14.9 C
Canberra
Saturday, January 3, 2026

Nanoscopic pressure evolution in single-crystal battery constructive electrodes


  • Li, M., Lu, J., Chen, Z. & Amine, Okay. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).

    Article 

    Google Scholar
     

  • Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Efficiency and value of supplies for lithium-based rechargeable automotive batteries. Nat. Vitality 3, 267–278 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, W., Erickson, E. M. & Manthiram, A. Excessive-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Vitality 5, 26–34 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Goodenough, J. B. & Park, Okay. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, T. et al. Rational design of mechanically sturdy Ni-rich cathode supplies through focus gradient technique. Nat. Commun. 12, 6024 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yan, P. et al. Intragranular cracking as a crucial barrier for high-voltage utilization of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, R. et al. Compositionally complicated doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin, F. et al. Floor reconstruction and chemical evolution of stoichiometric layered cathode supplies for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S., Su, L., Mesnier, A., Cui, Z. & Manthiram, A. Cracking vs. floor reactivity in high-nickel cathodes for lithium-ion batteries. Joule 7, 2430–2444 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yan, P. et al. Tailoring grain boundary buildings and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Vitality 3, 600–605 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, G. L. et al. Challenges and methods to advance high-energy nickel-rich layered lithium transition metallic oxide cathodes for harsh operation. Adv. Funct. Mater. 30, 2004748 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. N. et al. Tuning charge-discharge induced unit cell inhaling layer-structured cathode supplies for lithium-ion batteries. Nat. Commun. 5, 5381 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Mukhopadhyay, A. & Sheldon, B. W. Deformation and stress in electrode supplies for Li-ion batteries. Prog. Mater. Sci. 63, 58–116 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Stallard, J. C. et al. Mechanical properties of cathode supplies for lithium-ion batteries. Joule 6, 984–1007 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ryu, H.-H., Park, Okay.-J., Yoon, C. S. & Solar, Y.-Okay. Capability fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or floor degradation? Chem. Mater. 30, 1155–1163 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, W., Asl, H. Y., Xie, Q. & Manthiram, A. Collapse of LiNi(1–xy)Co(x)Mn(y)O(2) lattice at deep cost regardless of nickel content material in lithium-ion batteries. J. Am. Chem. Soc. 141, 5097–5101 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Bulk fatigue induced by floor reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, T. et al. Understanding Co roles in the direction of growing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Vitality 6, 277–286 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, X. & Ceder, G. Zero-strain cathode supplies for Li-ion batteries. Joule 6, 2683–2685 (2022).

    Article 

    Google Scholar
     

  • Xu, G.-L. et al. Constructing ultraconformal protecting layers on each secondary and first particles of layered lithium transition metallic oxide cathodes. Nat. Vitality 4, 484–494 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Ni-rich LiNi0·8Co0·1Mn0·1O2 coated with Li-ion conductive Li3PO4 as aggressive cathodes for high-energy-density lithium ion batteries. Electrochim. Acta 340, 135871 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yu, H. et al. Floor enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode towards Li-ion batteries. Nat. Commun. 12, 4564 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Goonetilleke, D. et al. Assuaging anisotropic quantity variation at comparable Li utilization throughout biking of Ni-rich, Co-free layered oxide cathode supplies. J. Phys. Chem. C 126, 16952–16964 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Is cobalt wanted in Ni-rich constructive electrode supplies for lithium ion batteries?. J. Electrochem. Soc. 166, A429–A439 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery provide chain concerns: evaluation of potential bottlenecks in crucial metals. Joule 1, 229–243 (2017).

    Article 

    Google Scholar
     

  • Aishova, A., Park, G. T., Yoon, C. S. & Solar, Y. Okay. Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode. Adv. Vitality Mater. 10, 1903179 (2019).

    Article 

    Google Scholar
     

  • Solar, Y. Okay., Lee, D. J., Lee, Y. J., Chen, Z. & Myung, S. T. Cobalt-free nickel wealthy layered oxide cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 11434–11440 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Park, G.-T. et al. Introducing high-valence components into cobalt-free layered cathodes for sensible lithium-ion batteries. Nat. Vitality 7, 946–954 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, W., Lee, S. & Manthiram, A. Excessive-nickel NMA: a cobalt-free various to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mu, L. et al. Dopant distribution in Co-free high-energy layered cathode supplies. Chem. Mater. 31, 9769–9776 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qian, G. et al. Single-crystal nickel-rich layered-oxide battery cathode supplies: synthesis, electrochemistry, and intra-granular fracture. Vitality Storage Mater. 27, 140–149 (2020).

    Article 

    Google Scholar
     

  • Langdon, J. & Manthiram, A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Vitality Storage Mater. 37, 143–160 (2021).

    Article 

    Google Scholar
     

  • Shi, J.-L. et al. Measurement controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries. Natl Sci. Rev. 10, nwac226 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Moiseev, I. A. et al. Single crystal Ni-rich NMC cathode supplies for lithium-ion batteries with ultra-high volumetric power density. Vitality Adv. 1, 677–681 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ge, M. et al. Kinetic limitations in single-crystal high-nickel cathodes. Angew. Chem. Int. Ed. 60, 17350–17355 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zou, Y. G. et al. Mitigating the kinetic hindrance of single-crystalline Ni-rich cathode through floor gradient penetration of tantalum. Angew. Chem. Int. Ed. 60, 26535–26539 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pandurangi, S. S., Corridor, D. S., Gray, C. P., Deshpande, V. S. & Fleck, N. A. Chemo-mechanical evaluation of lithiation/delithiation of Ni-rich single crystals. J. Electrochem. Soc. 170, 050531 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Understanding the synthesis kinetics of single-crystal Co-free Ni-rich cathodes. Angew. Chem. Int. Ed. 62, e202302547 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fan, X. et al. In situ inorganic conductive community formation in high-voltage single-crystal Ni-rich cathodes. Nat. Commun. 12, 5320 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Solar, J. et al. The origin of high-voltage stability in single-crystal layered Ni-rich cathode supplies. Angew. Chem. Int. Ed. 61, e202207225 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Okay.-E. et al. Enhancing high-voltage structural stability of single-crystalline Ni-rich LiNi0.9Mn0.05Co0.05O2 cathode materials by ultrathin Li-rich oxide layer for lithium-ion batteries. J. Energy Sources 601, 234300 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Heenan, T. M. et al. Figuring out the origins of microstructural defects corresponding to cracking inside Ni-rich NMC811 cathode particles for lithium-ion batteries. Adv. Vitality Mater. 10, 2002655 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, B. Stress, Pressure, and Structural Dynamics: An Interactive Handbook of Formulation, Options, and MATLAB Toolboxes (Tutorial Press, 2005).

  • Chen, C. et al. Extremely crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, D. et al. Pressure evaluation and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zheng, J. et al. Ni/Li disordering in layered transition metallic oxide: electrochemical affect, origin, and management. Acc. Chem. Res. 52, 2201–2209 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, S. et al. Origin of section separation in Ni-rich layered oxide cathode supplies throughout electrochemical biking. Chem. Mater. 35, 8857–8871 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jousseaume, T., Colin, J.-F., Chandesris, M., Lyonnard, S. & Tardif, S. Pressure and collapse throughout lithiation of layered transition metallic oxides: a unified image. Vitality Environ. Sci. 17, 2753–2764 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ogley, M. J. et al. Metallic–ligand redox in layered oxide cathodes for Li-ion batteries. Joule 9, 101775 (2025).

  • Li, H., Zhang, N., Li, J. & Dahn, J. R. Updating the construction and electrochemistry of LixNiO2 for 0 ≤ x ≤ 1. J. Electrochem. Soc. 165, A2985–A2993 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Olszewski, W. et al. The function of the native structural properties within the electrochemical traits of Na1–xFe1–yNiyO2 cathodes. Mater. In the present day Vitality 40, 101519 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mao, Y. et al. Excessive-voltage charging-induced pressure, heterogeneity, and micro-cracks in secondary particles of a nickel-rich layered cathode materials. Adv. Funct. Mater. 29, 1900247 (2019).

    Article 

    Google Scholar
     

  • Ryu, H.-H. et al. Capability fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Vitality Lett. 6, 2726–2734 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yu, H. et al. Restraining the escape of lattice oxygen allows superior cyclic efficiency in the direction of high-voltage Ni-rich cathodes. Natl Sci. Rev. 10, nwac166 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Balasubramanian, M., Solar, X., Yang, X. & McBreen, J. In situ X-ray diffraction and X-ray absorption research of high-rate lithium-ion batteries. J. Energy Sources 92, 1–8 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Usoltsev, O. et al. Operando multi-edge XAS to disclose the impact of Co in Li-and Mn-rich NMC Li-ion cathodes. Mater. In the present day Vitality 50, 101853 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Solar, H.-H. & Manthiram, A. Influence of microcrack technology and floor degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries. Chem. Mater. 29, 8486–8493 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Qian, D., Xu, B., Chi, M. & Meng, Y. S. Uncovering the roles of oxygen vacancies in cation migration in lithium extra layered oxides. Phys. Chem. Chem. Phys. 16, 14665–14668 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the way forward for lithium-based batteries. Nat. Commun. 14, 420 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Scurtu, R.-G. et al. From small batteries to huge claims. Nat. Nanotechnol. 20, 970–976 (2025).

  • Chien, Y.-C. et al. Fast dedication of solid-state diffusion coefficients in Li-based batteries through intermittent present interruption technique. Nat. Commun. 14, 2289 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Schied, T. et al. Figuring out the diffusion coefficient of lithium insertion cathodes from GITT measurements: theoretical evaluation for low temperatures. ChemPhysChem 22, 885–893 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: information evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Tallman, Okay. R. et al. Nickel-rich nickel manganese cobalt (NMC622) cathode lithiation mechanism and prolonged biking results utilizing operando X-ray absorption spectroscopy. J. Phys. Chem. C 125, 58–73 (2020).

    Article 

    Google Scholar
     

  • Chen, C.-H. et al. Operando X-ray diffraction and X-ray absorption research of the structural transformation upon biking extra Li layered oxide Li[Li1/18Co1/6Ni1/3Mn4/9]O2 in Li ion batteries. J. Mater. Chem. A 3, 8613–8626 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Newville, M. Fundamentals of XAFS. Rev. Mineral. Geochem. 78, 33–74 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Williamson, G. & Corridor, W. X-ray line broadening from filed aluminium and wolfram. Acta Met. 1, 22–31 (1953).

    Article 
    CAS 

    Google Scholar
     

  • Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a contemporary open-source all goal crystallography software program bundle. J. Appl. Crystallogr. 46, 544–549 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chahine, G. A. et al. Imaging of pressure and lattice orientation by fast scanning X-ray microscopy mixed with three-dimensional reciprocal area mapping. J. Appl. Crystallogr. 47, 762–769 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, X., Xu, Z., Lin, F. & Lee, W.-Okay. TXM-Sandbox: an open-source software program for transmission X-ray microscopy information evaluation. J. Synchrotron Radiat. 29, 266–275 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xiao, X., Xu, Z., Hou, D., Yang, Z. & Lin, F. Inflexible registration algorithm primarily based on the minimization of the overall variation of the distinction map. J. Synchrotron Radiat. 29, 1085–1094 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles