14.9 C
Canberra
Saturday, January 3, 2026

Entanglement of a nuclear spin qubit register in silicon photonics


  • Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum applied sciences with optically interfaced solid-state spins. Nat. Photonics 12, 516–527 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gao, W. B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of particular person solid-state spins utilizing optical fields. Nat. Photonics 9, 363–373 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Materials platforms for spin-based photonic quantum applied sciences. Nat. Rev. Mater. 3, 38–51 (2018).

    Article 

    Google Scholar
     

  • Taminiau, T. H. et al. Detection and management of particular person nuclear spins utilizing a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum reminiscence as much as one minute. Phys. Rev. X 9, 031045 (2019).

    CAS 

    Google Scholar
     

  • Ferrenti, A. M., de Leon, N. P., Thompson, J. D. & Cava, R. J. Figuring out candidate hosts for quantum defects by way of knowledge mining. NPJ Comput. Mater. 6, 126 (2020).

    Article 

    Google Scholar
     

  • Onizhuk, M. & Galli, G. Colloquium: decoherence of solid-state spin qubits: a computational perspective. Rev. Mod. Phys. 97, 021001 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Hensen, B. et al. Loophole-free Bell inequality violation utilizing electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knaut, C. M. et al. Entanglement of nanophotonic quantum reminiscence nodes in a telecom community. Nature 629, 573–578 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruskuc, A. et al. Multiplexed entanglement of multi-emitter quantum community nodes. Nature 639, 54–59 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergeron, L. et al. Silicon-integrated telecommunications photon-spin interface. PRX Quantum 1, 020301 (2020).

    Article 

    Google Scholar
     

  • Higginbottom, D. B. et al. Optical statement of single spins in silicon. Nature 607, 266–270 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, P. T. Ok. et al. A manufacturable platform for photonic quantum computing. Nature 641, 876–883 (2025).

  • Durand, A. et al. Broad variety of near-infrared single-photon emitters in silicon. Phys. Rev. Lett. 126, 083602 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Islam, F. et al. Cavity-enhanced emission from a silicon T heart. Nano Lett. 24, 319–325 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnston, A., Felix-Rendon, U., Wong, Y.-E. & Chen, S. Cavity-coupled telecom atomic supply in silicon. Nat. Commun. 15, 2350 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komza, L. et al. Multiplexed colour facilities in a silicon photonic cavity array. Optica 12, 1400–1405 (2025).

    Article 

    Google Scholar
     

  • Inc, P. et al. Distributed quantum computing in silicon. Preprint at https://arxiv.org/abs/2406.01704 (2024).

  • Irion, E., Burger, N., Thonke, Ok. & Sauer, R. The defect luminescence spectrum at 0.9351 eV in carbon-doped heat-treated or irradiated silicon. J. Phys. C 18, 5069 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Safonov, A. N. et al. Interstitial-carbon hydrogen interplay in silicon. Phys. Rev. Lett. 77, 4812–4815 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clear, C. et al. Optical-transition parameters of the silicon T heart. Phys. Rev. Appl. 22, 064014 (2024).

    Article 
    CAS 

    Google Scholar
     

  • MacQuarrie, E. R. et al. Producing T centres in photonic silicon-on-insulator materials by ion implantation. New J. Phys. 23, 103008 (2021).

    Article 
    CAS 

    Google Scholar
     

  • de Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Common dynamical decoupling of a single solid-state spin from a spin tub. Science 330, 60–63 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, L. et al. Repetitive readout of a single digital spin by way of quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van de Stolpe, G. L. et al. Mapping a 50-spin-qubit community by correlated sensing. Nat. Commun. 15, 2006 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, F. et al. Sensing and atomic-scale construction evaluation of single nuclear-spin clusters in diamond. Nat. Phys. 10, 21–25 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Bartling, H. P. et al. Entanglement of spin-pair qubits with intrinsic dephasing occasions exceeding a minute. Phys. Rev. X 12, 011048 (2022).

    CAS 

    Google Scholar
     

  • Mehring, M., Mende, J. & Scherer, W. Entanglement between an electron and a nuclear spin (frac{1}{2}). Phys. Rev. Lett. 90, 153001 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stemp, H. G. et al. Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits. Nat. Commun. 15, 8415 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rong, X. et al. Experimental fault-tolerant common quantum gates with solid-sate spins underneath ambient situations. Nat. Commun. 6, 8748 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vandersypen, L. M. Ok. & Chuang, L. I. NMR methods for quantum management and computation. Rev. Mod. Phys. 76, 1037–1069 (2005).

    Article 

    Google Scholar
     

  • Dolde, F. et al. Excessive-fidelity spin entanglement utilizing optimum management. Nat. Commun. 5, 3371 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Measuring and suppressing quantum state leakage in a superconducting qubit. Phys. Rev. Lett. 116, 020501 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Beukers, H. Ok. C. et al. Management of solid-state nuclear spin qubits utilizing an electron spin-1/2. Phys. Rev. X 15, 021011 (2025).

    CAS 

    Google Scholar
     

  • Muralidharan, S. et al. Optimum architectures for lengthy distance quantum communication. Sci. Rep. 6, 20463 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russo, A., Barnes, E. & Economou, S. E. Technology of arbitrary all-photonic graph states from quantum emitters. New J. Phys. 21, 055002 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Track, H. Entanglement of a nuclear spin qubit register in silicon photonics. Zenodo https://doi.org/10.5281/zenodo.17239007 (2025).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles