Zhu, J. B., Watson, E. M., Tang, J. & Chen, E. Y. X. An artificial polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).
Jehanno, C. et al. Essential advances and future alternatives in upcycling commodity polymers. Nature 603, 803–814 (2022).
Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a inexperienced chemistry future. Science 367, 397–400 (2020).
Lohmann, V., Jones, G. R., Truong, N. P. & Anastasaki, A. The thermodynamics and kinetics of depolymerization: what makes vinyl monomer regeneration possible?. Chem. Sci. 15, 832–853 (2024).
Qin, B. & Zhang, X. On depolymerization. CCS Chem. 6, 297–312 (2024).
Yang, S., Du, S., Zhu, J. & Ma, S. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization–depolymerization cycle. Chem. Soc. Rev. 53, 9609–9651 (2024).
Hong, M. & Chen, E. Y. X. Fully recyclable biopolymers with linear and cyclic topologies by way of ring-opening polymerization of γ-butyrolactone. Nat. Chem. 8, 42–49 (2015).
Odian, G. Ideas of Polymerization (John Wiley & Sons, Inc. 2004); https://doi.org/10.1002/047147875X
Stevens, M. P. Polymer Chemistry: An Introduction third edn (Oxford Univ. Press, Inc., 2009).
Whitfield, R., Jones, G. R., Truong, N. P., Manring, L. E. & Anastasaki, A. Solvent-free chemical recycling of polymethacrylates made by ATRP and RAFT polymerization: high-yielding depolymerization at low temperatures. Angew. Chem. Int. Ed. 62, e202309116 (2023).
Zhang, Q. et al. Twin closed-loop chemical recycling of artificial polymers by intrinsically reconfigurable poly(disulfides). Matter 4, 1352–1364 (2021).
Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like supplies. Nature 590, 423–427 (2021).
Zhou, L. et al. Chemically round, mechanically powerful, and melt-processable polyhydroxyalkanoates. Science 380, 64–69 (2023).
Christensen, P. R., Scheuermann, A. M., Loeffler, Okay. E. & Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442–448 (2019).
Lei, Z. et al. Recyclable and malleable thermosets enabled by activating dormant dynamic linkages. Nat. Chem. 14, 1399–1404 (2022).
Abel, B. A., Snyder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).
Wang, H. S., Truong, N. P., Pei, Z., Coote, M. L. & Anastasaki, A. Reversing RAFT polymerization: Close to-quantitative monomer era by way of a catalyst-free depolymerization method. J. Am. Chem. Soc. 144, 4678–4684 (2022).
Jones, G. R. et al. Reversed managed polymerization (RCP): depolymerization from well-defined polymers to monomers. J. Am. Chem. Soc. 145, 9898–9915 (2023).
Zou, Z. et al. Rehealable, absolutely recyclable, and malleable digital pores and skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 4, eaaq0508 (2018).
Wang, B. et al. Acid-catalyzed disulfide-mediated reversible polymerization for recyclable dynamic covalent supplies. Angew. Chem. Int. Ed. 62, e202215329 (2023).
Shi, C., Quinn, E. C., Diment, W. T. & Chen, E. Y. X. Recyclable and (bio)degradable polyesters in a round plastics economic system. Chem. Rev. 124, 4393–4478 (2024).
Shi, C. et al. Design rules for intrinsically round polymers with tunable properties. Chem 7, 2896–2912 (2021).
Rahimi, A. R. & Garciá, J. M. Chemical recycling of waste plastics for brand new supplies manufacturing. Nat. Rev. Chem. 1, 0046 (2017).
Sheldon, R. A. & Norton, M. Inexperienced chemistry and the plastic air pollution problem: in the direction of a round economic system. Inexperienced Chem. 22, 6310–6322 (2020).
Zhang, Q., Qu, D. H., Feringa, B. L. & Tian, H. Disulfide-mediated reversible polymerization towards intrinsically dynamic sensible supplies. J. Am. Chem. Soc. 144, 2022–2033 (2022).
Van Wart, H. E., Lewis, A., Scheraga, H. A. & Saeva, F. D. Disulfide bond dihedral angles from Raman spectroscopy. Proc. Natl Acad. Sci. USA 70, 2619–2623 (1973).
Deng, Y. et al. Acylhydrazine-based reticular hydrogen bonds allow sturdy, powerful, and dynamic supramolecular supplies. Sci. Adv. 8, eabk3286 (2022).
Albanese, Okay. R., Learn de Alaniz, J., Hawker, C. J. & Bates, C. M. From well being complement to versatile monomer: Radical ring-opening polymerization and depolymerization of α-lipoic acid. Polymer 304, 127167 (2024).
Du, T. et al. Managed and regioselective ring-opening polymerization for poly(disulfide)s by anion-binding catalysis. J. Am. Chem. Soc. 145, 27788–27799 (2023).
Guinée, J. B. et al. Life cycle evaluation: previous, current, and future. Environ. Sci. Technol. 45, 90–96 (2011).
Jenkins, J. D., Luke, M. & Thernstrom, S. Attending to zero carbon emissions within the electrical energy sector. Joule 2, 2498–2510 (2018).
Aida, T. & Meijer, E. W. Supramolecular polymers—we’ve come full circle. Isr. J. Chem. 60, 33–47 (2020).
Lehn, J. M. Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 30, 814–831 (2005).
Roy, N., Schädler, V. & Lehn, J. M. Supramolecular polymers: inherently dynamic supplies. Acc. Chem. Res. 57, 349–361 (2024).
Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4097 (2001).
Kühne, T. D. et al. CP2K: an digital construction and molecular dynamics software program package-Quickstep: environment friendly and correct digital construction calculations. J. Chem. Phys. 152, 194103 (2020).
Becke, A. D. Density-functional exchange-energy approximation with appropriate asymptotic habits. Phys. Rev. A 38, 3098–3100 (1988).
Lee, C., Yang, W. & Parr, R. G. Growth of the Colle-Salvetti correlation-energy method right into a purposeful of the electron density. Phys. Rev. B 37, 785–789 (1988).
Goedecker, S. & Teter, M. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).
Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114, 145–152 (2005).
Liu, D. C. & Nocedal, J. On the restricted reminiscence BFGS technique for giant scale optimization. Math. Program. 45, 503–528 (1989).
Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).
Nosé, S. A unified formulation of the fixed temperature molecular dynamics strategies. J. Chem. Phys. 81, 511–519 (1984).
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).
Ruiz, M. E. Documentation of adjustments carried out within the ecoinvent database v3.10 (2023).
Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impression evaluation technique at midpoint and endpoint degree. Int. J. Life Cycle Assess. 22, 138–147 (2017).
