily based on the minimization of the overall variation of the distinction map. J. Synchrotron Radiat. 29, 1085–1094 (2022).
