20.7 C
Canberra
Friday, October 24, 2025

Naming and finding objects in photos


We’ve all grow to be used to deep studying’s success in picture classification. Higher Swiss Mountain canine or Bernese mountain canine? Crimson panda or large panda? No drawback.
Nevertheless, in actual life it’s not sufficient to call the only most salient object on an image. Prefer it or not, one of the crucial compelling examples is autonomous driving: We don’t need the algorithm to acknowledge simply that automobile in entrance of us, but additionally the pedestrian about to cross the road. And, simply detecting the pedestrian isn’t adequate. The precise location of objects issues.

The time period object detection is often used to seek advice from the duty of naming and localizing a number of objects in a picture body. Object detection is tough; we’ll construct as much as it in a unfastened collection of posts, specializing in ideas as an alternative of aiming for final efficiency. As we speak, we’ll begin with just a few simple constructing blocks: Classification, each single and a number of; localization; and mixing each classification and localization of a single object.

Dataset

We’ll be utilizing photos and annotations from the Pascal VOC dataset which could be downloaded from this mirror.
Particularly, we’ll use knowledge from the 2007 problem and the identical JSON annotation file as used within the quick.ai course.

Fast obtain/group directions, shamelessly taken from a useful publish on the quick.ai wiki, are as follows:

# mkdir knowledge && cd knowledge
# curl -OL http://pjreddie.com/media/recordsdata/VOCtrainval_06-Nov-2007.tar
# curl -OL https://storage.googleapis.com/coco-dataset/exterior/PASCAL_VOC.zip
# tar -xf VOCtrainval_06-Nov-2007.tar
# unzip PASCAL_VOC.zip
# mv PASCAL_VOC/*.json .
# rmdir PASCAL_VOC
# tar -xvf VOCtrainval_06-Nov-2007.tar

In phrases, we take the photographs and the annotation file from completely different locations:

Whether or not you’re executing the listed instructions or arranging recordsdata manually, it’s best to ultimately find yourself with directories/recordsdata analogous to those:

img_dir <- "knowledge/VOCdevkit/VOC2007/JPEGImages"
annot_file <- "knowledge/pascal_train2007.json"

Now we have to extract some data from that json file.

Preprocessing

Let’s rapidly ensure that we have now all required libraries loaded.

Annotations include details about three sorts of issues we’re interested by.

annotations <- fromJSON(file = annot_file)
str(annotations, max.degree = 1)
Record of 4
 $ photos     :Record of 2501
 $ sort       : chr "situations"
 $ annotations:Record of 7844
 $ classes :Record of 20

First, traits of the picture itself (peak and width) and the place it’s saved. Not surprisingly, right here it’s one entry per picture.

Then, object class ids and bounding field coordinates. There could also be a number of of those per picture.
In Pascal VOC, there are 20 object lessons, from ubiquitous automobiles (automobile, aeroplane) over indispensable animals (cat, sheep) to extra uncommon (in widespread datasets) varieties like potted plant or television monitor.

lessons <- c(
  "aeroplane",
  "bicycle",
  "hen",
  "boat",
  "bottle",
  "bus",
  "automobile",
  "cat",
  "chair",
  "cow",
  "diningtable",
  "canine",
  "horse",
  "motorcycle",
  "particular person",
  "pottedplant",
  "sheep",
  "couch",
  "practice",
  "tvmonitor"
)

boxinfo <- annotations$annotations %>% {
  tibble(
    image_id = map_dbl(., "image_id"),
    category_id = map_dbl(., "category_id"),
    bbox = map(., "bbox")
  )
}

The bounding bins at the moment are saved in an inventory column and should be unpacked.

boxinfo <- boxinfo %>% 
  mutate(bbox = unlist(map(.$bbox, operate(x) paste(x, collapse = " "))))
boxinfo <- boxinfo %>% 
  separate(bbox, into = c("x_left", "y_top", "bbox_width", "bbox_height"))
boxinfo <- boxinfo %>% mutate_all(as.numeric)

For the bounding bins, the annotation file supplies x_left and y_top coordinates, in addition to width and peak.
We are going to largely be working with nook coordinates, so we create the lacking x_right and y_bottom.

As traditional in picture processing, the y axis begins from the highest.

boxinfo <- boxinfo %>% 
  mutate(y_bottom = y_top + bbox_height - 1, x_right = x_left + bbox_width - 1)

Lastly, we nonetheless have to match class ids to class names.

So, placing all of it collectively:

Observe that right here nonetheless, we have now a number of entries per picture, every annotated object occupying its personal row.

There’s one step that can bitterly damage our localization efficiency if we later neglect it, so let’s do it now already: We have to scale all bounding field coordinates in accordance with the precise picture measurement we’ll use once we cross it to our community.

target_height <- 224
target_width <- 224

imageinfo <- imageinfo %>% mutate(
  x_left_scaled = (x_left / image_width * target_width) %>% spherical(),
  x_right_scaled = (x_right / image_width * target_width) %>% spherical(),
  y_top_scaled = (y_top / image_height * target_height) %>% spherical(),
  y_bottom_scaled = (y_bottom / image_height * target_height) %>% spherical(),
  bbox_width_scaled =  (bbox_width / image_width * target_width) %>% spherical(),
  bbox_height_scaled = (bbox_height / image_height * target_height) %>% spherical()
)

Let’s take a look at our knowledge. Choosing one of many early entries and displaying the unique picture along with the thing annotation yields

img_data <- imageinfo[4,]
img <- image_read(file.path(img_dir, img_data$file_name))
img <- image_draw(img)
rect(
  img_data$x_left,
  img_data$y_bottom,
  img_data$x_right,
  img_data$y_top,
  border = "white",
  lwd = 2
)
textual content(
  img_data$x_left,
  img_data$y_top,
  img_data$identify,
  offset = 1,
  pos = 2,
  cex = 1.5,
  col = "white"
)
dev.off()

Now as indicated above, on this publish we’ll largely deal with dealing with a single object in a picture. This implies we have now to determine, per picture, which object to single out.

An inexpensive technique appears to be selecting the thing with the most important floor fact bounding field.

After this operation, we solely have 2501 photos to work with – not many in any respect! For classification, we may merely use knowledge augmentation as supplied by Keras, however to work with localization we’d must spin our personal augmentation algorithm.
We’ll depart this to a later event and for now, concentrate on the fundamentals.

Lastly after train-test cut up

train_indices <- pattern(1:n_samples, 0.8 * n_samples)
train_data <- imageinfo_maxbb[train_indices,]
validation_data <- imageinfo_maxbb[-train_indices,]

our coaching set consists of 2000 photos with one annotation every. We’re prepared to begin coaching, and we’ll begin gently, with single-object classification.

Single-object classification

In all circumstances, we’ll use XCeption as a primary characteristic extractor. Having been educated on ImageNet, we don’t count on a lot tremendous tuning to be essential to adapt to Pascal VOC, so we depart XCeption’s weights untouched

feature_extractor <-
  application_xception(
    include_top = FALSE,
    input_shape = c(224, 224, 3),
    pooling = "avg"
)

feature_extractor %>% freeze_weights()

and put only a few customized layers on high.

mannequin <- keras_model_sequential() %>%
  feature_extractor %>%
  layer_batch_normalization() %>%
  layer_dropout(price = 0.25) %>%
  layer_dense(items = 512, activation = "relu") %>%
  layer_batch_normalization() %>%
  layer_dropout(price = 0.5) %>%
  layer_dense(items = 20, activation = "softmax")

mannequin %>% compile(
  optimizer = "adam",
  loss = "sparse_categorical_crossentropy",
  metrics = listing("accuracy")
)

How ought to we cross our knowledge to Keras? We may easy use Keras’ image_data_generator, however given we’ll want customized mills quickly, we’ll construct a easy one ourselves.
This one delivers photos in addition to the corresponding targets in a stream. Observe how the targets aren’t one-hot-encoded, however integers – utilizing sparse_categorical_crossentropy as a loss operate permits this comfort.

batch_size <- 10

load_and_preprocess_image <- operate(image_name, target_height, target_width) {
  img_array <- image_load(
    file.path(img_dir, image_name),
    target_size = c(target_height, target_width)
    ) %>%
    image_to_array() %>%
    xception_preprocess_input() 
  dim(img_array) <- c(1, dim(img_array))
  img_array
}

classification_generator <-
  operate(knowledge,
           target_height,
           target_width,
           shuffle,
           batch_size) {
    i <- 1
    operate() {
      if (shuffle) {
        indices <- pattern(1:nrow(knowledge), measurement = batch_size)
      } else {
        if (i + batch_size >= nrow(knowledge))
          i <<- 1
        indices <- c(i:min(i + batch_size - 1, nrow(knowledge)))
        i <<- i + size(indices)
      }
      x <-
        array(0, dim = c(size(indices), target_height, target_width, 3))
      y <- array(0, dim = c(size(indices), 1))
      
      for (j in 1:size(indices)) {
        x[j, , , ] <-
          load_and_preprocess_image(knowledge[[indices[j], "file_name"]],
                                    target_height, target_width)
        y[j, ] <-
          knowledge[[indices[j], "category_id"]] - 1
      }
      x <- x / 255
      listing(x, y)
    }
  }

train_gen <- classification_generator(
  train_data,
  target_height = target_height,
  target_width = target_width,
  shuffle = TRUE,
  batch_size = batch_size
)

valid_gen <- classification_generator(
  validation_data,
  target_height = target_height,
  target_width = target_width,
  shuffle = FALSE,
  batch_size = batch_size
)

Now how does coaching go?

mannequin %>% fit_generator(
  train_gen,
  epochs = 20,
  steps_per_epoch = nrow(train_data) / batch_size,
  validation_data = valid_gen,
  validation_steps = nrow(validation_data) / batch_size,
  callbacks = listing(
    callback_model_checkpoint(
      file.path("class_only", "weights.{epoch:02d}-{val_loss:.2f}.hdf5")
    ),
    callback_early_stopping(persistence = 2)
  )
)

For us, after 8 epochs, accuracies on the practice resp. validation units had been at 0.68 and 0.74, respectively. Not too dangerous given given we’re attempting to distinguish between 20 lessons right here.

Now let’s rapidly assume what we’d change if we had been to categorise a number of objects in a single picture. Adjustments largely concern preprocessing steps.

A number of object classification

This time, we multi-hot-encode our knowledge. For each picture (as represented by its filename), right here we have now a vector of size 20 the place 0 signifies absence, 1 means presence of the respective object class:

image_cats <- imageinfo %>% 
  choose(category_id) %>%
  mutate(category_id = category_id - 1) %>%
  pull() %>%
  to_categorical(num_classes = 20)

image_cats <- knowledge.body(image_cats) %>%
  add_column(file_name = imageinfo$file_name, .earlier than = TRUE)

image_cats <- image_cats %>% 
  group_by(file_name) %>% 
  summarise_all(.funs = funs(max))

n_samples <- nrow(image_cats)
train_indices <- pattern(1:n_samples, 0.8 * n_samples)
train_data <- image_cats[train_indices,]
validation_data <- image_cats[-train_indices,]

Correspondingly, we modify the generator to return a goal of dimensions batch_size * 20, as an alternative of batch_size * 1.

classification_generator <- 
  operate(knowledge,
           target_height,
           target_width,
           shuffle,
           batch_size) {
    i <- 1
    operate() {
      if (shuffle) {
        indices <- pattern(1:nrow(knowledge), measurement = batch_size)
      } else {
        if (i + batch_size >= nrow(knowledge))
          i <<- 1
        indices <- c(i:min(i + batch_size - 1, nrow(knowledge)))
        i <<- i + size(indices)
      }
      x <-
        array(0, dim = c(size(indices), target_height, target_width, 3))
      y <- array(0, dim = c(size(indices), 20))
      
      for (j in 1:size(indices)) {
        x[j, , , ] <-
          load_and_preprocess_image(knowledge[[indices[j], "file_name"]], 
                                    target_height, target_width)
        y[j, ] <-
          knowledge[indices[j], 2:21] %>% as.matrix()
      }
      x <- x / 255
      listing(x, y)
    }
  }

train_gen <- classification_generator(
  train_data,
  target_height = target_height,
  target_width = target_width,
  shuffle = TRUE,
  batch_size = batch_size
)

valid_gen <- classification_generator(
  validation_data,
  target_height = target_height,
  target_width = target_width,
  shuffle = FALSE,
  batch_size = batch_size
)

Now, probably the most attention-grabbing change is to the mannequin – despite the fact that it’s a change to 2 strains solely.
Had been we to make use of categorical_crossentropy now (the non-sparse variant of the above), mixed with a softmax activation, we might successfully inform the mannequin to select only one, specifically, probably the most possible object.

As an alternative, we wish to determine: For every object class, is it current within the picture or not? Thus, as an alternative of softmax we use sigmoid, paired with binary_crossentropy, to acquire an impartial verdict on each class.

feature_extractor <-
  application_xception(
    include_top = FALSE,
    input_shape = c(224, 224, 3),
    pooling = "avg"
  )

feature_extractor %>% freeze_weights()

mannequin <- keras_model_sequential() %>%
  feature_extractor %>%
  layer_batch_normalization() %>%
  layer_dropout(price = 0.25) %>%
  layer_dense(items = 512, activation = "relu") %>%
  layer_batch_normalization() %>%
  layer_dropout(price = 0.5) %>%
  layer_dense(items = 20, activation = "sigmoid")

mannequin %>% compile(optimizer = "adam",
                  loss = "binary_crossentropy",
                  metrics = listing("accuracy"))

And eventually, once more, we match the mannequin:

mannequin %>% fit_generator(
  train_gen,
  epochs = 20,
  steps_per_epoch = nrow(train_data) / batch_size,
  validation_data = valid_gen,
  validation_steps = nrow(validation_data) / batch_size,
  callbacks = listing(
    callback_model_checkpoint(
      file.path("multiclass", "weights.{epoch:02d}-{val_loss:.2f}.hdf5")
    ),
    callback_early_stopping(persistence = 2)
  )
)

This time, (binary) accuracy surpasses 0.95 after one epoch already, on each the practice and validation units. Not surprisingly, accuracy is considerably increased right here than once we needed to single out one among 20 lessons (and that, with different confounding objects current typically!).

Now, chances are high that in case you’ve completed any deep studying earlier than, you’ve completed picture classification in some kind, even perhaps within the multiple-object variant. To construct up within the path of object detection, it’s time we add a brand new ingredient: localization.

Single-object localization

From right here on, we’re again to coping with a single object per picture. So the query now could be, how will we be taught bounding bins?
In the event you’ve by no means heard of this, the reply will sound unbelievably easy (naive even): We formulate this as a regression drawback and purpose to foretell the precise coordinates. To set reasonable expectations – we certainly shouldn’t count on final precision right here. However in a means it’s superb it does even work in any respect.

What does this imply, formulate as a regression drawback? Concretely, it means we’ll have a dense output layer with 4 items, every akin to a nook coordinate.

So let’s begin with the mannequin this time. Once more, we use Xception, however there’s an essential distinction right here: Whereas earlier than, we mentioned pooling = "avg" to acquire an output tensor of dimensions batch_size * variety of filters, right here we don’t do any averaging or flattening out of the spatial grid. It’s because it’s precisely the spatial data we’re interested by!

For Xception, the output decision shall be 7×7. So a priori, we shouldn’t count on excessive precision on objects a lot smaller than about 32×32 pixels (assuming the usual enter measurement of 224×224).

feature_extractor <- application_xception(
  include_top = FALSE,
  input_shape = c(224, 224, 3)
)

feature_extractor %>% freeze_weights()

Now we append our customized regression module.

mannequin <- keras_model_sequential() %>%
  feature_extractor %>%
  layer_flatten() %>%
  layer_batch_normalization() %>%
  layer_dropout(price = 0.25) %>%
  layer_dense(items = 512, activation = "relu") %>%
  layer_batch_normalization() %>%
  layer_dropout(price = 0.5) %>%
  layer_dense(items = 4)

We are going to practice with one of many loss features frequent in regression duties, imply absolute error. However in duties like object detection or segmentation, we’re additionally interested by a extra tangible amount: How a lot do estimate and floor fact overlap?

Overlap is often measured as Intersection over Union, or Jaccard distance. Intersection over Union is strictly what it says, a ratio between house shared by the objects and house occupied once we take them collectively.

To evaluate the mannequin’s progress, we are able to simply code this as a customized metric:

metric_iou <- operate(y_true, y_pred) {
  
  # order is [x_left, y_top, x_right, y_bottom]
  intersection_xmin <- k_maximum(y_true[ ,1], y_pred[ ,1])
  intersection_ymin <- k_maximum(y_true[ ,2], y_pred[ ,2])
  intersection_xmax <- k_minimum(y_true[ ,3], y_pred[ ,3])
  intersection_ymax <- k_minimum(y_true[ ,4], y_pred[ ,4])
  
  area_intersection <- (intersection_xmax - intersection_xmin) * 
                       (intersection_ymax - intersection_ymin)
  area_y <- (y_true[ ,3] - y_true[ ,1]) * (y_true[ ,4] - y_true[ ,2])
  area_yhat <- (y_pred[ ,3] - y_pred[ ,1]) * (y_pred[ ,4] - y_pred[ ,2])
  area_union <- area_y + area_yhat - area_intersection
  
  iou <- area_intersection/area_union
  k_mean(iou)
  
}

Mannequin compilation then goes like

mannequin %>% compile(
  optimizer = "adam",
  loss = "mae",
  metrics = listing(custom_metric("iou", metric_iou))
)

Now modify the generator to return bounding field coordinates as targets…

localization_generator <-
  operate(knowledge,
           target_height,
           target_width,
           shuffle,
           batch_size) {
    i <- 1
    operate() {
      if (shuffle) {
        indices <- pattern(1:nrow(knowledge), measurement = batch_size)
      } else {
        if (i + batch_size >= nrow(knowledge))
          i <<- 1
        indices <- c(i:min(i + batch_size - 1, nrow(knowledge)))
        i <<- i + size(indices)
      }
      x <-
        array(0, dim = c(size(indices), target_height, target_width, 3))
      y <- array(0, dim = c(size(indices), 4))
      
      for (j in 1:size(indices)) {
        x[j, , , ] <-
          load_and_preprocess_image(knowledge[[indices[j], "file_name"]], 
                                    target_height, target_width)
        y[j, ] <-
          knowledge[indices[j], c("x_left_scaled",
                             "y_top_scaled",
                             "x_right_scaled",
                             "y_bottom_scaled")] %>% as.matrix()
      }
      x <- x / 255
      listing(x, y)
    }
  }

train_gen <- localization_generator(
  train_data,
  target_height = target_height,
  target_width = target_width,
  shuffle = TRUE,
  batch_size = batch_size
)

valid_gen <- localization_generator(
  validation_data,
  target_height = target_height,
  target_width = target_width,
  shuffle = FALSE,
  batch_size = batch_size
)

… and we’re able to go!

mannequin %>% fit_generator(
  train_gen,
  epochs = 20,
  steps_per_epoch = nrow(train_data) / batch_size,
  validation_data = valid_gen,
  validation_steps = nrow(validation_data) / batch_size,
  callbacks = listing(
    callback_model_checkpoint(
      file.path("loc_only", "weights.{epoch:02d}-{val_loss:.2f}.hdf5")
    ),
    callback_early_stopping(persistence = 2)
  )
)

After 8 epochs, IOU on each coaching and check units is round 0.35. This quantity doesn’t look too good. To be taught extra about how coaching went, we have to see some predictions. Right here’s a comfort operate that shows a picture, the bottom fact field of probably the most salient object (as outlined above), and if given, class and bounding field predictions.

plot_image_with_boxes <- operate(file_name,
                                  object_class,
                                  field,
                                  scaled = FALSE,
                                  class_pred = NULL,
                                  box_pred = NULL) {
  img <- image_read(file.path(img_dir, file_name))
  if(scaled) img <- image_resize(img, geometry = "224x224!")
  img <- image_draw(img)
  x_left <- field[1]
  y_bottom <- field[2]
  x_right <- field[3]
  y_top <- field[4]
  rect(
    x_left,
    y_bottom,
    x_right,
    y_top,
    border = "cyan",
    lwd = 2.5
  )
  textual content(
    x_left,
    y_top,
    object_class,
    offset = 1,
    pos = 2,
    cex = 1.5,
    col = "cyan"
  )
  if (!is.null(box_pred))
    rect(box_pred[1],
         box_pred[2],
         box_pred[3],
         box_pred[4],
         border = "yellow",
         lwd = 2.5)
  if (!is.null(class_pred))
    textual content(
      box_pred[1],
      box_pred[2],
      class_pred,
      offset = 0,
      pos = 4,
      cex = 1.5,
      col = "yellow")
  dev.off()
  img %>% image_write(paste0("preds_", file_name))
  plot(img)
}

First, let’s see predictions on pattern photos from the coaching set.

train_1_8 <- train_data[1:8, c("file_name",
                               "name",
                               "x_left_scaled",
                               "y_top_scaled",
                               "x_right_scaled",
                               "y_bottom_scaled")]

for (i in 1:8) {
  preds <-
    mannequin %>% predict(
      load_and_preprocess_image(train_1_8[i, "file_name"], 
                                target_height, target_width),
      batch_size = 1
  )
  plot_image_with_boxes(train_1_8$file_name[i],
                        train_1_8$identify[i],
                        train_1_8[i, 3:6] %>% as.matrix(),
                        scaled = TRUE,
                        box_pred = preds)
}
Sample bounding box predictions on the training set.

As you’d guess from wanting, the cyan-colored bins are the bottom fact ones. Now wanting on the predictions explains lots in regards to the mediocre IOU values! Let’s take the very first pattern picture – we needed the mannequin to concentrate on the couch, nevertheless it picked the desk, which can also be a class within the dataset (though within the type of eating desk). Comparable with the picture on the best of the primary row – we needed to it to select simply the canine nevertheless it included the particular person, too (by far probably the most ceaselessly seen class within the dataset).
So we truly made the duty much more tough than had we stayed with e.g., ImageNet the place usually a single object is salient.

Now verify predictions on the validation set.

Some bounding box predictions on the validation set.

Once more, we get an identical impression: The mannequin did be taught one thing, however the process is unwell outlined. Take a look at the third picture in row 2: Isn’t it fairly consequent the mannequin picks all folks as an alternative of singling out some particular man?

If single-object localization is that simple, how technically concerned can it’s to output a category label on the similar time?
So long as we stick with a single object, the reply certainly is: not a lot.

Let’s end up right now with a constrained mixture of classification and localization: detection of a single object.

Single-object detection

Combining regression and classification into one means we’ll wish to have two outputs in our mannequin.
We’ll thus use the useful API this time.
In any other case, there isn’t a lot new right here: We begin with an XCeption output of spatial decision 7×7, append some customized processing and return two outputs, one for bounding field regression and one for classification.

feature_extractor <- application_xception(
  include_top = FALSE,
  input_shape = c(224, 224, 3)
)

enter <- feature_extractor$enter
frequent <- feature_extractor$output %>%
  layer_flatten(identify = "flatten") %>%
  layer_activation_relu() %>%
  layer_dropout(price = 0.25) %>%
  layer_dense(items = 512, activation = "relu") %>%
  layer_batch_normalization() %>%
  layer_dropout(price = 0.5)

regression_output <-
  layer_dense(frequent, items = 4, identify = "regression_output")
class_output <- layer_dense(
  frequent,
  items = 20,
  activation = "softmax",
  identify = "class_output"
)

mannequin <- keras_model(
  inputs = enter,
  outputs = listing(regression_output, class_output)
)

When defining the losses (imply absolute error and categorical crossentropy, simply as within the respective single duties of regression and classification), we may weight them in order that they find yourself on roughly a typical scale. The truth is that didn’t make a lot of a distinction so we present the respective code in commented kind.

mannequin %>% freeze_weights(to = "flatten")

mannequin %>% compile(
  optimizer = "adam",
  loss = listing("mae", "sparse_categorical_crossentropy"),
  #loss_weights = listing(
  #  regression_output = 0.05,
  #  class_output = 0.95),
  metrics = listing(
    regression_output = custom_metric("iou", metric_iou),
    class_output = "accuracy"
  )
)

Identical to mannequin outputs and losses are each lists, the info generator has to return the bottom fact samples in an inventory.
Becoming the mannequin then goes as traditional.

Related Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

[td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
- Advertisement -spot_img

Latest Articles