15.7 C
Canberra
Tuesday, October 21, 2025

Nanosensors for real-time intracellular analytics


  • Liu, Z. & Zhang, Z. Mapping cell varieties throughout human tissues. Science 376, 695–696 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamanaka, S. Pluripotent stem cell-based cell remedy—promise and challenges. Cell Stem Cell 27, 523–531 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological panorama and functions of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, S. et al. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Sign Transduct. Goal. Ther. 8, 132 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rad, M. S., Cohen, L. B., Braubach, O. & Baker, B. J. Monitoring voltage fluctuations of intracellular membranes. Sci. Rep. 8, 6911 (2018).

    Article 

    Google Scholar
     

  • Zhou, C., Zhao, W.-x., You, F.-t., Geng, Z.-x. & Peng, H.-s. Extremely secure and luminescent oxygen nanosensor primarily based on ruthenium-containing metallopolymer for real-time imaging of intracellular oxygenation. ACS Sens. 4, 984–991 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, C., Lu, Ok. & Lin, W. Nanoscale metallic–natural frameworks for real-time intracellular pH sensing in reside cells. J. Am. Chem. Soc. 136, 12253–12256 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X., Ogorevc, B. & Wang, J. Stable-state pH nanoelectrode primarily based on polyaniline skinny movie electrodeposited onto ion-beam etched carbon fiber. Anal. Chim. Acta 452, 1–10 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Soldà, A. et al. Glucose and lactate miniaturized biosensors for SECM-based high-spatial decision evaluation: a comparative examine. ACS Sens. 2, 1310–1318 (2017). This examine develops miniaturized enzymatic glucose and lactate biosensors utilizing Pt ultramicroelectrodes and enzyme immobilization to boost the sensitivity and spatial decision for monitoring metabolic exercise on the single-cell degree with SECM.

    Article 
    PubMed 

    Google Scholar
     

  • Yuan, X. et al. Versatile live-cell exercise evaluation platform for characterization of neuronal dynamics at single-cell and community degree. Nat. Commun. 11, 4854 (2020). This examine presents a dual-mode high-density microelectrode array platform that permits long-term, label-free electrophysiological imaging of neuronal cultures at subcellular, single-cell, and community ranges, integrating full-frame (19,584 electrodes) and high-SNR (246 channels) recording modes to help high-throughput evaluation of neuronal dynamics.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, H. S. et al. CMOS electrochemical pH localizer-imager. Sci. Adv. 8, eabm6815 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cools, J. et al. 3D microstructured carbon nanotube electrodes for trapping and recording electrogenic cells. Adv. Funct. Mater. 27, 1701083 (2017).

    Article 

    Google Scholar
     

  • Zhou, X.-L., Yang, Y., Wang, S. & Liu, X.-W. Floor plasmon resonance microscopy: from single-molecule sensing to single-cell imaging. Angew. Chem. 132, 1792–1801 (2020).

    Article 

    Google Scholar
     

  • Tanaka, H. et al. Potassium ion dynamics imaging by means of supported lipid bilayers with floor plasmon resonance microscopy. ACS Photonics 9, 3412–3420 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shinohara, H., Sakai, Y. & Mir, T. A. Actual-time monitoring of intracellular sign transduction in PC12 cells by two-dimensional floor plasmon resonance imager. Anal. Biochem. 441, 185–189 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nascimento, R. A. S. et al. Single cell “glucose nanosensor” verifies elevated glucose ranges in particular person most cancers cells. Nano Lett. 16, 1194–1200 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X., Dunevall, J. & Ewing, A. G. Quantitative chemical measurements of vesicular transmitters with electrochemical cytometry. Acc. Chem. Res. 49, 2347–2354 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Ok., Vo, Ok. L. L., Hatamie, A. & Ewing, A. G. Quantifying intracellular single vesicular catecholamine focus with open carbon nanopipettes to unveil the impact of L-DOPA on vesicular construction. Angew. Chem. 134, e202113406 (2022).

    Article 

    Google Scholar
     

  • Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Intracellular recording of motion potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012). This examine demonstrates using vertically aligned nanopillar electrodes to realize long-term, high-fidelity intracellular and extracellular recordings of cardiomyocyte motion potentials by forming tight membrane–electrode junctions and enabling reversible, localized electroporation to considerably cut back cell–electrode impedance, enabling the delicate pharmacological evaluation of ion channel exercise.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jahed, Z. et al. Nanocrown electrodes for parallel and strong intracellular recording of cardiomyocytes. Nat. Commun. 13, 2253 (2022). This examine develops semi-hollow nanocrown electrodes for intracellular motion potential recordings, enablingparallel and long-term recording in a minimally invasive method.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbott, J. et al. A nanoelectrode array for acquiring intracellular recordings from hundreds of related neurons. Nat. Biomed. Eng. 4, 232–241 (2019). This examine presents a CMOS-based, massively parallel intracellular recording system integrating 4,096 vertical nanoelectrode websites, enabling the high-resolution measurement of chemical synapse traits and large-scale mapping of synaptic connectivity throughout neuronal networks.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, R. et al. Extremely-sharp nanowire arrays natively permeate, report, and stimulate intracellular exercise in neuronal and cardiac networks. Adv. Funct. Mater. 32, 2108378 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spira, M. E., Shmoel, N., Huang, S.-H. M. & Erez, H. Multisite attenuated intracellular recordings by extracellular multielectrode arrays, a perspective. Entrance. Neurosci. 12, 212 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desbiolles, B. X. E., de Coulon, E., Bertsch, A., Rohr, S. & Renaud, P. Intracellular recording of cardiomyocyte motion potentials with nanopatterned volcano-shaped microelectrode arrays. Nano Lett. 19, 6173–6181 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017). This examine introduces a scalable 3D field-effect transistor array platform for the correct, minimally invasive recording of transmembrane potentials, enabling high-resolution measurements of intracellular sign conduction in cardiomyocytes and cardiac tissue constructs.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, Y. et al. Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat. Nanotechnol. 17, 292–300 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanif, S. et al. Natural cyanide embellished SERS lively nanopipettes for quantitative detection of hemeproteins and Fe3+ in single cells. Anal. Chem. 89, 2522–2530 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lussier, F. et al. Dynamic-SERS optophysiology: a nanosensor for monitoring cell secretion occasions. Nano Lett. 16, 3866–3871 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, R. et al. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 7, 191–196 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rotenberg, M. Y. et al. Silicon nanowires for intracellular optical interrogation with subcellular decision. Nano Lett. 20, 1226–1232 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shibata, T. et al. Photocatalytic nanofabrication and intracellular Raman imaging of dwelling cells with functionalized AFM probes. Micromachines 11, 495 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichikawa, T. et al. Protocol for reside imaging of intracellular nanoscale constructions utilizing atomic drive microscopy with nanoneedle probes. STAR Protoc. 4, 102468 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penedo, M. et al. Visualizing intracellular nanostructures of dwelling cells by nanoendoscopy-AFM. Sci. Adv. 7, eabj4990 (2023).

    Article 

    Google Scholar
     

  • Ding, H., Su, B. & Jiang, D. Latest advances in single cell evaluation by electrochemiluminescence. ChemistryOpen 12, e202200113 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Electrochemiluminescence-microscopy for microRNA imaging in single most cancers cell mixed with chemotherapy-photothermal remedy. Anal. Chem. 91, 12581–12586 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, X. et al. A brand new extremely selective fluorescent Ok+ sensor. J. Am. Chem. Soc. 133, 18530–18533 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iamshanova, O., Mariot, P., Lehen’kyi, V. & Prevarskaya, N. Comparability of fluorescence probes for intracellular sodium imaging in prostate most cancers cell strains. Eur. Biophys. J. 45, 765–777 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. et al. A near-infrared-emitting fluorescent probe for monitoring mitochondrial pH. Chem. Commun. 50, 7184–7187 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mita, M. et al. Inexperienced fluorescent protein-based glucose indicators report glucose dynamics in dwelling cells. Anal. Chem. 91, 4821–4830 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, J. et al. Noninvasive and extremely selective monitoring of intracellular glucose through a two-step recognition-based nanokit. Anal. Chem. 89, 8319–8327 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Simultaneous quantitation of Na+ and Ok+ in single regular and most cancers cells utilizing a brand new near-infrared fluorescent probe. Anal. Chem. 87, 6057–6063 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choe, M. & Titov, D. V. Genetically encoded instruments for measuring and manipulating metabolism. Nat. Chem. Biol. 18, 451–460 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Movement-based DNA detection utilizing catalytic nanomotors. Nat. Commun. 1, 36 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, X., Li, Y., Wu, J. & Ju, H. Motor-based autonomous microsensor for movement and counting immunoassay of most cancers biomarker. Anal. Chem. 86, 4501–4507 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balasubramanian, S. et al. Micromachine-enabled seize and isolation of most cancers cells in advanced media. Angew. Chem. Int. Ed. 50, 4161–4164 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Esteban-Fernández de Ávila, B. et al. Single cell real-time miRNAs sensing primarily based on nanomotors. ACS Nano 9, 6756–6764 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Pal, M. et al. Helical nanobots as mechanical probes of intra- and extracellular environments. J. Phys. Condens. Matter 32, 224001 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damage, R. C. et al. Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing micro organism. Nat. Biotechnol. 41, 919–931 (2023). This examine develops improved acoustic reporter genes that provide enhanced ultrasound distinction and secure in vivo expression for the non-invasive imaging of tumour colonization and gene expression.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pleasure, B., Cai, Y., Bono, D. C. & Sarkar, D. Cell Rover—a miniaturized magnetostrictive antenna for wi-fi operation inside dwelling cells. Nat. Commun. 13, 5210 (2022). This examine introduces the Cell Rover, a magnetic antenna that’s able to wirelessly working inside dwelling cells, offering a platform for superior intracellular sensing.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gómez-Martínez, R. et al. Silicon chips detect intracellular stress modifications in dwelling cells. Nat. Nanotechnol. 8, 517–521 (2013). This examine presents a silicon chip internalized into dwelling cells, enabling the direct measurement of intracellular stress modifications in a minimally invasive method.

    Article 
    PubMed 

    Google Scholar
     

  • Airaghi Leccardi, M. J. I. et al. Mild-induced rolling of azobenzene polymer skinny movies for wrapping subcellular neuronal constructions. Commun. Chem. 7, 249 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahmani, Ok. et al. Clever in-cell electrophysiology: reconstructing intracellular motion potentials utilizing a physics-informed deep studying mannequin educated on nanoelectrode array recordings. Nat. Commun. 16, 657 (2025). This examine develops a physics-informed deep studying mannequin to reconstruct intracellular motion potentials from extracellular recordings on nanoelectrode and microelectrode arrays, enabling high-throughput, non-invasive electrophysiology for cardiotoxicity assessments with out direct internalization of the probe for sensing.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krumm, A. & Carey, C. Actual-time monitoring of mobile metabolic exercise: intracellular oxygen. Nat. Strategies 13, i–ii (2016).

    Article 

    Google Scholar
     

  • Hu, Q. et al. Genetically encoded biosensors for evaluating NAD+/NADH ratio in cytosolic and mitochondrial compartments. Cell Rep. Strategies 1, 100116 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giorgio, M., Trinei, M., Migliaccio, E. & Pelicci, P. G. Hydrogen peroxide: A metabolic by-product or a standard mediator of ageing alerts?. Nat. Rev. Mol. Cell Biol. 9, 722–728 (2007).

    Article 

    Google Scholar
     

  • Shu, Y. et al. Remoted cobalt atoms on N-doped carbon as nanozymes for hydrogen peroxide and dopamine detection. ACS Appl. Nano Mater. 4, 7954–7962 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jaworska, A., Malek, Ok. & Kudelski, A. Intracellular pH – benefits and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy – a evaluation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 251, 119410 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, X.-M., Groveman, B. R., Fang, X.-Q. & Lin, S.-X. The function of intracellular sodium (Na+) within the regulation of calcium (Ca2+)-mediated signaling and toxicity. Well being (Irvine Calif.). 2, 8–15 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, X.-M. et al. A supersmall single-cell nanosensor for intracellular Ok+ detection. CCS Chem. 3, 2359–2367 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bootman, M. D. & Bultynck, G. Fundamentals of mobile calcium signaling: a primer. Chilly Spring Harb. Perspect. Biol. 12, a038802 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shindo, Y., Yamanaka, R., Suzuki, Ok., Hotta, Ok. & Oka, Ok. Intracellular magnesium degree determines cell viability within the MPP+ mannequin of Parkinson’s illness. Biochim. Biophys. Acta Mol. Cell Res. 1853, 3182–3191 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Stauber, T. & Jentsch, T. J. Chloride in vesicular trafficking and performance. Annu. Rev. Physiol. 75, 453–477 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergwitz, C. & Jüppner, H. Phosphate sensing. Adv. Power Kidney Dis. 18, 132–144 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles