Singh, A. In direction of resolving proteomes in single cells. Nat. Strategies 18, 856 (2021).
Bennett, H. M., Stephenson, W., Rose, C. M. & Darmanis, S. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat. Strategies 20, 363–374 (2023).
MacCoss, M. J. et al. Sampling the proteome by rising single-molecule and mass spectrometry strategies. Nat. Strategies 20, 339–346 (2023).
Alfaro, J. A. et al. The rising panorama of single-molecule protein sequencing applied sciences. Nat. Strategies 18, 604–617 (2021).
Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids utilizing an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).
Yusko, E. C. et al. Actual-time form approximation and fingerprinting of single proteins utilizing a nanopore. Nat. Nanotechnol. 12, 360–367 (2017).
Jiang, J. et al. Protein nanopore reveals the renin–angiotensin system crosstalk with single-amino-acid decision. Nat. Chem. 15, 578–586 (2023).
Martin-Baniandres, P. et al. Enzyme-less nanopore detection of post-translational modifications inside lengthy polypeptides. Nat. Nanotechnol. 18, 1335–1340 (2023).
Reed, B. D. et al. Actual-time dynamic single-molecule protein sequencing on an built-in semiconductor machine. Science 378, 186–192 (2022).
Swaminathan, J. et al. Extremely parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. 36, 1076–1091 (2018).
Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. A number of rereads of single proteins at single-amino acid decision utilizing nanopores. Science 374, 1509–1513 (2021).
Ohayon, S. et al. Full‐size single protein molecules monitoring and counting in skinny silicon channels. Adv. Mater. 36, 2314319 (2024).
Filius, M. et al. Full-length single-molecule protein fingerprinting. Nat. Nanotechnol. 5, 652–659 (2024).
Wang, Ok. et al. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nat. Strategies 21, 92–101 (2023).
Zhang, M. et al. Actual-time detection of 20 amino acids and discrimination of pathologically related peptides with functionalized nanopore. Nat. Strategies 21, 609–618 (2024).
Yu, L. et al. Unidirectional single-file transport of full-length proteins by means of a nanopore. Nat. Biotechnol. 41, 1130–1139 (2023).
Soni, N., Freundlich, N., Ohayon, S., Huttner, D. & Meller, A. Single-file translocation dynamics of SDS-denatured, complete proteins by means of sub-5 nm solid-state nanopores. ACS Nano 16, 11405–11414 (2022).
Sauciuc, A., Morozzo della Rocca, B., Tadema, M. J., Chinappi, M. & Maglia, G. Translocation of linearized full-length proteins by means of an engineered nanopore below opposing electrophoretic drive. Nat. Biotechnol. 42, 1275–1281 (2023).
Restrepo-Pérez, L., John, S., Aksimentiev, A., Joo, C. & Dekker, C. SDS-assisted protein transport by means of solid-state nanopores. Nanoscale 9, 11685–11693 (2017).
Motone, Ok. et al. Multi-pass, single-molecule nanopore studying of lengthy protein strands. Nature 633, 662–669 (2024).
Sauciuc, A. & Maglia, G. Managed translocation of proteins by means of a organic nanopore for single-protein fingerprint identification. Nano. Lett. 24, 14118–14124 (2024).
Qing, Y., Ionescu, S. A., Pulcu, G. S. & Bayley, H. Directional management of a processive molecular hopper. Science 361, 908–912 (2018).
Thakur, M. et al. Wafer-scale fabrication of nanopore gadgets for single-molecule DNA biosensing utilizing MoS2. Small Strategies 4, 2000072 (2020).
De Vreede, L. J. et al. Wafer-scale fabrication of fused silica chips for low-noise recording of resistive pulses by means of nanopores. Nanotechnology 30, 265301 (2019).
Leitao, S. M. et al. Spatially multiplexed single-molecule translocations by means of a nanopore at managed speeds. Nat. Nanotechnol. 18, 1078–1084 (2023).
Liu, H., Zhou, Q., Wang, W., Fang, F. & Zhang, J. Strong-state nanopore array: manufacturing and functions. Small 19, 2205680 (2023).
Kim, M. J., Wanunu, M., Bell, D. C. & Meller, A. Fast fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA evaluation. Adv. Mater. 18, 3149–3153 (2006).
Yuan, Z., Lei, X. & Wang, C. Controllable fabrication of strong state nanopores array by electron beam shrinking. Int. J. Mach. Instruments Manuf. 159, 103623 (2020).
Verschueren, D. V., Yang, W. & Dekker, C. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes. Nanotechnology 29, 145302 (2018).
Dela Torre, R., Larkin, J., Singer, A. & Meller, A. Fabrication and characterization of solid-state nanopore arrays for high-throughput DNA sequencing. Nanotechnology 23, 385308 (2012).
Zvuloni, E., Zrehen, A., Gilboa, T. & Meller, A. Quick and deterministic fabrication of sub-5 nanometer solid-state pores by feedback-controlled laser processing. ACS Nano 15, 12189–12200 (2021).
Giannopoulos, I., Mochi, I., Vockenhuber, M., Ekinci, Y. & Kazazis, D. Excessive ultraviolet lithography reaches 5 nm decision. Nanoscale 16, 15533–15543 (2024).
Wanunu, M., Sutin, J., McNally, B., Chow, A. & Meller, A. DNA translocation ruled by interactions with solid-state nanopores. Biophys. J. 95, 4716–4725 (2008).
Soni, N., Chandra Verma, N., Talor, N. & Meller, A. Over 30-fold enhancement in DNA translocation dynamics by means of nanoscale pores coated with an anionic surfactant. Nano Lett. 23, 4609–4616 (2023).
Wells, D. B., Abramkina, V. & Aksimentiev, A. Exploring transmembrane transport by means of α-hemolysin with grid-steered molecular dynamics. J. Chem. Phys. 127, 125101 (2007).
Kowalczyk, S. W., Grosberg, A. Y., Rabin, Y. & Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22, 315101 (2011).
Mohapatra, S., Teherpuria, H., Mogurampelly, S., Downton, M. & Kannam, S. Ok. Ionic circulate by means of partially blocked nanopores. Phys. Chem. Chem. Phys. 26, 26911–26920 (2024).
Sadasivan, H., Stiffler, D., Tirumala, A., Israeli, J. & Narayanasamy, S. Accelerated dynamic time warping on GPU for selective nanopore sequencing. J. Biotechnol. Biomed. 07, 137–148 (2024).
Chesnokov, M. S. et al. Shift in VEGFA isoform stability in the direction of extra angiogenic variants is related to tumor stage and differentiation of human hepatocellular carcinoma. PeerJ 2018, e4915 (2018).
Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y. & Meller, A. Electrostatic focusing of unlabelled DNA into nanoscale pores utilizing a salt gradient. Nat. Nanotechnol. 5, 160–165 (2010).
Comer, J., Dimitrov, V., Zhao, Q., Timp, G. & Aksimentiev, A. Microscopic mechanics of hairpin DNA translocation by means of artificial nanopores. Biophys. J. 96, 593–608 (2009).
Zrehen, A., Gilboa, T. & Meller, A. Actual-time visualization and sub-diffraction restrict localization of nanometer-scale pore formation by dielectric breakdown. Nanoscale 9, 16437–16445 (2017).
Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).
Huang, J. & Mackerell, A. D. CHARMM36 all-atom additive protein drive discipline: validation primarily based on comparability to NMR knowledge. J. Comput. Chem. 34, 2135–2145 (2013).
Yoo, J. & Aksimentiev, A. New methods for outdated canine: enhancing the accuracy of biomolecular drive fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 20, 8432–8449 (2018).
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of straightforward potential capabilities for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
Miyamoto, S. & Kollman, P. A. SETTLE: an analytical model of the SHAKE and RATTLE algorithm for inflexible water fashions. J. Comput. Chem. 13, 952–962 (1992).
Andersen, H. C. RATTLE: a ‘velocity’ model of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983).
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) technique for Ewald sums in massive methods. J. Chem. Phys. 98, 10089–10092 (1993).
Martyna, G. J., Tobias, D. J. & Klein, M. L. Fixed stress molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).
Aksimentiev, A. & Schulten, Ok. Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 88, 3745–3761 (2005).
Humphrey, W., Dalke, A. & Schulten, Ok. VMD: visible molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
Permyakov, E. A. & Berliner, L. J. α-Lactalbumin: construction and performance. FEBS Lett. 473, 269–274 (2000).
Vanommeslaeghe, Ok., Raman, E. P. & MacKerell, A. D. Automation of the CHARMM Normal Power Discipline (CGenFF) II: project of bonded parameters and partial atomic fees. J. Chem. Inf. Mannequin 52, 3155–3168 (2012).
Schmid, S., Stömmer, P., Dietz, H. & Dekker, C. Nanopore electro-osmotic lure for the label-free research of single proteins and their conformations. Nat. Nanotechnol. 16, 1244–1250 (2021).
Soni, N., Verma, N. C. & Meller, A. Full-length protein classification by way of cysteine fingerprinting in solid-state nanopores: supply knowledge and codes. Zenodo https://doi.org/10.5281/zenodo.16789170 (2025).