17.2 C
Canberra
Monday, October 27, 2025

Annexin A1 mRNA-loaded liposomes alleviate acute pancreatitis by suppressing STING pathway and selling efferocytosis in macrophages


  • Mederos, M. A., Reber, H. A. & Girgis, M. D. Acute pancreatitis: a evaluate. JAMA 325, 382–390 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Jaber, S. et al. Tips for the administration of sufferers with extreme acute pancreatitis, 2021. Anaesth. Crit. Care Ache. Med 41, 101060 (2022).

    PubMed 

    Google Scholar
     

  • Banks, P. A. et al. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by worldwide consensus. Intestine 62, 102–111 (2013).

    PubMed 

    Google Scholar
     

  • Mareninova, O. A. et al. Cell dying in pancreatitis: caspases shield from necrotizing pancreatitis. J. Biol. Chem. 281, 3370–3381 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Louhimo, J., Steer, M. L. & Perides, G. Necroptosis is a vital severity determinant and potential therapeutic goal in experimental extreme pancreatitis. Cell Mol. Gastroenterol. Hepatol. 2, 519–535 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y., Adhikari, S., Clément, M. V., Wallig, M. & Bhatia, M. Induction of apoptosis by crambene protects mice in opposition to acute pancreatitis through anti-inflammatory pathways. Am. J. Pathol. 170, 1521–1534 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Q. et al. The TRIM28/miR133a/CD47 axis acts as a possible therapeutic goal in pancreatic necrosis by impairing efferocytosis. Mol. Ther. 32, 3025–3041 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Tashiro, M., Schäfer, C., Yao, H., Ernst, S. A. & Williams, J. A. Arginine induced acute pancreatitis alters the actin cytoskeleton and will increase warmth shock protein expression in rat pancreatic acinar cells. Intestine 49, 241–250 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoque, R., Malik, A. F., Gorelick, F. & Mehal, W. Z. Sterile inflammatory response in acute pancreatitis. Pancreas 41, 353–357 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Q., Wei, Y., Pandol, S. J., Li, L. & Habtezion, A. STING signaling promotes irritation in experimental acute pancreatitis. Gastroenterology 154, 1822–1835.e2 (2018).

  • Sendler, M. et al. NLRP3 inflammasome regulates growth of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis. Gastroenterology 158, 253–269.e14 (2020).

  • Nagata, S. Apoptosis and clearance of apoptotic cells. Annu Rev. Immunol. 36, 489–517 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Arandjelovic, S. & Ravichandran, Okay. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907–917 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vago, J. P. et al. Proresolving actions of artificial and pure protease inhibitors are mediated by annexin A1. J. Immunol. 196, 1922–1932 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Shen, X., Zhang, S., Guo, Z., Xing, D. & Chen, W. The crosstalk of ABCA1 and ANXA1: a possible mechanism for cover in opposition to atherosclerosis. Mol. Med 26, 84 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McArthur, S. et al. Annexin A1: a central participant within the anti-inflammatory and neuroprotective position of microglia. J. Immunol. 185, 6317–6328 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Tzelepis, F. et al. Annexin1 regulates DC efferocytosis and cross-presentation throughout Mycobacterium tuberculosis an infection. J. Clin. Make investments. 125, 752–768 (2015).

    PubMed 

    Google Scholar
     

  • da Rocha, G. H. O. et al. Management of expression and exercise of peroxisome proliferated-activated receptor γ by annexin A1 on microglia throughout efferocytosis. Cell Biochem. Funct. 37, 560–568 (2019).

    PubMed 

    Google Scholar
     

  • Solar, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that prompts the sort I interferon pathway. Science 339, 786–791 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Gao, D. et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and different retroviruses. Science 341, 903–906 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Growth and purposes of mRNA remedy primarily based on lipid nanoparticles. Biotechnol. Adv. 65, 108130 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Patel, S. Okay. et al. Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA supply to T cells. J. Management. Launch 347, 521–532 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bitounis, D., Jacquinet, E., Rogers, M. A. & Amiji, M. M. Methods to cut back the dangers of mRNA drug and vaccine toxicity. Nat. Rev. Drug Discov. 23, 281–300 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Kon, E., Advert-El, N., Hazan-Halevy, I., Stotsky-Oterin, L. & Peer, D. Focusing on most cancers with mRNA-lipid nanoparticles: key concerns and future prospects. Nat. Rev. Clin. Oncol. 20, 739–754 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Kumari, A., Kaur, A. & Aggarwal, G. The rising potential of siRNA nanotherapeutics in remedy of arthritis. Asian J. Pharm. Sci. 18, 100845 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Synergistic twin cell remedy for atherosclerosis regression: ROS-responsive bio-liposomes co-loaded with geniposide and emodin. J. Nanobiotechnol. 22, 129 (2024).

    CAS 

    Google Scholar
     

  • Nasra, S., Bhatia, D. & Kumar, A. Focused macrophage re-programming: synergistic remedy with methotrexate and RELA siRNA folate-liposome in RAW264.7 cells and arthritic rats. Adv. Well being. Mater. 13, e2400679 (2024).


    Google Scholar
     

  • Ma, J., Ding, L., Peng, X., Jiang, L. & Liu, G. Latest advances of engineered cell membrane-based nanotherapeutics to fight inflammatory illnesses. Small 20, e2308646 (2024).

    PubMed 

    Google Scholar
     

  • Dai, Q. et al. Quantifying the ligand-coated nanoparticle supply to most cancers cells in stable tumors. ACS Nano 12, 8423–8435 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Yan, H. et al. Engineering cell membrane-based nanotherapeutics to focus on irritation. Adv. Sci. 6, 1900605 (2019).


    Google Scholar
     

  • Melendez, E. et al. Pure killer cells act as an extrinsic barrier for in vivo reprogramming. Growth 149, dev200361 (2022).

  • Wu, J. et al. Macrophage phenotypic swap orchestrates the irritation and restore/regeneration following acute pancreatitis damage. eBioMedicine 58, 102920 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manohar, M. et al. Novel circulating and tissue monocytes in addition to macrophages in pancreatitis and restoration. Gastroenterology 161, 2014–2029 (2021).

  • Wu, L. et al. Annexin A1 alleviates kidney damage by selling the decision of irritation in diabetic nephropathy. Kidney Int. 100, 107–121 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. USP25 deficiency exacerbates acute pancreatitis through up-regulating TBK1-NF-κB signaling in macrophages. Cell Mol. Gastroenterol. Hepatol. 14, 1103–1122 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, J. C. M. et al. Liquid biopsies come of age: in the direction of implementation of circulating tumour DNA. Nat. Rev. Most cancers 17, 223–238 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Maltbaek, J. H., Cambier, S., Snyder, J. M. & Stetson, D. B. ABCC1 transporter exports the immunostimulatory cyclic dinucleotide cGAMP. Immunity 55, 1799–1812 (2022).

  • Zhou, Y. et al. Blockade of the phagocytic receptor MerTK on tumor-associated macrophages enhances P2X7R-dependent STING activation by tumor-derived cGAMP. Immunity 52, 357–373.e9 (2020).

  • Lee, G. Y. et al. Hyaluronic acid nanoparticles for lively focusing on atherosclerosis. Biomaterials 53, 341–348 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Gao, C. et al. Remedy of atherosclerosis by macrophage-biomimetic nanoparticles through focused pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 11, 2622 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, M. et al. Focused supply of hyaluronic acid-coated stable lipid nanoparticles for rheumatoid arthritis remedy. Drug Deliv. 25, 716–722 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sousa de Almeida, M. et al. Understanding nanoparticle endocytosis to enhance focusing on methods in nanomedicine. Chem. Soc. Rev. 50, 5397–5434 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, Y. et al. Synergistic inhibition of pancreatic most cancers with anti-PD-L1 and c-Myc inhibitor JQ1. Oncoimmunology 8, e1581529 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, Y. et al. Growth of a novel mannequin of hypertriglyceridemic acute pancreatitis in mice. Sci. Rep. 7, 40799 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sendler, M. et al. Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages will increase severity of pancreatitis in mice. Gastroenterology 154, 704–718.e10 (2018).

  • Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced sort I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, J., Xia, T., Rabasa Capote, A., Betancourt, D. & Barber, G. N. Extrinsic phagocyte-dependent STING signaling dictates the immunogenicity of dying cells. Most cancers Cell 33, 862–873.e5 (2018).

  • Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells through the intercellular switch of cGAMP. Nature 503, 530–534 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luteijn, R. D. et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573, 434–438 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, C. et al. Switch of cGAMP into bystander cells through LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity. Immunity 52, 767–781.e6 (2020).

  • Kosicka, A. et al. Attenuation of plasma annexin A1 in human weight problems. FASEB J. 27, 368–378 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • De Ponti, F. F. & Scott, C. L. Modulating hepatic macrophages with annexin A1 in non-alcoholic steatohepatitis. Clin. Sci. 136, 1111–1115 (2022).


    Google Scholar
     

  • Locatelli, I. et al. Endogenous annexin A1 is a novel protecting determinant in nonalcoholic steatohepatitis in mice. Hepatology 60, 531–544 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Morioka, S. et al. Efferocytosis induces a novel SLC program to advertise glucose uptake and lactate launch. Nature 563, 714–718 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, Y. et al. Single-cell RNA sequencing reveals compartmental transforming of tumor-infiltrating immune cells induced by anti-CD47 focusing on in pancreatic most cancers. J. Hematol. Oncol. 12, 124 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chondronasiou, D. et al. Deciphering the roadmap of in vivo reprogramming towards pluripotency. Stem Cell Rep. 17, 2501–2517 (2022).

    CAS 

    Google Scholar
     

  • He, R. et al. SULF2 enhances GDF15-SMAD axis to facilitate the initiation and development of pancreatic most cancers. Most cancers Lett. 538, 215693 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Integrative proteogenomic characterization of early esophageal most cancers. Nat. Commun. 14, 1666 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton, A. G. et al. Ionizable lipid nanoparticles with built-in immune checkpoint inhibition for mRNA CAR T cell engineering. Adv. Well being. Mater. 12, e2301515 (2023).


    Google Scholar
     

  • Flores, A. M. et al. Professional-efferocytic nanoparticles are particularly taken up by lesional macrophages and forestall atherosclerosis. Nat. Nanotechnol. 15, 154–161 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles